
M A N N I N G

Christian Bauer
Gavin King
Gary Gregory

FOREWORD BY Linda DeMichiel

SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org

Praise for the First Edition

The definitive guide to Hibernate and to object/relational mapping in enterprise computing.
—From the Foreword by Linda DeMichiel

Sun Microsystems

This book is the ultimate solution. If you are going to use Hibernate in your application, you
have no other choice; go rush to the store and get this book.

—Meera Subbarao
JavaLobby

Java Persistence with Hibernate is the most comprehensive, authoritative, and definitive
guide, tutorial, and reference to OR-mapped Java persistence.

—Will Wagers
C#online.net

A definitive source on Hibernate. Great for any developer.
—Patrick Peak, CTO

BrowserMedia, Author of Hibernate Quickly

I wholeheartedly recommend this book!
—Stuart Caborn

ThoughtWorks

Great topic, great content—and there is a great need for this book!
—Ryan Daigle, RTP Region

ALTERthought

This is the most complete book on Hibernate on the market. It covers everything, and I mean
everything. From mapping to annotations to whatever … it’s in here.

—Liz Hills
Amazon reviewer
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Java Persistence
with Hibernate

SECOND EDITION

CHRISTIAN BAUER
GAVIN KING

GARY GREGORY

M A N N I N G
SHELTER ISLAND
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: Palak Mathur
PO Box 761 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Proofreaders: Katie Tennant, Barbara Mirecki
 Technical proofreader: Christian Alfano

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617290459
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

 To Alexander, for teaching me how to teach him
 —GG
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 GETTING STARTED WITH ORM......................................1

1 ■ Understanding object/relational persistence 3
2 ■ Starting a project 19
3 ■ Domain models and metadata 30

PART 2 MAPPING STRATEGIES..59

4 ■ Mapping persistent classes 61
5 ■ Mapping value types 81
6 ■ Mapping inheritance 117
7 ■ Mapping collections and entity associations 140
8 ■ Advanced entity association mappings 172
9 ■ Complex and legacy schemas 203

PART 3 TRANSACTIONAL DATA PROCESSING227

10 ■ Managing data 229
11 ■ Transactions and concurrency 254
12 ■ Fetch plans, strategies, and profiles 283
13 ■ Filtering data 312
vii

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
PART 4 WRITING QUERIES ...343

14 ■ Creating and executing queries 345
15 ■ The query languages 369
16 ■ Advanced query options 408
17 ■ Customizing SQL 426

PART 5 BUILDING APPLICATIONS ...469

18 ■ Designing client/server applications 471
19 ■ Building web applications 498
20 ■ Scaling Hibernate 532
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword to the first edition xix
preface xxi
acknowledgments xxiii
about this book xxv
about the cover illustration xxxii

PART 1 GETTING STARTED WITH ORM.............................1

1 Understanding object/relational persistence 3
1.1 What is persistence? 4

Relational databases 5 ■ Understanding SQL 6
Using SQL in Java 6

1.2 The paradigm mismatch 8
The problem of granularity 10 ■ The problem of subtypes 11
The problem of identity 12 ■ Problems relating to associations 14
The problem of data navigation 15

1.3 ORM and JPA 16
1.4 Summary 18

2 Starting a project 19
2.1 Introducing Hibernate 19
ix

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2.2 “Hello World” with JPA 20
Configuring a persistence unit 21 ■ Writing a persistent
class 23 ■ Storing and loading messages 24

2.3 Native Hibernate configuration 26
2.4 Summary 29

3 Domain models and metadata 30
3.1 The example CaveatEmptor application 31

A layered architecture 31 ■ Analyzing the business
domain 33 ■ The CaveatEmptor domain model 34

3.2 Implementing the domain model 36
Addressing leakage of concerns 36 ■ Transparent and
automated persistence 37 ■ Writing persistence-capable
classes 38 ■ Implementing POJO associations 41

3.3 Domain model metadata 46
Annotation-based metadata 46 ■ Applying Bean Validation
rules 49 ■ Externalizing metadata with XML files 51
Accessing metadata at runtime 55

3.4 Summary 58

PART 2 MAPPING STRATEGIES...59

4 Mapping persistent classes 61
4.1 Understanding entities and value types 62

Fine-grained domain models 62 ■ Defining application
concepts 62 ■ Distinguishing entities and value types 64

4.2 Mapping entities with identity 65
Understanding Java identity and equality 65 ■ A first
entity class and mapping 66 ■ Selecting a primary
key 67 ■ Configuring key generators 69 ■ Identifier
generator strategies 71

4.3 Entity-mapping options 74
Controlling names 74 ■ Dynamic SQL generation 77
Making an entity immutable 78 ■ Mapping an entity to a
subselect 79

4.4 Summary 80
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xi
5 Mapping value types 81
5.1 Mapping basic properties 82

Overriding basic property defaults 82 ■ Customizing
property access 84 ■ Using derived properties 86
Transforming column values 87 ■ Generated and
default property values 88 ■ Temporal properties 89
Mapping enumerations 89

5.2 Mapping embeddable components 90
The database schema 90 ■ Making classes embeddable 91
Overriding embedded attributes 94 ■ Mapping nested
embedded components 95

5.3 Mapping Java and SQL types with converters 97
Built-in types 97 ■ Creating custom JPA converters 103
Extending Hibernate with UserTypes 109

5.4 Summary 116

6 Mapping inheritance 117
6.1 Table per concrete class with implicit polymorphism 118
6.2 Table per concrete class with unions 120
6.3 Table per class hierarchy 122
6.4 Table per subclass with joins 125
6.5 Mixing inheritance strategies 128
6.6 Inheritance of embeddable classes 131
6.7 Choosing a strategy 133
6.8 Polymorphic associations 135

Polymorphic many-to-one associations 135 ■ Polymorphic
collections 137

6.9 Summary 139

7 Mapping collections and entity associations 140
7.1 Sets, bags, lists, and maps of value types 141

The database schema 141 ■ Creating and mapping a
collection property 141 ■ Selecting a collection interface 142
Mapping a set 145 ■ Mapping an identifier bag 146
Mapping a list 147 ■ Mapping a map 148 ■ Sorted and
ordered collections 149
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxii
7.2 Collections of components 152
Equality of component instances 152 ■ Set of components 154
Bag of components 156 ■ Map of component values 157
Components as map keys 158 ■ Collection in an embeddable
component 160

7.3 Mapping entity associations 161
The simplest possible association 162 ■ Making it
bidirectional 163 ■ Cascading state 164

7.4 Summary 171

8 Advanced entity association mappings 172
8.1 One-to-one associations 173

Sharing a primary key 173 ■ The foreign primary key
generator 176 ■ Using a foreign key join column 179
Using a join table 180

8.2 One-to-many associations 182
Considering one-to-many bags 183 ■ Unidirectional and
bidirectional list mappings 184 ■ Optional one-to-many
with a join table 186 ■ One-to-many association in an
 embeddable class 188

8.3 Many-to-many and ternary associations 190
Unidirectional and bidirectional many-to-many associations 190
Many-to-many with an intermediate entity 192 ■ Ternary
associations with components 197

8.4 Entity associations with Maps 200
One-to-many with a property key 200 ■ Key/Value ternary
relationship 201

8.5 Summary 202

9 Complex and legacy schemas 203
9.1 Improving the database schema 204

Adding auxiliary database objects 205 ■ SQL constraints 208
Creating indexes 214

9.2 Handling legacy keys 215
Mapping a natural primary key 215 ■ Mapping a
composite primary key 216 ■ Foreign keys in composite
primary keys 218 ■ Foreign keys to composite primary
keys 221 ■ Foreign key referencing non-primary keys 222
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xiii
9.3 Mapping properties to secondary tables 224
9.4 Summary 225

PART 3 TRANSACTIONAL DATA PROCESSING227

10 Managing data 229
10.1 The persistence life cycle 230

Entity instance states 231 ■ The persistence context 232

10.2 The EntityManager interface 234
The canonical unit of work 234 ■ Making data persistent 236
Retrieving and modifying persistent data 237 ■ Getting a
reference 239 ■ Making data transient 240 ■ Refreshing
data 241 ■ Replicating data 242 ■ Caching in the persistence
context 243 ■ Flushing the persistence context 244

10.3 Working with detached state 245
The identity of detached instances 245 ■ Implementing
equality methods 247 ■ Detaching entity instances 250
Merging entity instances 251

10.4 Summary 253

11 Transactions and concurrency 254
11.1 Transaction essentials 255

ACID attributes 255 ■ Database and system transactions 256
Programmatic transactions with JTA 256 ■ Handling
exceptions 258 ■ Declarative transaction demarcation 261

11.2 Controlling concurrent access 261
Understanding database-level concurrency 262
Optimistic concurrency control 266 ■ Explicit pessimistic
locking 273 ■ Avoiding deadlocks 277

11.3 Nontransactional data access 278
Reading data in auto-commit mode 279
Queueing modifications 281

11.4 Summary 282

12 Fetch plans, strategies, and profiles 283
12.1 Lazy and eager loading 284

Understanding entity proxies 285 ■ Lazy persistent
collections 289 ■ Lazy loading with interception 291
Eager loading of associations and collections 294
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxiv
12.2 Selecting a fetch strategy 296
The n+1 selects problem 296 ■ The Cartesian product
problem 297 ■ Prefetching data in batches 299
Prefetching collections with subselects 302 ■ Eager fetching
with multiple SELECTs 303 ■ Dynamic eager fetching 304

12.3 Using fetch profiles 306
Declaring Hibernate fetch profiles 306
Working with entity graphs 307

12.4 Summary 311

13 Filtering data 312
13.1 Cascading state transitions 313

Available cascading options 314 ■ Transitive detachment and
merging 315 ■ Cascading refresh 317 ■ Cascading
replication 319 ■ Enabling global transitive persistence 320

13.2 Listening to and intercepting events 321
JPA event listeners and callbacks 321 ■ Implementing
Hibernate interceptors 325 ■ The core event system 329

13.3 Auditing and versioning with Hibernate Envers 330
Enabling audit logging 331 ■ Creating an audit trail 332
Finding revisions 333 ■ Accessing historical data 334

13.4 Dynamic data filters 337
Defining dynamic filters 337 ■ Applying the filter 338
Enabling the filter 338 ■ Filtering collection access 339

13.5 Summary 341

PART 4 WRITING QUERIES ..343

14 Creating and executing queries 345
14.1 Creating queries 346

The JPA query interfaces 347 ■ Typed query results 349
Hibernate’s query interfaces 349

14.2 Preparing queries 351
Protecting against SQL injection attacks 351 ■ Binding
named parameters 352 ■ Using positional parameters 353
Paging through large result sets 354

14.3 Executing queries 355
Listing all results 355 ■ Getting a single result 356 ■ Scrolling
with database cursors 357 ■ Iterating through a result 358
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xv
14.4 Naming and externalizing queries 359
Calling a named query 360 ■ Defining queries in XML
metadata 360 ■ Defining queries with annotations 361
Defining named queries programmatically 362

14.5 Query hints 363
Setting a timeout 364 ■ Setting the flush mode 365
Setting read-only mode 365 ■ Setting a fetch size 366
Setting an SQL comment 366 ■ Named query hints 366

14.6 Summary 368

15 The query languages 369
15.1 Selection 370

Assigning aliases and query roots 371 ■ Polymorphic
queries 372

15.2 Restriction 373
Comparison expressions 374 ■ Expressions with
collections 378 ■ Calling functions 380
Ordering query results 382

15.3 Projection 383
Projection of entities and scalar values 383 ■ Using
dynamic instantiation 385 ■ Getting distinct
results 387 ■ Calling functions in projections 387
Aggregation functions 389 ■ Grouping 391

15.4 Joins 392
Joins with SQL 393 ■ Join options in JPA 395
Implicit association joins 395 ■ Explicit joins 396
Dynamic fetching with joins 398 ■ Theta-style
joins 401 ■ Comparing identifiers 403

15.5 Subselects 404
Correlated and uncorrelated nesting 405
Quantification 406

15.6 Summary 407

16 Advanced query options 408
16.1 Transforming query results 409

Returning a list of lists 410 ■ Returning a list of maps 410
Mapping aliases to bean properties 411 ■ Writing a
ResultTransformer 412

16.2 Filtering collections 414
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxvi
16.3 The Hibernate criteria query API 416
Selection and ordering 416 ■ Restriction 417
Projection and aggregation 419 ■ Joins 420
Subselects 422 ■ Example queries 423

16.4 Summary 425

17 Customizing SQL 426
17.1 Falling back to JDBC 427
17.2 Mapping SQL query results 429

Projection with SQL queries 430 ■ Mapping to an entity
class 431 ■ Customizing result mappings 432
Externalizing native queries 444

17.3 Customizing CRUD operations 448
Enabling custom loaders 448 ■ Customizing creation,
updates, and deletion 449 ■ Customizing collection
operations 451 ■ Eager fetching in custom loaders 453

17.4 Calling stored procedures 455
Returning a result set 457 ■ Returning multiple results
and update counts 458 ■ Setting input and output
parameters 460 ■ Returning a cursor 463

17.5 Using stored procedures for CRUD 464
Custom loader with a procedure 465
Procedures for CUD 466

17.6 Summary 468

PART 5 BUILDING APPLICATIONS469

18 Designing client/server applications 471
18.1 Creating a persistence layer 472

A generic data access object pattern 474 ■ Implementing the
generic interface 475 ■ Implementing entity DAOs 477
Testing the persistence layer 479

18.2 Building a stateless server 481
Editing an auction item 481 ■ Placing a bid 484
Analyzing the stateless application 488

18.3 Building a stateful server 489
Editing an auction item 490 ■ Analyzing the stateful
application 495

18.4 Summary 497
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xvii
19 Building web applications 498
19.1 Integrating JPA with CDI 499

Producing an EntityManager 499 ■ Joining the
EntityManager with transactions 501 ■ Injecting an
EntityManager 501

19.2 Paging and sorting data 503
Offset paging vs. seeking 503 ■ Paging in the persistence
layer 505 ■ Querying page-by-page 511

19.3 Building JSF applications 512
Request-scoped services 513 ■ Conversation-scoped services 516

19.4 Serializing domain model data 524
Writing a JAX-RS service 525 ■ Applying JAXB
mappings 526 ■ Serializing Hibernate proxies 528

19.5 Summary 531

20 Scaling Hibernate 532
20.1 Bulk and batch processing 533

Bulk statements in JPQL and criteria 533 ■ Bulk statements in
SQL 538 ■ Processing in batches 539 ■ The Hibernate
StatelessSession interface 543

20.2 Caching data 544
The Hibernate shared cache architecture 545
Configuring the shared cache 549 ■ Enabling entity
and collection caching 551 ■ Testing the shared
cache 554 ■ Setting cache modes 557 ■ Controlling t
he shared cache 558 ■ The query result cache 558

20.3 Summary 561

references 562
 index 563
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

foreword to the first edition
Relational databases are indisputably at the core of the modern enterprise. While
modern programming languages, including Java, provide an intuitive, object-oriented
view of application-level business entities, the enterprise data underlying these entities
is heavily relational in nature. Further, the main strength of the relational model—
over earlier navigational models as well as over later OODB models—is that by design
it is intrinsically agnostic to the programmatic manipulation and application-level view
of the data that it serves up. Many attempts have been made to bridge relational and
object-oriented technologies, or to replace one with the other, but the gap between
the two is one of the hard facts of enterprise computing today. It is this challenge—to
provide a bridge between relational data and Java objects—that Hibernate takes on
through its object/relational mapping (ORM) approach. Hibernate meets this chal-
lenge in a very pragmatic, direct, and realistic way.

 As Christian Bauer and Gavin King demonstrate in this book, the effective use of
ORM technology in all but the simplest of enterprise environments requires under-
standing and configuring how the mediation between relational data and objects is
performed. This demands that the developer be aware and knowledgeable both of the
application and its data requirements, and of the SQL query language, relational stor-
age structures, and the potential for optimization that relational technology offers.
Not only does Hibernate provide a full-function solution that meets these require-
ments head-on, it is also a flexible and configurable architecture. Hibernate’s develop-
ers designed it with modularity, pluggability, extensibility, and user customization in
mind. As a result, in the few years since its initial release, Hibernate has rapidly become
one of the leading ORM technologies for enterprise developers—and deservedly so.
xix

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

FOREWORD TO THE FIRST EDITIONxx
 This book provides a comprehensive overview of Hibernate. It covers how to use its
type-mapping capabilities and facilities for modeling associations and inheritance;
how to retrieve objects efficiently using the Hibernate query language; how to config-
ure Hibernate for use in both managed and unmanaged environments; and how to
use its tools. In addition, throughout the book the authors provide insight into the
underlying issues of ORM and into the design choices behind Hibernate. These
insights give the reader a deep understanding of the effective use of ORM as an enter-
prise technology. Hibernate in Action is the definitive guide to using Hibernate and to
object/relational mapping in enterprise computing today.

LINDA DEMICHIEL

LEAD ARCHITECT, ENTERPRISE JAVABEANS

SUN MICROSYSTEMS

 NOVEMBER 2012
Licensed to Thomas Snead <n.ordickan@gmail.com>

preface
This is our third book about Hibernate, an open source project that is almost 15 years
old. In a recent poll, Hibernate was among the top five tools used by many Java devel-
opers every day. This shows that SQL databases are still the preferred technology for
reliable data storage and management, especially in the Java enterprise software devel-
opment space. It’s also a testament to the quality of specifications and tools available,
which today make it easy to start a project and to estimate and reduce risk when build-
ing large, complex applications.

 The fifth major Hibernate release is now available, as well as the second major ver-
sion of the Java Persistence API specification (JPA) implemented by Hibernate. The
core of Hibernate, or what is now called object/relational mapping (ORM), has been
mature for a long time, and many small improvements have been made over the years.
Other related projects such as Hibernate Search, Hibernate Bean Validation, and
more recently Hibernate object/grid mapping (OGM) are delivering new and innova-
tive solutions that make Hibernate a complete tool kit for a diverse range of data-
management tasks.

 When we wrote the previous edition of this book, Hibernate was undergoing some
significant changes: grown organically and driven by an open source community and
the daily requirements of Java developers, Hibernate had to become more formal and
implement the first version of the JPA specification. The last edition was therefore a
large book, because many examples had to be shown in the old form and the new,
standardized form.

 Today this gap has almost completely disappeared, and we can now first and fore-
most rely on the standardized API and architecture of Java Persistence. There are of
xxi

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACExxii
course also many excellent Hibernate features, which we discuss in this edition.
Although the number of pages has been reduced compared with the previous edition,
we used this space for numerous new examples. We also cover how JPA fits into the
larger picture of Java EE, and how your application architecture can integrate Bean
Validation, EJB, CDI, and JSF.

 Let this new edition be a guide through your first Hibernate project. We hope it
will replace the last edition as the Hibernate reference documentation you keep on
your desk.
Licensed to Thomas Snead <n.ordickan@gmail.com>

acknowledgments
We couldn’t have created this book without the help of many people. Palak Mathur
and Christian Alfano did an excellent job as the technical reviewers of our book;
thank you for the many hours you spent editing our broken code examples.

 We’d also like to thank our peer reviewers for taking the time and providing
invaluable feedback during the development phase: Chris Bakar, Gaurav Bhardwaj,
Jacob Bosma, José Diaz, Marco Gambini, Sergio Fernandez Gonzalez, Jerry Good-
nough, John Griffin, Stephan Heffner, Chad Johnston, Christophe Martini, Robby
O’Connor, Anthony Patricio, and Denis Wang.

 Manning’s publisher Marjan Bace again assembled a great production team at
Manning: Christina Taylor edited our crude manuscript and turned it into a real
book. Tiffany Taylor found all our typos and made the book readable. Dottie Marsico
was responsible for typesetting and gave the book its great look. Mary Piergies coordi-
nated and organized the production process. We’d like to thank you all for working
with us.

 Finally, special thanks to Linda DeMichiel for writing the foreword to the first
edition.

GARY GREGORY

I’d like to thank my parents for getting me started on my journey, providing me with
the opportunity for a great education, and giving me the freedom to choose my path.
I’m eternally grateful to my wife Lori and my son Alexander for giving me the time to
pursue yet another project like this one, my third book.
xxiii

Licensed to Thomas Snead <n.ordickan@gmail.com>

ACKNOWLEDGMENTSxxiv
 Along the way, I’ve studied and worked with truly exceptional individuals like
George Bosworth, Lee Breisacher, Christoper Hansen, Deborah Lewis, and many oth-
ers. My father-in-law, Buddy Martin, deserves a special mention for providing wisdom
and insights through great conversations and storytelling born of decades spent writ-
ing about sports (go Gators!). I always find inspiration in music, especially that of
Wilco (Impossible Germany), Tom Waits (Blue Valentine), Donald Fagen (The Nightfly, A
just machine to make big decisions/Programmed by fellows with compassion and vision), David
Lindley, and Bach. Finally, I thank my coauthor Christian Bauer for sharing his knowl-
edge, and all of the people at Manning for their support, professionalism, and great
feedback.

 A special “thank you” goes out to Tiffany Taylor at Manning for a giving the book a
great polish. Don Wanner, thank you, period.
Licensed to Thomas Snead <n.ordickan@gmail.com>

about this book
This book is both a tutorial and a reference for Hibernate and Java Persistence. If
you’re new to Hibernate, we suggest that you start reading the book with chapter 1
and begin coding with the “Hello World” tutorial in chapter 2. If you’ve used an older
version of Hibernate, you should read the first two chapters quickly to get an overview
and then jump into the middle with chapter 3. We will, whenever appropriate, tell you
if a particular section or subject is optional or reference material that you can safely
skip during your first read.

Roadmap
This book is divided into five major parts.

 In part 1, “Getting started with ORM,” we discuss the fundamentals behind object/
relational mapping. We walk through a hands-on tutorial to get you started with your
first Hibernate project. We look at Java application design for domain models and at
the options for creating object/relational mapping metadata.

 Part 2, “Mapping strategies,” focuses on Java classes and their properties, and how
they map to SQL tables and columns. We explore all basic and advanced mapping
options in Hibernate and Java Persistence. We show you how to deal with inheritance,
collections, and complex class associations. Finally, we discuss integration with legacy
database schemas and some mapping strategies that are especially tricky.

 Part 3, “Transactional data processing,” is all about loading and storing data with
Hibernate and Java Persistence. We introduce the programming interfaces, how to
write transactional applications, and how Hibernate can load data from the database
most efficiently.
xxv

Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOKxxvi
 With part 4, “Writing queries,” we introduce the data query features and cover
query languages and APIs in detail. Not all chapters in this part are written in a tutorial
style; we expect you’ll browse this part of the book frequently when building an appli-
cation and looking up a solution for a particular query problem.

 In part 5, “Building applications,” we discuss the design and implementation of lay-
ered and conversation-aware Java database applications. We discuss the most common
design patterns that are used with Hibernate, such as the Data Access Object (DAO).
You see how you can test your Hibernate application easily and learn what other best
practices are relevant if you work with an object/relational mapping software in web
and client/server applications in general.

Who should read this book?
Readers of this book should have basic knowledge of object-oriented software devel-
opment and should have used this knowledge in practice. To understand the applica-
tion examples, you should be familiar with the Java programming language and the
Unified Modeling Language.

 Our primary target audience consists of Java developers who work with SQL-based
database systems. We’ll show you how to substantially increase your productivity by
using ORM. If you’re a database developer, the book can be part of your introduction
to object-oriented software development.

 If you’re a database administrator, you’ll be interested in how ORM affects perfor-
mance and how you can tune the performance of the SQL database-management sys-
tem and persistence layer to achieve performance targets. Because data access is the
bottleneck in most Java applications, this book pays close attention to performance
issues. Many DBAs are understandably nervous about entrusting performance to tool-
generated SQL code; we seek to allay those fears and also to highlight cases where
applications shouldn’t use tool-managed data access. You may be relieved to discover
that we don’t claim that ORM is the best solution to every problem.

Code conventions
This book provides copious examples, which include all the Hibernate application
artifacts: Java code, Hibernate configuration files, and XML mapping metadata files.
Source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Additionally, Java method names, component parameters, object
properties, and XML elements and attributes in text are also presented using fixed-
width font.

 Java, HTML, and XML can all be verbose. In many cases, the original source code
(available online) has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. In rare cases, even
this was not enough, and listings include line-continuation markers (➥). Additionally,
comments in the source code have often been removed from the listings when the
code is described in the text. Code annotations accompany some of the source code
Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xxvii
listings, highlighting important concepts. In some cases, numbered bullets link to
explanations that follow the listing.

Source code downloads
Hibernate is an open source project released under the Lesser GNU Public License.
Directions for downloading Hibernate packages, in source or binary form, are avail-
able from the Hibernate website: www.hibernate.org. The source code for all exam-
ples in this book is available from http://jpwh.org/. You can also download the code
for the examples in this book from the publisher’s website at www.manning.com/
books/java-persistence-with-hibernate-second-edition.

Author Online
The purchase of Java Persistence with Hibernate, Second Edition includes free access to a
private web forum run by Manning Publications, where you can make comments
about the book, ask technical questions, and receive help from the authors and from
other users. To access the forum and subscribe to it, point your web browser to
www.manning.com/books/java-persistence-with-hibernate-second-edition. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
CHRISTIAN BAUER is a member of the Hibernate developer team; he works as a trainer
and consultant.

GAVIN KING is the founder of the Hibernate project and a member of the original Java
Persistence expert group (JSR 220). He also led the standardization effort of CDI (JSR
299). Gavin is currently creating a new programming language called Ceylon.

GARY GREGORY is a principal software engineer at Rocket Software working on applica-
tion servers and legacy integration. He is the coauthor of Manning’s JUnit in Action
and Spring Batch in Action and a member of the Project Management Committees for
the Apache Software Foundation projects: Commons, HttpComponents, Logging Ser-
vices, and Xalan.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://jpwh.org/
http://www.manning.com/books/java-persistence-with-hibernate-second-edition
http://www.manning.com/books/java-persistence-with-hibernate-second-edition

about the cover illustration
The illustration on the cover of Java Persistence with Hibernate, Second Edition is taken
from a collection of costumes of the Ottoman Empire published on January 1, 1802, by
William Miller of Old Bond Street, London. The title page is missing from the collec-
tion and we have been unable to track it down to date. The book’s table of contents
identifies the figures in both English and French, and each illustration bears the names
of two artists who worked on it, both of whom would no doubt be surprised to find their
art gracing the front cover of a computer programming book … 200 years later.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then, and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitants of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

xxviii

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 1

Getting started with ORM

In part 1, we’ll show you why object persistence is such a complex topic and
what solutions you can apply in practice. Chapter 1 introduces the object/rela-
tional paradigm mismatch and several strategies to deal with it, foremost
object/relational mapping (ORM). In chapter 2, we’ll guide you step by step
through a tutorial with Hibernate and Java Persistence—you’ll implement and
test a “Hello World” example. Thus prepared, in chapter 3 you’ll be ready to
learn how to design and implement complex business domain models in Java,
and which mapping metadata options you have available.

 After reading this part of the book, you’ll understand why you need ORM and
how Hibernate and Java Persistence work in practice. You’ll have written your
first small project, and you’ll be ready to take on more complex problems. You’ll
also understand how real-world business entities can be implemented as a Java
domain model and in what format you prefer to work with ORM metadata.
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Thomas Snead <n.ordickan@gmail.com>

Understanding
object/relational persistence
This book is about Hibernate; our focus is on using Hibernate as a provider of the
Java Persistence API. We cover basic and advanced features and describe some ways
to develop new applications using Java Persistence. Often, these recommendations
aren’t specific to Hibernate. Sometimes they’re our own ideas about the best ways to
do things when working with persistent data, explained in the context of Hibernate.

 The approach to managing persistent data has been a key design decision in
every software project we’ve worked on. Given that persistent data isn’t a new or
unusual requirement for Java applications, you’d expect to be able to make a simple
choice among similar, well-established persistence solutions. Think of web applica-
tion frameworks (JavaServer Faces versus Struts versus GWT), GUI component

In this chapter
 Persistence with SQL databases in Java

applications

 The object/relational paradigm mismatch

 Introducing ORM, JPA, and Hibernate
3

Licensed to Thomas Snead <n.ordickan@gmail.com>

4 CHAPTER 1 Understanding object/relational persistence
frameworks (Swing versus SWT), or template engines (JSP versus Thymeleaf). Each of
the competing solutions has various advantages and disadvantages, but they all share
the same scope and overall approach. Unfortunately, this isn’t yet the case with persis-
tence technologies, where we see some wildly differing solutions to the same problem.

 Persistence has always been a hot topic of debate in the Java community. Is persis-
tence a problem that is already solved by SQL and extensions such as stored proce-
dures, or is it a more pervasive problem that must be addressed by special Java
component models, such as EJBs? Should we hand-code even the most primitive CRUD
(create, read, update, delete) operations in SQL and JDBC, or should this work be
automated? How do we achieve portability if every database management system has
its own SQL dialect? Should we abandon SQL completely and adopt a different data-
base technology, such as object database systems or NoSQL systems? The debate may
never end, but a solution called object/relational mapping (ORM) now has wide accep-
tance, thanks in large part to the innovations of Hibernate, an open source ORM ser-
vice implementation.

 Before we can get started with Hibernate, you need to understand the core prob-
lems of object persistence and ORM. This chapter explains why you need tools like
Hibernate and specifications such as the Java Persistence API (JPA).

 First we define persistent data management in the context of object-oriented appli-
cations and discuss the relationship of SQL, JDBC, and Java, the underlying technolo-
gies and standards that Hibernate builds on. We then discuss the so-called
object/relational paradigm mismatch and the generic problems we encounter in object-
oriented software development with SQL databases. These problems make it clear that
we need tools and patterns to minimize the time we have to spend on the persistence-
related code in our applications.

 The best way to learn Hibernate isn’t necessarily linear. We understand that you
may want to try Hibernate right away. If this is how you’d like to proceed, skip to the
next chapter and set up a project with the “Hello World” example. We recommend
that you return here at some point as you go through this book; that way, you’ll be pre-
pared and have all the background concepts you need for the rest of the material.

1.1 What is persistence?
Almost all applications require persistent data. Persistence is one of the fundamental
concepts in application development. If an information system didn’t preserve data
when it was powered off, the system would be of little practical use. Object persistence
means individual objects can outlive the application process; they can be saved to a
data store and be re-created at a later point in time. When we talk about persistence in
Java, we’re normally talking about mapping and storing object instances in a database
using SQL. We start by taking a brief look at the technology and how it’s used in Java.
Armed with this information, we then continue our discussion of persistence and how
it’s implemented in object-oriented applications.
Licensed to Thomas Snead <n.ordickan@gmail.com>

5What is persistence?
1.1.1 Relational databases

You, like most other software engineers, have probably worked with SQL and rela-
tional databases; many of us handle such systems every day. Relational database man-
agement systems have SQL-based application programming interfaces; hence, we call
today’s relational database products SQL database management systems (DBMS) or, when
we’re talking about particular systems, SQL databases.

 Relational technology is a known quantity, and this alone is sufficient reason for
many organizations to choose it. But to say only this is to pay less respect than is due.
Relational databases are entrenched because they’re an incredibly flexible and robust
approach to data management. Due to the well-researched theoretical foundation of
the relational data model, relational databases can guarantee and protect the integrity
of the stored data, among other desirable characteristics. You may be familiar with E.F.
Codd’s four-decades-old introduction of the relational model, A Relational Model of
Data for Large Shared Data Banks (Codd, 1970). A more recent compendium worth
reading, with a focus on SQL, is C. J. Date’s SQL and Relational Theory (Date, 2009).

 Relational DBMSs aren’t specific to Java, nor is an SQL database specific to a partic-
ular application. This important principle is known as data independence. In other
words, and we can’t stress this important fact enough, data lives longer than any applica-
tion does. Relational technology provides a way of sharing data among different appli-
cations, or among different parts of the same overall system (the data entry
application and the reporting application, for example). Relational technology is a
common denominator of many disparate systems and technology platforms. Hence,
the relational data model is often the foundation for the common enterprise-wide
representation of business entities.

 Before we go into more detail about the practical aspects of SQL databases, we
have to mention an important issue: although marketed as relational, a database sys-
tem providing only an SQL data language interface isn’t really relational and in many
ways isn’t even close to the original concept. Naturally, this has led to confusion. SQL
practitioners blame the relational data model for shortcomings in the SQL language,
and relational data management experts blame the SQL standard for being a weak
implementation of the relational model and ideals. Application engineers are stuck
somewhere in the middle, with the burden of delivering something that works. We
highlight some important and significant aspects of this issue throughout this book,
but generally we focus on the practical aspects. If you’re interested in more back-
ground material, we highly recommend Practical Issues in Database Management: A Refer-
ence for the Thinking Practitioner by Fabian Pascal (Pascal, 2000) and An Introduction to
Database Systems by Chris Date (Date, 2003) for the theory, concepts, and ideals of
(relational) database systems. The latter book is an excellent reference (it’s big) for all
questions you may possibly have about databases and data management.
Licensed to Thomas Snead <n.ordickan@gmail.com>

6 CHAPTER 1 Understanding object/relational persistence
1.1.2 Understanding SQL

To use Hibernate effectively, you must start with a solid understanding of the rela-
tional model and SQL. You need to understand the relational model and topics such
as normalization to guarantee the integrity of your data, and you’ll need to use your
knowledge of SQL to tune the performance of your Hibernate application. Hibernate
automates many repetitive coding tasks, but your knowledge of persistence technol-
ogy must extend beyond Hibernate itself if you want to take advantage of the full
power of modern SQL databases. To dig deeper, consult the bibliography at the end of
this book.

 You’ve probably used SQL for many years and are familiar with the basic operations
and statements written in this language. Still, we know from our own experience that
SQL is sometimes hard to remember, and some terms vary in usage.

 Let’s review some of the SQL terms used in this book. You use SQL as a data defini-
tion language (DDL) when creating, altering, and dropping artifacts such as tables and
constraints in the catalog of the DBMS. When this schema is ready, you use SQL as a data
manipulation language (DML) to perform operations on data, including insertions,
updates, and deletions. You retrieve data by executing queries with restrictions, projections,
and Cartesian products. For efficient reporting, you use SQL to join, aggregate, and group
data as necessary. You can even nest SQL statements inside each other—a technique
that uses subselects. When your business requirements change, you’ll have to modify
the database schema again with DDL statements after data has been stored; this is
known as schema evolution.

 If you’re an SQL veteran and you want to know more about optimization and how
SQL is executed, get a copy of the excellent book SQL Tuning, by Dan Tow (Tow,
2003). For a look at the practical side of SQL through the lens of how not to use SQL,
SQL Antipatterns: Avoiding the Pitfalls of Database Programming (Karwin, 2010) is a good
resource.

 Although the SQL database is one part of ORM, the other part, of course, consists
of the data in your Java application that needs to be persisted to and loaded from the
database.

1.1.3 Using SQL in Java

When you work with an SQL database in a Java application, you issue SQL statements
to the database via the Java Database Connectivity (JDBC) API. Whether the SQL was
written by hand and embedded in the Java code or generated on the fly by Java code,
you use the JDBC API to bind arguments when preparing query parameters, executing
the query, scrolling through the query result, retrieving values from the result set, and
so on. These are low-level data access tasks; as application engineers, we’re more inter-
ested in the business problem that requires this data access. What we’d really like to
write is code that saves and retrieves instances of our classes, relieving us of this low-
level drudgery.
Licensed to Thomas Snead <n.ordickan@gmail.com>

7What is persistence?
 Because these data access tasks are often so tedious, we have to ask, are the rela-
tional data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question unequivocally: yes! There are many
reasons why SQL databases dominate the computing industry—relational database
management systems are the only proven generic data management technology, and
they’re almost always a requirement in Java projects.

 Note that we aren’t claiming that relational technology is always the best solution.
There are many data management requirements that warrant a completely different
approach. For example, internet-scale distributed systems (web search engines, con-
tent distribution networks, peer-to-peer sharing, instant messaging) have to deal with
exceptional transaction volumes. Many of these systems don’t require that after a data
update completes, all processes see the same updated data (strong transactional con-
sistency). Users might be happy with weak consistency; after an update, there might
be a window of inconsistency before all processes see the updated data. Some scien-
tific applications work with enormous but very specialized datasets. Such systems and
their unique challenges typically require equally unique and often custom-made per-
sistence solutions. Generic data management tools such as ACID-compliant transac-
tional SQL databases, JDBC, and Hibernate would play only a minor role.

In this book, we’ll think of the problems of data storage and sharing in the context of
an object-oriented application that uses a domain model. Instead of directly working
with the rows and columns of a java.sql.ResultSet, the business logic of an applica-
tion interacts with the application-specific object-oriented domain model. If the SQL

Relational systems at internet scale
To understand why relational systems, and the data-integrity guarantees associated
with them, are difficult to scale, we recommend that you first familiarize yourself with
the CAP theorem. According to this rule, a distributed system can’t be consistent,
available, and tolerant against partition failures all at the same time.

A system may guarantee that all nodes will see the same data at the same time and
that data read and write requests are always answered. But when a part of the sys-
tem fails due to a host, network, or data center problem, you must either give up
strong consistency (linearizability) or 100% availability. In practice, this means you
need a strategy that detects partition failures and restores either consistency or
availability to a certain degree (for example, by making some part of the system tem-
porarily unavailable for data synchronization to occur in the background). Often
it depends on the data, the user, or the operation whether strong consistency is
necessary.

For relational DBMSs designed to scale easily, have a look at VoltDB
(www.voltdb.com) and NuoDB (www.nuodb.com). Another interesting read is how
Google scales its most important database, for the advertising business, and why it’s
relational/SQL, in “F1 - The Fault-Tolerant Distributed RDBMS Supporting Google’s
Ad Business” (Shute, 2012).
Licensed to Thomas Snead <n.ordickan@gmail.com>

8 CHAPTER 1 Understanding object/relational persistence
database schema of an online auction system has ITEM and BID tables, for example,
the Java application defines Item and Bid classes. Instead of reading and writing the
value of a particular row and column with the ResultSet API, the application loads
and stores instances of Item and Bid classes.

 At runtime, the application therefore operates with instances of these classes.
Each instance of a Bid has a reference to an auction Item, and each Item may have a
collection of references to Bid instances. The business logic isn’t executed in the
database (as an SQL stored procedure); it’s implemented in Java and executed in the
application tier. This allows business logic to use sophisticated object-oriented con-
cepts such as inheritance and polymorphism. For example, we could use well-known
design patterns such as Strategy, Mediator, and Composite (see Design Patterns: Elements of
Reusable Object-Oriented Software [Gamma, 1995]), all of which depend on polymorphic
method calls.

 Now a caveat: not all Java applications are designed this way, nor should they be.
Simple applications may be much better off without a domain model. Use the JDBC
ResultSet if that’s all you need. Call existing stored procedures, and read their SQL
result sets, too. Many applications need to execute procedures that modify large sets
of data, close to the data. You might implement some reporting functionality with
plain SQL queries and render the result directly onscreen. SQL and the JDBC API are
perfectly serviceable for dealing with tabular data representations, and the JDBC Row-
Set makes CRUD operations even easier. Working with such a representation of persis-
tent data is straightforward and well understood.

 But in the case of applications with nontrivial business logic, the domain model
approach helps to improve code reuse and maintainability significantly. In practice,
both strategies are common and needed.

 For several decades, developers have spoken of a paradigm mismatch. This mismatch
explains why every enterprise project expends so much effort on persistence-related
concerns. The paradigms referred to are object modeling and relational modeling, or,
more practically, object-oriented programming and SQL.

 With this realization, you can begin to see the problems—some well understood
and some less well understood—that an application that combines both data repre-
sentations must solve: an object-oriented domain model and a persistent relational
model. Let’s take a closer look at this so-called paradigm mismatch.

1.2 The paradigm mismatch
The object/relational paradigm mismatch can be broken into several parts, which we
examine one at a time. Let’s start our exploration with a simple example that is prob-
lem free. As we build on it, you’ll see the mismatch begin to appear.

 Suppose you have to design and implement an online e-commerce application. In
this application, you need a class to represent information about a user of the system,
and you need another class to represent information about the user’s billing details,
as shown in figure 1.1.
Licensed to Thomas Snead <n.ordickan@gmail.com>

9The paradigm mismatch
In this diagram, you can see that a User has many BillingDetails. You can navigate
the relationship between the classes in both directions; this means you can iterate
through collections or call methods to get to the “other” side of the relationship. The
classes representing these entities may be extremely simple:

public class User {

 String username;
 String address;
 Set billingDetails;

 // Accessor methods (getter/setter), business methods, etc.
}

public class BillingDetails {

 String account;
 String bankname;
 User user;

 // Accessor methods (getter/setter), business methods, etc.
}

Note that you’re only interested in the state of the entities with regard to persistence,
so we’ve omitted the implementation of property accessors and business methods,
such as getUsername() or billAuction().

 It’s easy to come up with an SQL schema design for this case:

create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS varchar(255) not null
);

create table BILLINGDETAILS (
 ACCOUNT varchar(15) not null primary key,
 BANKNAME varchar(255) not null,
 USERNAME varchar(15) not null,
 foreign key (USERNAME) references USERS
);

The foreign key–constrained column USERNAME in BILLINGDETAILS represents the
relationship between the two entities. For this simple domain model, the object/rela-
tional mismatch is barely in evidence; it’s straightforward to write JDBC code to insert,
update, and delete information about users and billing details.

 Now let’s see what happens when you consider something a little more realistic.
The paradigm mismatch will be visible when you add more entities and entity relation-
ships to your application.

BillingDetailsUser 1..* Figure 1.1 A simple UML diagram of the
User and BillingDetails entities
Licensed to Thomas Snead <n.ordickan@gmail.com>

10 CHAPTER 1 Understanding object/relational persistence
1.2.1 The problem of granularity

The most glaringly obvious problem with the current implementation is that you’ve
designed an address as a simple String value. In most systems, it’s necessary to store
street, city, state, country, and ZIP code information separately. Of course, you could
add these properties directly to the User class, but because it’s highly likely that other
classes in the system will also carry address information, it makes more sense to create
an Address class. Figure 1.2 shows the updated model.

Should you also add an ADDRESS table? Not necessarily; it’s common to keep address
information in the USERS table, in individual columns. This design is likely to perform
better, because a table join isn’t needed if you want to retrieve the user and address in
a single query. The nicest solution may be to create a new SQL data type to represent
addresses, and to add a single column of that new type in the USERS table instead of
several new columns.

 You have the choice of adding either several columns or a single column (of a new
SQL data type). This is clearly a problem of granularity. Broadly speaking, granularity
refers to the relative size of the types you’re working with.

 Let’s return to the example. Adding a new data type to the database catalog, to
store Address Java instances in a single column, sounds like the best approach:

create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS address not null
);

A new Address type (class) in Java and a new ADDRESS SQL data type should guarantee
interoperability. But you’ll find various problems if you check the support for user-
defined data types (UDTs) in today’s SQL database management systems.

 UDT support is one of a number of so-called object-relational extensions to traditional
SQL. This term alone is confusing, because it means the database management system
has (or is supposed to support) a sophisticated data type system—something you take
for granted if somebody sells you a system that can handle data in a relational fashion.
Unfortunately, UDT support is a somewhat obscure feature of most SQL DBMSs and
certainly isn’t portable between different products. Furthermore, the SQL standard
supports user-defined data types, but poorly.

 This limitation isn’t the fault of the relational data model. You can consider the
failure to standardize such an important piece of functionality as fallout from the
object-relational database wars between vendors in the mid-1990s. Today, most engi-
neers accept that SQL products have limited type systems—no questions asked. Even
with a sophisticated UDT system in your SQL DBMS, you would still likely duplicate the
type declarations, writing the new type in Java and again in SQL. Attempts to find a

BillingDetailsUser 1..*Address ♦ Figure 1.2 The User has an
Address.
Licensed to Thomas Snead <n.ordickan@gmail.com>

11The paradigm mismatch
better solution for the Java space, such as SQLJ, unfortunately, have not had much suc-
cess. DBMS products rarely support deploying and executing Java classes directly on
the database, and if support is available, it’s typically limited to very basic functionality
and complex in everyday usage.

 For these and whatever other reasons, use of UDTs or Java types in an SQL database
isn’t common practice in the industry at this time, and it’s unlikely that you’ll encoun-
ter a legacy schema that makes extensive use of UDTs. You therefore can’t and won’t
store instances of your new Address class in a single new column that has the same
data type as the Java layer.

 The pragmatic solution for this problem has several columns of built-in vendor-
defined SQL types (such as Boolean, numeric, and string data types). You usually
define the USERS table as follows:

create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS_STREET varchar(255) not null,
 ADDRESS_ZIPCODE varchar(5) not null,
 ADDRESS_CITY varchar(255) not null
);

Classes in the Java domain model come in a range of different levels of granularity:
from coarse-grained entity classes like User, to finer-grained classes like Address,
down to simple SwissZipCode extending AbstractNumericZipCode (or whatever your
desired level of abstraction is). In contrast, just two levels of type granularity are visible
in the SQL database: relation types created by you, like USERS and BILLINGDETAILS,
and built-in data types such as VARCHAR, BIGINT, or TIMESTAMP.

 Many simple persistence mechanisms fail to recognize this mismatch and so end
up forcing the less flexible representation of SQL products on the object-oriented
model, effectively flattening it.

 It turns out that the granularity problem isn’t especially difficult to solve. We prob-
ably wouldn’t even discuss it, were it not for the fact that it’s visible in so many existing
systems. We describe the solution to this problem in section 4.1.

 A much more difficult and interesting problem arises when we consider domain
models that rely on inheritance, a feature of object-oriented design you may use to bill
the users of your e-commerce application in new and interesting ways.

1.2.2 The problem of subtypes

In Java, you implement type inheritance using superclasses and subclasses. To illus-
trate why this can present a mismatch problem, let’s add to your e-commerce applica-
tion so that you now can accept not only bank account billing, but also credit and
debit cards. The most natural way to reflect this change in the model is to use inheri-
tance for the BillingDetails superclass, along with several concrete subclasses:
CreditCard, BankAccount, and so on. Each of these subclasses defines slightly differ-
ent data (and completely different functionality that acts on that data). The UML class
diagram in figure 1.3 illustrates this model.
Licensed to Thomas Snead <n.ordickan@gmail.com>

12 CHAPTER 1 Understanding object/relational persistence
What changes must you make to support this updated Java class structure? Can you
create a table CREDITCARD that extends BILLINGDETAILS? SQL database products don’t
generally implement table inheritance (or even data type inheritance), and if they do
implement it, they don’t follow a standard syntax and might expose us to data integ-
rity problems (limited integrity rules for updatable views).

 We aren’t finished with inheritance. As soon as we introduce inheritance into the
model, we have the possibility of polymorphism.

 The User class has an association to the BillingDetails superclass. This is a poly-
morphic association. At runtime, a User instance may reference an instance of any of
the subclasses of BillingDetails. Similarly, you want to be able to write polymorphic
queries that refer to the BillingDetails class, and have the query return instances of
its subclasses.

 SQL databases also lack an obvious way (or at least a standardized way) to represent
a polymorphic association. A foreign key constraint refers to exactly one target table;
it isn’t straightforward to define a foreign key that refers to multiple tables. You’d have
to write a procedural constraint to enforce this kind of integrity rule.

 The result of this mismatch of subtypes is that the inheritance structure in a model
must be persisted in an SQL database that doesn’t offer an inheritance mechanism. In
chapter 6, we discuss how ORM solutions such as Hibernate solve the problem of per-
sisting a class hierarchy to an SQL database table or tables, and how polymorphic
behavior can be implemented. Fortunately, this problem is now well understood in
the community, and most solutions support approximately the same functionality.

 The next aspect of the object/relational mismatch problem is the issue of object
identity. You probably noticed that the example defined USERNAME as the primary key of
the USERS table. Was that a good choice? How do you handle identical objects in Java?

1.2.3 The problem of identity

Although the problem of identity may not be obvious at first, you’ll encounter it often
in your growing and expanding e-commerce system, such as when you need to check
whether two instances are identical. There are three ways to tackle this problem: two
in the Java world and one in your SQL database. As expected, they work together only
with some help.

 Java defines two different notions of sameness :

 Instance identity (roughly equivalent to memory location, checked with a == b)
 Instance equality, as determined by the implementation of the equals()

method (also called equality by value)

BillingDetailsUser 1..*

CreditCard BankAccount Figure 1.3 Using inheritance for
different billing strategies
Licensed to Thomas Snead <n.ordickan@gmail.com>

13The paradigm mismatch
On the other hand, the identity of a database row is expressed as a comparison of pri-
mary key values. As you’ll see in section 10.1.2, neither equals() nor == is always equiv-
alent to a comparison of primary key values. It’s common for several non-identical
instances in Java to simultaneously represent the same row of the database—for exam-
ple, in concurrently running application threads. Furthermore, some subtle difficul-
ties are involved in implementing equals() correctly for a persistent class and
understanding when this might be necessary.

 Let’s use an example to discuss another problem related to database identity. In
the table definition for USERS, USERNAME is the primary key. Unfortunately, this deci-
sion makes it difficult to change a user’s name; you need to update not only the row in
USERS, but also the foreign key values in (many) rows of BILLINGDETAILS. To solve this
problem, later in this book we recommend that you use surrogate keys whenever you
can’t find a good natural key. We also discuss what makes a good primary key. A surro-
gate key column is a primary key column with no meaning to the application user—in
other words, a key that isn’t presented to the application user. Its only purpose is iden-
tifying data inside the application.

 For example, you may change your table definitions to look like this:

create table USERS (
 ID bigint not null primary key,
 USERNAME varchar(15) not null unique,
 ...
);

create table BILLINGDETAILS (
 ID bigint not null primary key,
 ACCOUNT varchar(15) not null,
 BANKNAME varchar(255) not null,
 USER_ID bigint not null,
 foreign key (USER_ID) references USERS
);

The ID columns contain system-generated values. These columns were introduced
purely for the benefit of the data model, so how (if at all) should they be represented
in the Java domain model? We discuss this question in section 4.2, and we find a solu-
tion with ORM.

 In the context of persistence, identity is closely related to how the system handles
caching and transactions. Different persistence solutions have chosen different strate-
gies, and this has been an area of confusion. We cover all these interesting topics—
and show how they’re related—in section 10.1.

 So far, the skeleton e-commerce application you’ve designed has exposed the para-
digm mismatch problems with mapping granularity, subtypes, and identity. You’re
almost ready to move on to other parts of the application, but first we need to discuss
the important concept of associations : how the relationships between entities are
mapped and handled. Is the foreign key constraint in the database all you need?
Licensed to Thomas Snead <n.ordickan@gmail.com>

14 CHAPTER 1 Understanding object/relational persistence
1.2.4 Problems relating to associations

In your domain model, associations represent the relationships between entities. The
User, Address, and BillingDetails classes are all associated; but unlike Address,
BillingDetails stands on its own. BillingDetails instances are stored in their own
table. Association mapping and the management of entity associations are central
concepts in any object persistence solution.

 Object-oriented languages represent associations using object references ; but in the
relational world, a foreign key–constrained column represents an association, with copies
of key values. The constraint is a rule that guarantees integrity of the association.
There are substantial differences between the two mechanisms.

 Object references are inherently directional; the association is from one instance
to the other. They’re pointers. If an association between instances should be navigable
in both directions, you must define the association twice, once in each of the associ-
ated classes. You’ve already seen this in the domain model classes:

public class User {
 Set billingDetails;
}

public class BillingDetails {
 User user;
}

Navigation in a particular direction has no meaning for a relational data model
because you can create arbitrary data associations with join and projection operators.
The challenge is to map a completely open data model, which is independent of the
application that works with the data, to an application-dependent navigational
model—a constrained view of the associations needed by this particular application.

 Java associations can have many-to-many multiplicity. For example, the classes could
look like this:

public class User {
 Set billingDetails;
}

public class BillingDetails {
 Set users;
}

But the foreign key declaration on the BILLINGDETAILS table is a many-to-one associa-
tion: each bank account is linked to a particular user. Each user may have multiple
linked bank accounts.

 If you wish to represent a many-to-many association in an SQL database, you must
introduce a new table, usually called a link table. In most cases, this table doesn’t
appear anywhere in the domain model. For this example, if you consider the relation-
ship between the user and the billing information to be many-to-many, you define the
link table as follows:
Licensed to Thomas Snead <n.ordickan@gmail.com>

15The paradigm mismatch
create table USER_BILLINGDETAILS (
 USER_ID bigint,
 BILLINGDETAILS_ID bigint,
 primary key (USER_ID, BILLINGDETAILS_ID),
 foreign key (USER_ID) references USERS,
 foreign key (BILLINGDETAILS_ID) references BILLINGDETAILS
);

You no longer need the USER_ID foreign key column and constraint on the BILLING-
DETAILS table; this additional table now manages the links between the two entities.
We discuss association and collection mappings in detail in chapter 7.

 So far, the issues we’ve considered are mainly structural : you can see them by con-
sidering a purely static view of the system. Perhaps the most difficult problem in object
persistence is a dynamic problem: how data is accessed at runtime.

1.2.5 The problem of data navigation

There is a fundamental difference in how you access data in Java and in a relational
database. In Java, when you access a user’s billing information, you call
someUser.getBillingDetails().iterator().next() or something similar. This is
the most natural way to access object-oriented data, and it’s often described as walking
the object network. You navigate from one instance to another, even iterating collections,
following prepared pointers between classes. Unfortunately, this isn’t an efficient way
to retrieve data from an SQL database.

 The single most important thing you can do to improve the performance of data
access code is to minimize the number of requests to the database. The most obvious way to
do this is to minimize the number of SQL queries. (Of course, other, more sophisti-
cated, ways—such as extensive caching—follow as a second step.)

 Therefore, efficient access to relational data with SQL usually requires joins
between the tables of interest. The number of tables included in the join when retriev-
ing data determines the depth of the object network you can navigate in memory. For
example, if you need to retrieve a User and aren’t interested in the user’s billing infor-
mation, you can write this simple query:

select * from USERS u where u.ID = 123

On the other hand, if you need to retrieve a User and then subsequently visit each of
the associated BillingDetails instances (let’s say, to list all the user’s bank accounts),
you write a different query:

select * from USERS u
 left outer join BILLINGDETAILS bd
 on bd.USER_ID = u.ID
where u.ID = 123

As you can see, to use joins efficiently you need to know what portion of the object
network you plan to access when you retrieve the initial instance before you start navi-
gating the object network! Careful, though: if you retrieve too much data (probably
Licensed to Thomas Snead <n.ordickan@gmail.com>

16 CHAPTER 1 Understanding object/relational persistence
more than you might need), you’re wasting memory in the application tier. You may
also overwhelm the SQL database with huge Cartesian product result sets. Imagine
retrieving not only users and bank accounts in one query, but also all orders paid from
each bank account, the products in each order, and so on.

 Any object persistence solution worth its salt provides functionality for fetching the
data of associated instances only when the association is first accessed in Java code.
This is known as lazy loading : retrieving data on demand only. This piecemeal style of
data access is fundamentally inefficient in the context of an SQL database, because it
requires executing one statement for each node or collection of the object network
that is accessed. This is the dreaded n+1 selects problem.

 This mismatch in the way you access data in Java and in a relational database is per-
haps the single most common source of performance problems in Java information
systems. Yet although we’ve been blessed with innumerable books and articles advising
us to use StringBuffer for string concatenation, avoiding the Cartesian product and
n+1 selects problems is still a mystery for many Java programmers. (Admit it: you just
thought StringBuilder would be much better than StringBuffer.)

 Hibernate provides sophisticated features for efficiently and transparently fetching
networks of objects from the database to the application accessing them. We discuss
these features in chapter 12.

 We now have quite a list of object/relational mismatch problems, and it can be
costly (in time and effort) to find solutions, as you may know from experience. It will
take us most of this book to provide a complete answer to these questions and to dem-
onstrate ORM as a viable solution. Let’s get started with an overview of ORM, the Java
Persistence standard, and the Hibernate project.

1.3 ORM and JPA
In a nutshell, object/relational mapping is the automated (and transparent) persis-
tence of objects in a Java application to the tables in an SQL database, using metadata
that describes the mapping between the classes of the application and the schema of
the SQL database. In essence, ORM works by transforming (reversibly) data from one
representation to another. Before we move on, you need to understand what Hiber-
nate can’t do for you.

 A supposed advantage of ORM is that it shields developers from messy SQL. This
view holds that object-oriented developers can’t be expected to understand SQL or
relational databases well and that they find SQL somehow offensive. On the contrary,
we believe that Java developers must have a sufficient level of familiarity with—and
appreciation of—relational modeling and SQL in order to work with Hibernate. ORM
is an advanced technique used by developers who have already done it the hard way.
To use Hibernate effectively, you must be able to view and interpret the SQL state-
ments it issues and understand their performance implications.

Licensed to Thomas Snead <n.ordickan@gmail.com>

17ORM and JPA
 Let’s look at some of the benefits of Hibernate:

 Productivity—Hibernate eliminates much of the grunt work (more than you’d
expect) and lets you concentrate on the business problem. No matter which
application-development strategy you prefer—top-down, starting with a domain
model, or bottom-up, starting with an existing database schema—Hibernate,
used together with the appropriate tools, will significantly reduce development time.

 Maintainability —Automated ORM with Hibernate reduces lines of code (LOC),
making the system more understandable and easier to refactor. Hibernate provides a
buffer between the domain model and the SQL schema, insulating each model
from minor changes to the other.

 Performance—Although hand-coded persistence might be faster in the same
sense that assembly code can be faster than Java code, automated solutions like
Hibernate allow the use of many optimizations at all times. One example of this
is efficient and easily tunable caching in the application tier. This means devel-
opers can spend more energy hand-optimizing the few remaining real bottle-
necks instead of prematurely optimizing everything.

 Vendor independence—Hibernate can help mitigate some of the risks associated
with vendor lock-in. Even if you plan never to change your DBMS product, ORM
tools that support a number of different DBMSs enable a certain level of portability.
In addition, DBMS independence helps in development scenarios where engi-
neers use a lightweight local database but deploy for testing and production on a
different system.

The Hibernate approach to persistence was well received by Java developers, and the
standard Java Persistence API was designed along similar lines.

 JPA became a key part of the simplifications introduced in recent EJB and Java EE
specifications. We should be clear up front that neither Java Persistence nor Hiber-
nate are limited to the Java EE environment; they’re general-purpose solutions to the
persistence problem that any type of Java (or Groovy, or Scala) application can use.

 The JPA specification defines the following:

 A facility for specifying mapping metadata—how persistent classes and their
properties relate to the database schema. JPA relies heavily on Java annotations
in domain model classes, but you can also write mappings in XML files.

 APIs for performing basic CRUD operations on instances of persistent classes,
most prominently javax.persistence.EntityManager to store and load data.

 A language and APIs for specifying queries that refer to classes and properties of
classes. This language is the Java Persistence Query Language (JPQL) and looks
similar to SQL. The standardized API allows for programmatic creation of criteria
queries without string manipulation.

 How the persistence engine interacts with transactional instances to perform
dirty checking, association fetching, and other optimization functions. The lat-
est JPA specification covers some basic caching strategies.
Licensed to Thomas Snead <n.ordickan@gmail.com>

18 CHAPTER 1 Understanding object/relational persistence
Hibernate implements JPA and supports all the standardized mappings, queries, and
programming interfaces.

1.4 Summary
 With object persistence, individual objects can outlive their application process, be

saved to a data store, and be re-created later. The object/relational mismatch
comes into play when the data store is an SQL-based relational database man-
agement system. For instance, a network of objects can’t be saved to a database
table; it must be disassembled and persisted to columns of portable SQL data
types. A good solution for this problem is object/relational mapping (ORM).

 ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the devel-
oper of 95% of object persistence work, such as writing complex SQL statements
with many table joins and copying values from JDBC result sets to objects or
graphs of objects.

 A full-featured ORM middleware solution may provide database portability, cer-
tain optimization techniques like caching, and other viable functions that
aren’t easy to hand-code in a limited time with SQL and JDBC.

 Better solutions than ORM might exist someday. We (and many others) may
have to rethink everything we know about data management systems and their
languages, persistence API standards, and application integration. But the evo-
lution of today’s systems into true relational database systems with seamless
object-oriented integration remains pure speculation. We can’t wait, and there
is no sign that any of these issues will improve soon (a multibillion-dollar indus-
try isn’t very agile). ORM is the best solution currently available, and it’s a time-
saver for developers facing the object/relational mismatch every day.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Starting a project
In this chapter, you’ll start with Hibernate and Java Persistence using a step-by-step
example. You’ll see both persistence APIs and how to benefit from using either
native Hibernate or standardized JPA. We first offer you a tour through Hibernate
with a straightforward “Hello World” application. Before you start coding, you must
decide which Hibernate modules to use in your project.

2.1 Introducing Hibernate
Hibernate is an ambitious project that aims to provide a complete solution to the
problem of managing persistent data in Java. Today, Hibernate is not only an ORM
service, but also a collection of data management tools extending well beyond ORM.

 The Hibernate project suite includes the following:

 Hibernate ORM—Hibernate ORM consists of a core, a base service for persis-
tence with SQL databases, and a native proprietary API. Hibernate ORM is the
foundation for several of the other projects and is the oldest Hibernate

In this chapter
 Overview of Hibernate projects

 “Hello World” with Hibernate and Java
Persistence

 Configuration and integration options
19

Licensed to Thomas Snead <n.ordickan@gmail.com>

20 CHAPTER 2 Starting a project
project. You can use Hibernate ORM on its own, independent of any framework
or any particular runtime environment with all JDKs. It works in every Java
EE/J2EE application server, in Swing applications, in a simple servlet container,
and so on. As long as you can configure a data source for Hibernate, it works.

 Hibernate EntityManager—This is Hibernate’s implementation of the standard
Java Persistence APIs, an optional module you can stack on top of Hibernate
ORM. You can fall back to Hibernate when a plain Hibernate interface or even a
JDBC Connection is needed. Hibernate’s native features are a superset of the
JPA persistence features in every respect.

 Hibernate Validator—Hibernate provides the reference implementation of the
Bean Validation (JSR 303) specification. Independent of other Hibernate proj-
ects, it provides declarative validation for your domain model (or any other)
classes.

 Hibernate Envers—Envers is dedicated to audit logging and keeping multiple
versions of data in your SQL database. This helps you add data history and audit
trails to your application, similar to version control systems you might already
be familiar with such as Subversion and Git.

 Hibernate Search—Hibernate Search keeps an index of your domain model data
up to date in an Apache Lucene database. It lets you query this database with a
powerful and naturally integrated API. Many projects use Hibernate Search in
addition to Hibernate ORM, adding full-text search capabilities. If you have a
free text search form in your application’s user interface, and you want happy
users, work with Hibernate Search. Hibernate Search isn’t covered in this book;
you can find more information in Hibernate Search in Action by Emmanuel
Bernard (Bernard, 2008).

 Hibernate OGM—The most recent Hibernate project is the object/grid mapper.
It provides JPA support for NoSQL solutions, reusing the Hibernate core engine
but persisting mapped entities into a key/value-, document-, or graph-oriented
data store. Hibernate OGM isn’t covered in this book.

Let’s get started with your first Hibernate and JPA project.

2.2 “Hello World” with JPA
In this section, you’ll write your first Hibernate application, which stores a “Hello
World” message in the database and then retrieves it. Let’s start by installing and con-
figuring Hibernate.

 We use Apache Maven as the project build tool, as we do for all the examples in
this book. Declare the dependency on Hibernate:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.0.0.Final</version>
</dependency>
Licensed to Thomas Snead <n.ordickan@gmail.com>

21“Hello World” with JPA

ses

for
The hibernate-entitymanager module includes transitive dependencies on other
modules you’ll need, such as hibernate-core and the Java Persistence interface stubs.

 Your starting point in JPA is the persistence unit. A persistence unit is a pairing of
your domain model class mappings with a database connection, plus some other con-
figuration settings. Every application has at least one persistence unit; some applica-
tions have several if they’re talking to several (logical or physical) databases. Hence,
your first step is setting up a persistence unit in your application’s configuration.

2.2.1 Configuring a persistence unit

The standard configuration file for persistence units is located on the classpath in
META-INF/persistence.xml. Create the following configuration file for the “Hello
World” application:

<persistence
 version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence_2_1.xsd">

 <persistence-unit name="HelloWorldPU">

 <jta-data-source>myDS</jta-data-source>

 <class>org.jpwh.model.helloworld.Message</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

 <property
 name="javax.persistence.schema-generation.database.action"
 value="drop-and-create"/>

 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.use_sql_comments" value="true"/>

 </properties>
 </persistence-unit>
</persistence>

B The persistence.xml file configures at least one persistence unit; each unit must have
a unique name.

C Each persistence unit must have a database connection. Here you delegate to an exist-
ing java.sql.DataSource. Hibernate will find the data source by name with a JNDI
lookup on startup.

D A persistent unit has persistent (mapped) classes. You list them here.

PATH: /model/src/main/resources/META-INF/persistence.xml

Configure
persistence unit B

Database connectionC

Persistent clasD

E

Disable
scanning
mapped
classes

Set
properties F

Drop/re-create
SQL schema G

Format SQL H
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 2 Starting a project
E Hibernate can scan your classpath for mapped classes and add them automatically to
your persistence unit. This setting disables that feature.

F Standard or vendor-specific options can be set as properties on a persistence unit. Any
standard properties have the javax.persistence name prefix; Hibernate’s settings
use hibernate.

G The JPA engine should drop and re-create the SQL schema in the database automati-
cally when it boots. This is ideal for automated testing, when you want to work with a
clean database for every test run.

H When printing SQL in logs, let Hibernate format the SQL nicely and generate com-
ments into the SQL string so you know why Hibernate executed the SQL statement.
Most applications need a pool of database connections, with a certain size and opti-
mized thresholds for the environment. You also want to provide the DBMS host and
credentials for your database connections.

For the “Hello World” application, you delegate database connection handling to a
Java Transaction API (JTA) provider, the open source Bitronix project. Bitronix offers
connection pooling with a managed java.sql.DataSource and the standard
javax.transaction.UserTransaction API in any Java SE environment. Bitronix binds
these objects into JNDI, and Hibernate interfaces automatically with Bitronix through
JNDI lookups. Setting up Bitronix in detail is outside of the scope of this book; you can
find the configuration for our examples in org.jpwh.env.TransactionManagerSetup.

 In the “Hello World” application, you want to store messages in the database and
load them from the database. Hibernate applications define persistent classes that are
mapped to database tables. You define these classes based on your analysis of the busi-
ness domain; hence, they’re a model of the domain. This example consists of one
class and its mapping.

 Let’s see what a simple persistent class looks like, how the mapping is created, and
some of the things you can do with instances of the persistent class in Hibernate.

Logging SQL
All SQL statements executed by Hibernate can be logged—an invaluable tool during
optimization. To log SQL, in persistence.xml, set the properties hibernate
.format_sql and hibernate.use_sql_comments to true. This will cause Hibernate
to format SQL statements with causation comments. Then, in your logging configura-
tion (which depends on your chosen logging implementation), set the categories
org.hibernate.SQL and org.hibernate.type.descriptor.sql.BasicBinder to
the finest debug level. You’ll then see all SQL statements executed by Hibernate in
your log output, including the bound parameter values of prepared statements.
Licensed to Thomas Snead <n.ordickan@gmail.com>

23“Hello World” with JPA
2.2.2 Writing a persistent class

The objective of this example is to store messages in a database and retrieve them for
display. The application has a simple persistent class, Message:

package org.jpwh.model.helloworld;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

@Entity

public class Message {

 @Id

 @GeneratedValue

 private Long id;

 private String text;

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;
 }
}

B Every persistent entity class must have at least the @Entity annotation. Hibernate
maps this class to a table called MESSAGE.

C Every persistent entity class must have an identifier attribute annotated with @Id.
Hibernate maps this attribute to a column named ID.

D Someone must generate identifier values; this annotation enables automatic genera-
tion of IDs.

E You usually implement regular attributes of a persistent class with private or protected
fields and public getter/setter method pairs. Hibernate maps this attribute to a col-
umn called TEXT.

The identifier attribute of a persistent class allows the application to access the data-
base identity—the primary key value—of a persistent instance. If two instances of
Message have the same identifier value, they represent the same row in the database.

 This example uses Long for the type of the identifier attribute, but this isn’t
a requirement. Hibernate allows virtually anything for the identifier type, as you’ll
see later.

 You may have noticed that the text attribute of the Message class has JavaBeans-
style property accessor methods. The class also has a (default) constructor with no
parameters. The persistent classes we show in the examples will usually look something

PATH: /model/src/main/java/org/jpwh/model/helloworld/Message.java

@Entity requiredB

@Id requiredC

D Enables auto ID generation

Maps attributeE
Licensed to Thomas Snead <n.ordickan@gmail.com>

24 CHAPTER 2 Starting a project
like this. Note that you don’t need to implement any particular interface or extend any
special superclass.

 Instances of the Message class can be managed (made persistent) by Hibernate, but
they don’t have to be. Because the Message object doesn’t implement any persistence-
specific classes or interfaces, you can use it just like any other Java class:

Message msg = new Message();
msg.setText("Hello!");
System.out.println(msg.getText());

It may look like we’re trying to be cute here; in fact, we’re demonstrating an impor-
tant feature that distinguishes Hibernate from some other persistence solutions. You
can use the persistent class in any execution context—no special container is needed.

 You don’t have to use annotations to map a persistent class. Later we’ll show you
other mapping options, such as the JPA orm.xml mapping file, and native hbm.xml
mapping files, and when they’re a better solution than source annotations.

 The Message class is now ready. You can store instances in your database and write
queries to load them again into application memory.

2.2.3 Storing and loading messages

What you really came here to see is Hibernate, so let’s save a new Message to the data-
base. First you need an EntityManagerFactory to talk to your database. This API rep-
resents your persistence unit; most applications have one EntityManagerFactory for
one configured persistence unit:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("HelloWorldPU");

Once it starts, your application should create the EntityManagerFactory; the factory is
thread-safe, and all code in your application that accesses the database should share it.

 You can now work with the database in a demarcated unit—a transaction—and
store a Message:

UserTransaction tx = TM.getUserTransaction();
tx.begin();

EntityManager em = emf.createEntityManager();

Message message = new Message();
message.setText("Hello World!");

em.persist(message);

tx.commit();
// INSERT into MESSAGE (ID, TEXT) values (1, 'Hello World!')

em.close();

PATH: /examples/src/est/java/org/jpwh/helloworld/HelloWorldJPA.java

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldJPA.java

Accesses UserTransactionB

Creates EntityManagerC

Creates MessageD

Makes instance persistentE

Commits
transactionF

Closes EntityManagerG
Licensed to Thomas Snead <n.ordickan@gmail.com>

25“Hello World” with JPA
B Get access to the standard transaction API UserTransaction, and begin a transaction
on this thread of execution.

C Begin a new session with the database by creating an EntityManager. This is your con-
text for all persistence operations.

D Create a new instance of the mapped domain model class Message, and set its text
property.

E Enlist the transient instance with your persistence context; you make it persistent.
Hibernate now knows that you wish to store that data, but it doesn't necessarily call
the database immediately.

F Commit the transaction. Hibernate automatically checks the persistence context and
executes the necessary SQL INSERT statement.

G If you create an EntityManager, you must close it.

To help you understand how Hibernate works, we show the automatically generated
and executed SQL statements in source code comments when they occur. Hibernate
inserts a row in the MESSAGE table, with an automatically generated value for the ID
primary key column, and the TEXT value.

 You can later load this data with a database query:

UserTransaction tx = TM.getUserTransaction();
tx.begin();

EntityManager em = emf.createEntityManager();

List<Message> messages =
 em.createQuery("select m from Message m").getResultList();
// SELECT * from MESSAGE

assertEquals(messages.size(), 1);
assertEquals(messages.get(0).getText(), "Hello World!");

messages.get(0).setText("Take me to your leader!");

tx.commit();
// UPDATE MESSAGE set TEXT = 'Take me to your leader!' where ID = 1

em.close();

B Every interaction with your database should occur within explicit transaction bound-
aries, even if you’re only reading data.

C Execute a query to retrieve all instances of Message from the database.

D You can change the value of a property. Hibernate detects this automatically because
the loaded Message is still attached to the persistence context it was loaded in.

E On commit, Hibernate checks the persistence context for dirty state and executes the
SQL UPDATE automatically to synchronize in-memory with the database state.

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldJPA.java

Transaction boundaryB

Executes queryC

Changes
property
value

D

EExecutes UPDATE
Licensed to Thomas Snead <n.ordickan@gmail.com>

26 CHAPTER 2 Starting a project
The query language you’ve seen in this example isn’t SQL, it’s the Java Persistence
Query Language (JPQL). Although there is syntactically no difference in this trivial
example, the Message in the query string doesn’t refer to the database table name,
but to the persistent class name. If you map the class to a different table, the query
will still work.

 Also, notice how Hibernate detects the modification to the text property of the
message and automatically updates the database. This is the automatic dirty-checking
feature of JPA in action. It saves you the effort of explicitly asking your persistence
manager to update the database when you modify the state of an instance inside a
transaction.

 You’ve now completed your first Hibernate and JPA application. Maybe you’ve
already noticed that we prefer to write examples as executable tests, with assertions
that verify the correct outcome of each operation. We’ve taken all the examples in this
book from test code, so you (and we) can be sure they work properly. Unfortunately,
this also means you need more than one line of code to create the EntityManager-
Factory when starting the test environment. We’ve tried to keep the setup of the tests
as simple as possible. You can find the code in org.jpwh.env.JPASetup and
org.jpwh.env.JPATest; use it as a starting point for writing your own test harness.

 Before we work on more-realistic application examples, let’s have a quick look at
the native Hibernate bootstrap and configuration API.

2.3 Native Hibernate configuration
Although basic (and extensive) configuration is standardized in JPA, you can’t access
all the configuration features of Hibernate with properties in persistence.xml. Note
that most applications, even quite sophisticated ones, don’t need such special configu-
ration options and hence don’t have to access the bootstrap API we show in this sec-
tion. If you aren’t sure, you can skip this section and come back to it later, when you
need to extend Hibernate type adapters, add custom SQL functions, and so on.

 The native equivalent of the standard JPA EntityManagerFactory is the
org.hibernate.SessionFactory. You have usually one per application, and it’s the
same pairing of class mappings with database connection configuration.

 Hibernate’s native bootstrap API is split into several stages, each giving you access
to certain configuration aspects. In its most compact form, building a Session-
Factory looks like this:

SessionFactory sessionFactory = new MetadataSources(
 new StandardServiceRegistryBuilder()
 .configure("hibernate.cfg.xml").build()
).buildMetadata().buildSessionFactory();

This loads all settings from a Hibernate configuration file. If you have an existing Hiber-
nate project, you most likely have this file on your classpath. Similar to persistence.xml,

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

27Native Hibernate configuration
this configuration file contains database connection details, as well as a list of persistent
classes and other configuration properties.

 Let’s deconstruct this bootstrap snippet and look at the API in more detail. First,
create a ServiceRegistry:

StandardServiceRegistryBuilder serviceRegistryBuilder =
 new StandardServiceRegistryBuilder();

serviceRegistryBuilder
 .applySetting("hibernate.connection.datasource", "myDS")
 .applySetting("hibernate.format_sql", "true")
 .applySetting("hibernate.use_sql_comments", "true")
 .applySetting("hibernate.hbm2ddl.auto", "create-drop");

ServiceRegistry serviceRegistry = serviceRegistryBuilder.build();

B This builder helps you create the immutable service registry with chained method calls.

C Configure the services registry by applying settings.

If you want to externalize your service registry configuration, you can load settings
from a properties file on the classpath with StandardServiceRegistryBuilder#load-
Properties(file).

 With the ServiceRegistry built and immutable, you can move on to the next
stage: telling Hibernate which persistent classes are part of your mapping metadata.
Configure the metadata sources as follows:

MetadataSources metadataSources = new MetadataSources(serviceRegistry);

metadataSources.addAnnotatedClass(
 org.jpwh.model.helloworld.Message.class
);

// Add hbm.xml mapping files
// metadataSources.addFile(...);

// Read all hbm.xml mapping files from a JAR
// metadataSources.addJar(...)

MetadataBuilder metadataBuilder = metadataSources.getMetadataBuilder();

B This builder helps you create the immutable service registry with chained method calls.

C Configure the services registry by applying settings.

The MetadataSources API has many methods for adding mapping sources; check the
Javadoc for more information. The next stage of the boot procedure is building all
the metadata needed by Hibernate, with the MetadataBuilder you obtained from the
metadata sources.

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

BuilderB

Configures
services
registryC

Requires service registry B

C
Adds persistent classes
to metadata sources
Licensed to Thomas Snead <n.ordickan@gmail.com>

28 CHAPTER 2 Starting a project
 You can then query the metadata to interact with Hibernate’s completed configu-
ration programmatically, or continue and build the final SessionFactory:

Metadata metadata = metadataBuilder.build();

assertEquals(metadata.getEntityBindings().size(), 1);

SessionFactory sessionFactory = metadata.buildSessionFactory();

Let’s see if this configuration works by storing and loading a message with Hiber-
nate’s native equivalent of EntityManager, org.hibernate.Session. You can create a
Session with the SessionFactory, and you must close it just as you have to close your
own EntityManager.

 Or, using another Hibernate feature, you can let Hibernate take care of creating
and closing the Session with SessionFactory#getCurrentSession():

UserTransaction tx = TM.getUserTransaction();
tx.begin();

Session session =
sessionFactory.getCurrentSession();

Message message = new Message();
message.setText("Hello World!");

session.persist(message);

tx.commit();
// INSERT into MESSAGE (ID, TEXT) values (1, 'Hello World!')

B Get access to the standard transaction API UserTransaction, and begin a transaction
on this thread of execution.

C Whenever you call getCurrentSession() in the same thread, you get the same
org.hibernate.Session. It’s bound automatically to the ongoing transaction and is
closed for you automatically when that transaction commits or rolls back.

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

PATH: /examples/src/ test/java/org/jpwh/helloworld/HelloWorldHibernate.java

Creating an EntityManagerFactory from a SessionFactory
At the time of writing, Hibernate has no convenient API to build an EntityManager-
Factory programmatically. You can use an internal API for this purpose: the
org.hibernate.jpa.internal.EntityManagerFactoryImpl has a constructor
that accepts a SessionFactory.

Accesses UserTransactionB

Gets org.hibernate.SessionC

Hibernate API and JPA are similar.D

ECommits transaction
Licensed to Thomas Snead <n.ordickan@gmail.com>

29Summary
D The native Hibernate API is very similar to the standard Java Persistence API, and most
methods have the same names.

E Hibernate synchronizes the session with the database and automatically closes the
“current” session on commit of the bound transaction.

Accessing the current Session results in compact code:

UserTransaction tx = TM.getUserTransaction();
tx.begin();

List<Message> messages =
 sessionFactory.getCurrentSession().createCriteria(
 Message.class
).list();
// SELECT * from MESSAGE

assertEquals(messages.size(), 1);
assertEquals(messages.get(0).getText(), "Hello World!");

tx.commit();

B A Hibernate criteria query is a type-safe programmatic way to express queries, auto-
matically translated into SQL.

Most of the examples in this book don’t use the SessionFactory or Session API.
From time to time, when a particular feature is only available in Hibernate, we show
you how to unwrap() the native interface given a standard API.

2.4 Summary
 You’ve completed your first JPA project.
 You wrote a persistent class and its mapping with annotations.
 You’ve seen how to configure and bootstrap a persistence unit, and how to

create the EntityManagerFactory entry point. Then you called the Entity-
Manager to interact with the database, storing and loading instances of your per-
sistent domain model class.

 We discussed some of the more advanced native Hibernate bootstrap and
configuration options, as well as the equivalent basic Hibernate APIs, Session-
Factory and Session.

PATH: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

Criteria queryB
Licensed to Thomas Snead <n.ordickan@gmail.com>

Domain models
and metadata
The “Hello World” example in the previous chapter introduced you to Hibernate;
certainly, it isn’t useful for understanding the requirements of real-world applica-
tions with complex data models. For the rest of the book, we use a much more
sophisticated example application—CaveatEmptor, an online auction system—to
demonstrate Hibernate and Java Persistence. (Caveat emptor means “Let the buyer
beware”.)

In this chapter
 Discovering the CaveatEmptor example

application

 Implementing the domain model

 Object/relational mapping metadata options
30

Licensed to Thomas Snead <n.ordickan@gmail.com>

31The example CaveatEmptor application

We’ll start our discussion of the application by introducing a layered application archi-
tecture. Then, you’ll learn how to identify the business entities of a problem domain.
You’ll create a conceptual model of these entities and their attributes, called a domain
model, and you’ll implement it in Java by creating persistent classes. We’ll spend some
time exploring exactly what these Java classes should look like and where they fit
within a typical layered application architecture. We’ll also look at the persistence
capabilities of the classes and how this aspect influences the design and implementa-
tion. We’ll add Bean Validation, which helps to automatically verify the integrity of the
domain model data not only for persistent information but all business logic.

 We’ll then explore mapping metadata options—the ways you tell Hibernate how
your persistent classes and their properties relate to database tables and columns. This
can be as simple as adding annotations directly in the Java source code of the classes
or writing XML documents that you eventually deploy along with the compiled Java
classes that Hibernate accesses at runtime. After reading this chapter, you’ll know how
to design the persistent parts of your domain model in complex real-world projects,
and what mapping metadata option you’ll primarily prefer and use. Let’s start with
the example application.

3.1 The example CaveatEmptor application
The CaveatEmptor example is an online auction application that demonstrates ORM
techniques and Hibernate functionality. You can download the source code for the
application from www.jpwh.org. We won’t pay much attention to the user interface in
this book (it could be web based or a rich client); we’ll concentrate instead on the
data access code. When a design decision about data access code that has conse-
quences for the user interface has to be made, we’ll naturally consider both.

 In order to understand the design issues involved in ORM, let’s pretend the Caveat-
Emptor application doesn’t yet exist and that you’re building it from scratch. Let’s
start by looking at the architecture.

3.1.1 A layered architecture

With any nontrivial application, it usually makes sense to organize classes by concern.
Persistence is one concern; others include presentation, workflow, and business logic.
A typical object-oriented architecture includes layers of code that represent the
concerns.

Major new features in JPA 2
 A JPA persistence provider now integrates automatically with a Bean Valida-

tion provider. When data is stored, the provider automatically validates con-
straints on persistent classes.

 The Metamodel API has been added. You can obtain (unfortunately not
change) the names, properties, and mapping metadata of the classes in a
persistence unit.
Licensed to Thomas Snead <n.ordickan@gmail.com>

32 CHAPTER 3 Domain models and metadata

A layered architecture defines interfaces between code that implements the various
concerns, allowing changes to be made to the way one concern is implemented with-
out significant disruption to code in the other layers. Layering determines the kinds
of inter-layer dependencies that occur. The rules are as follows:

 Layers communicate from top to bottom. A layer is dependent only on the
interface of the layer directly below it.

 Each layer is unaware of any other layers except for the layer just below it.

Different systems group concerns differently, so they define different layers. The typi-
cal, proven, high-level application architecture uses three layers: one each for presen-
tation, business logic, and persistence, as shown in figure 3.1.

 Presentation layer—The user interface logic is topmost. Code responsible for the
presentation and control of page and screen navigation is in the presentation
layer. The user interface code may directly access business entities of the shared
domain model and render them on the screen, along with controls to execute
actions. In some architectures, business entity instances might not be directly
accessible by user interface code: for example, if the presentation layer isn’t
running on the same machine as the rest of the system. In such cases, the pre-
sentation layer may require its own special data-transfer model, representing
only a transmittable subset of the domain model.

 Business layer—The exact form of the next layer varies widely between applica-
tions. It’s generally agreed that the business layer is responsible for implement-
ing any business rules or system requirements that would be understood by
users as part of the problem domain. This layer usually includes some kind of

Cross-cutting concerns
There are also so-called cross-cutting concerns, which may be implemented generi-
cally—by framework code, for example. Typical cross-cutting concerns include log-
ging, authorization, and transaction demarcation.

Presentation Layer

Domain
Model Business Layer

Persistence Layer

Database

Interceptors,
Utility,
and

Helper
Classes

Figure 3.1 A persistence layer is
the basis in a layered architecture.
Licensed to Thomas Snead <n.ordickan@gmail.com>

33The example CaveatEmptor application
controlling component—code that knows when to invoke which business rule.
In some systems, this layer has its own internal representation of the business
domain entities. Alternatively, it relies on a domain model implementation,
shared with the other layers of the application.

 Persistence layer—The persistence layer is a group of classes and components
responsible for storing data to, and retrieving it from, one or more data stores.
This layer needs a model of the business domain entities for which you’d like to
keep persistent state. The persistence layer is where the bulk of JPA and Hiber-
nate use takes place.

 Database—The database is usually external, shared by many applications. It’s
the actual, persistent representation of the system state. If an SQL database is
used, the database includes a schema and possibly stored procedures for execu-
tion of business logic close to the data.

 Helper and utility classes—Every application has a set of infrastructural helper or
utility classes that are used in every layer of the application (such as Exception
classes for error handling). These shared infrastructural elements don’t form a
layer because they don’t obey the rules for inter-layer dependency in a layered
architecture.

Now that you have a high-level architecture, you can focus on the business problem.

3.1.2 Analyzing the business domain

At this stage, you, with the help of domain experts, analyze the business problems
your software system needs to solve, identifying the relevant main entities and their
interactions. The motivating goal behind the analysis and design of a domain model is
to capture the essence of the business information for the application’s purpose.

 Entities are usually notions understood by users of the system: payment, customer,
order, item, bid, and so forth. Some entities may be abstractions of less concrete
things the user thinks about, such as a pricing algorithm, but even these are usually
understandable to the user. You can find all these entities in the conceptual view of
the business, sometimes called a business model.

 From this business model, engineers and architects of object-oriented software cre-
ate an object-oriented model, still at the conceptual level (no Java code). This model
may be as simple as a mental image existing only in the mind of the developer, or it
may be as elaborate as a UML class diagram. Figure 3.2 shows a simple model
expressed in UML.

 This model contains entities that you’re bound to find in any typical e-commerce
system: category, item, and user. This model of the problem domain represents all
the entities and their relationships (and perhaps their attributes). We call this kind of
object-oriented model of entities from the problem domain, encompassing only

CategoryItem 0..*User 0..*sells Figure 3.2 A class diagram of
a typical online auction model
Licensed to Thomas Snead <n.ordickan@gmail.com>

34 CHAPTER 3 Domain models and metadata
those entities that are of interest to the user, a domain model. It’s an abstract view of
the real world.

 Instead of an object-oriented model, engineers and architects may start the appli-
cation design with a data model (possibly expressed with an entity-relationship dia-
gram). We usually say that, with regard to persistence, there is little difference
between the two; they’re merely different starting points. In the end, what modeling
language you use is secondary; we’re most interested in the structure and relation-
ships of the business entities. We care about the rules that have to be applied to guar-
antee the integrity of data (for example, the multiplicity of relationships) and the
code procedures used to manipulate the data.

 In the next section, we complete our analysis of the CaveatEmptor problem
domain. The resulting domain model will be the central theme of this book.

3.1.3 The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic equip-
ment to airline tickets. Auctions proceed according to the English auction strategy:
users continue to place bids on an item until the bid period for that item expires, and
the highest bidder wins.

 In any store, goods are categorized by type and grouped with similar goods into
sections and onto shelves. The auction catalog requires some kind of hierarchy of
item categories so that a buyer can browse these categories or arbitrarily search by cat-
egory and item attributes. Lists of items appear in the category browser and search
result screens. Selecting an item from a list takes the buyer to an item-detail view
where an item may have images attached to it.

 An auction consists of a sequence of bids, and one is the winning bid. User details
include name, address, and billing information.

 The result of this analysis, the high-level overview of the domain model, is shown
in figure 3.3. Let’s briefly discuss some interesting features of this model.

 Each item can be auctioned only once, so you don’t need to make Item distinct
from any auction entities. Instead, you have a single auction item entity named Item.
Thus, Bid is associated directly with Item. You model the Address information of a
User as a separate class, a User may have three addresses, for home, billing, and ship-
ping. You do allow the user to have many BillingDetails. Subclasses of an abstract
class represent the various billing strategies (allowing future extension).

 The application may nest a Category inside another Category, and so on. A recur-
sive association, from the Category entity to itself, expresses this relationship. Note
that a single Category may have multiple child categories but at most one parent.
Each Item belongs to at least one Category.

 This representation isn’t the complete domain model but only classes for which you
need persistence capabilities. You’d like to store and load instances of Category, Item,
User, and so on. We have simplified this high-level overview a little; we may introduce
additional classes later or make minor modifications to them when needed for more
complex examples.
Licensed to Thomas Snead <n.ordickan@gmail.com>

35The example CaveatEmptor application
Certainly, the entities in a domain model should encapsulate state and behavior. For
example, the User entity should define the name and address of a customer and the
logic required to calculate the shipping costs for items (to this particular customer).

 There might be other classes in the domain model that have only transient run-
time instances. Consider a WinningBidStrategy class encapsulating the fact that the
highest bidder wins an auction. This might be called by the business layer (controller)
code when checking the state of an auction. At some point, you might have to figure
out how tax for sold items is calculated or how the system may approve a new user
account. We don’t consider such business rules or domain model behavior to be
unimportant; rather, this concern is mostly orthogonal to the problem of persistence.

 Now that you have a (rudimentary) application design with a domain model, the
next step is to implement it in Java.

seller0..*

1..*

0..*

0..*

BillingDetails

number : String
expMonth: String
expYear : String

account : String
bankname : String
swift : String

0..*

home

billing

shipping

0..*

bidder

0..*
0..*

parent

Category
Bid

Item User Address

Image

CreditCard BankAccount

name : String
amount : BigDecimal
createdOn : Date

name : String
initialPrice : BigDecimal
auctionEnd : Date

username : String
firstname : String
lastname : String

street : String
zipcode : String
city : String

title : String
filename : String

owner : String

Figure 3.3 Persistent classes of the CaveatEmptor domain model and their relationships

ORM without a domain model
Object persistence with full ORM is most suitable for applications based on a rich
domain model. If your application doesn’t implement complex business rules or com-
plex interactions between entities (or if you have few entities), you may not need a
domain model. Many simple and some not-so-simple problems are perfectly suited
to table-oriented solutions, where the application is designed around the database
data model instead of around an object-oriented domain model, often with logic exe-
cuted in the database (stored procedures). Another aspect to consider is the learning
curve: once you’re proficient with Hibernate, you’ll use it for all applications, even as
a simple SQL query generator and result mapper. If you’re just learning ORM, a trivial
use case may not justify your invested time and overhead.
Licensed to Thomas Snead <n.ordickan@gmail.com>

36 CHAPTER 3 Domain models and metadata
3.2 Implementing the domain model
You’ll start with an issue that any implementation must deal with: the separation of
concerns. The domain model implementation is usually a central, organizing compo-
nent; it’s reused heavily whenever you implement new application functionality. For
this reason, you should be prepared to go to some lengths to ensure that concerns
other than business aspects don’t leak into the domain model implementation.

3.2.1 Addressing leakage of concerns

When concerns such as persistence, transaction management, or authorization start
to appear in the domain model classes, this is an example of leakage of concerns. The
domain model implementation is such an important piece of code that it shouldn’t
depend on orthogonal Java APIs. For example, code in the domain model shouldn’t
perform JNDI lookups or call the database via the JDBC API, not directly and not
through an intermediate abstraction. This allows you to reuse the domain model
classes virtually anywhere:

 The presentation layer can access instances and attributes of domain model
entities when rendering views.

 The controller components in the business layer can also access the state of
domain model entities and call methods of the entities to execute business
logic.

 The persistence layer can load and store instances of domain model entities
from and to the database, preserving their state.

Most important, preventing leakage of concerns makes it easy to unit-test the domain
model without the need for a particular runtime environment or container, or the
need for mocking any service dependencies. You can write unit tests that verify the
correct behavior of your domain model classes without any special test harness. (We
aren’t talking about testing “load from the database” and “store in the database”
aspects, but “calculate the shipping cost and tax” behavior.)

 The Java EE standard solves the problem of leaky concerns with metadata, as anno-
tations within your code or externalized as XML descriptors. This approach allows the
runtime container to implement some predefined cross-cutting concerns—security,
concurrency, persistence, transactions, and remoteness—in a generic way, by inter-
cepting calls to application components.

 Hibernate isn’t a Java EE runtime environment, and it’s not an application server.
It’s an implementation of just one specification under the Java EE umbrella—JPA—
and a solution for just one of these concerns: persistence.

 JPA defines the entity class as the primary programming artifact. This programming
model enables transparent persistence, and a JPA provider such as Hibernate also
offers automated persistence.
Licensed to Thomas Snead <n.ordickan@gmail.com>

37Implementing the domain model
3.2.2 Transparent and automated persistence

We use transparent to mean a complete separation of concerns between the persistent
classes of the domain model and the persistence layer. The persistent classes are
unaware of—and have no dependency on—the persistence mechanism. We use auto-
matic to refer to a persistence solution (your annotated domain, the layer, and mecha-
nism) that relieves you of handling low-level mechanical details, such as writing most
SQL statements and working with the JDBC API.

 The Item class of the CaveatEmptor domain model, for example, shouldn’t have
any runtime dependency on any Java Persistence or Hibernate API. Furthermore:

 JPA doesn’t require that any special superclasses or interfaces be inherited or
implemented by persistent classes. Nor are any special classes used to imple-
ment attributes and associations. (Of course, the option to use both techniques
is always there.)

 You can reuse persistent classes outside the context of persistence, in unit tests
or in the presentation layer, for example. You can create instances in any run-
time environment with the regular Java new operator, preserving testability and
reusability.

 In a system with transparent persistence, instances of entities aren’t aware of the
underlying data store; they need not even be aware that they’re being persisted
or retrieved. JPA externalizes persistence concerns to a generic persistence man-
ager API.

 Hence, most of your code, and certainly your complex business logic, doesn’t
have to concern itself with the current state of a domain model entity instance
in a single thread of execution.

We regard transparency as a requirement because it makes an application easier to
build and maintain. Transparent persistence should be one of the primary goals of
any ORM solution. Clearly, no automated persistence solution is completely transpar-
ent: Every automated persistence layer, including JPA and Hibernate, imposes some
requirements on the persistent classes. For example, JPA requires that collection-
valued attributes be typed to an interface such as java.util.Set or java.util.List
and not to an actual implementation such as java.util.HashSet (this is a good prac-
tice anyway). Or, a JPA entity class has to have a special attribute, called the database
identifier (which is also less of a restriction but usually convenient).

 You now know why the persistence mechanism should have minimal impact on
how you implement a domain model, and that transparent and automated persistence
are required. Our preferred programming model to archive this is POJO.

 Around 10 years ago, many developers started talking about POJO, a back-to-basics
approach that essentially revives JavaBeans, a component model for UI development,
and reapplies it to the other layers of a system. Several revisions of the EJB and JPA
specifications brought us new lightweight entities, and it would be appropriate to call
Licensed to Thomas Snead <n.ordickan@gmail.com>

38 CHAPTER 3 Domain models and metadata
them persistence-capable JavaBeans. Java engineers often use all these terms as synonyms
for the same basic design approach.

 You shouldn’t be too concerned about what terms we use in this book; the ultimate
goal is to apply the persistence aspect as transparently as possible to Java classes.
Almost any Java class can be persistence-capable if you follow some simple practices.
Let’s see how this looks in code.

3.2.3 Writing persistence-capable classes

Working with fine-grained and rich domain models is a major Hibernate objective.
This is a reason we work with POJOs. In general, using fine-grained objects means
more classes than tables.

 A persistence-capable plain-old Java class declares attributes, which represent state,
and business methods, which define behavior. Some attributes represent associations
to other persistence-capable classes.

 A POJO implementation of the User entity of the domain model is shown in the
following listing. Let’s walk through the code.

public class User implements Serializable {

 protected String username;

 public User() {
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public BigDecimal calcShippingCosts(Address fromLocation) {
 // Empty implementation of business method
 return null;
 }

 // ...
}

Listing 3.1 POJO implementation of the User class

PATH: /model/src/main/java/org/jpwh/model/simple/User.java

POJO
POJO is the acronym for Plain Old Java Objects. Martin Fowler, Rebecca Parsons, and
Josh Mackenzie coined this term in 2000.
Licensed to Thomas Snead <n.ordickan@gmail.com>

39Implementing the domain model
JPA doesn’t require that persistent classes implement java.io.Serializable. But
when instances are stored in an HttpSession or passed by value using RMI, serializa-
tion is necessary. Although this might not occur in your application, the class will be
serializable without any additional work, and there are no downsides to declaring that.
(We aren’t going to declare it on every example, assuming that you know when it will
be necessary.)

 The class can be abstract and, if needed, extend a non-persistent class or imple-
ment an interface. It must be a top-level class, not nested within another class. The
persistence-capable class and any of its methods can’t be final (a requirement of the
JPA specification).

 Unlike the JavaBeans specification, which requires no specific constructor, Hiber-
nate (and JPA) require a constructor with no arguments for every persistent class.
Alternatively, you might not write a constructor at all; Hibernate will then use the Java
default constructor. Hibernate calls classes using the Java reflection API on such a no-
argument constructor to create instances. The constructor may not be public, but it
has to be at least package-visible if Hibernate will use runtime-generated proxies for
performance optimization. Also, consider the requirements of other specifications:
the EJB standard requires public visibility on session bean constructors, just like the
JavaServer Faces (JSF) specification requires for its managed beans. There are other
situations when you’d want a public constructor to create an “empty” state: for exam-
ple, query-by-example building.

 The properties of the POJO implement the attributes of the business entities—for
example, the username of User. You usually implement properties as private or pro-
tected member fields, together with public or protected property accessor methods:
for each field a method for retrieving its value and a method for setting the value.
These methods are known as the getter and setter, respectively. The example POJO in
listing 3.1 declares getter and setter methods for the username property.

 The JavaBean specification defines the guidelines for naming accessor methods;
this allows generic tools like Hibernate to easily discover and manipulate property val-
ues. A getter method name begins with get, followed by the name of the property
(the first letter in uppercase); a setter method name begins with set and similarly is
followed by the name of the property. You may begin getter methods for Boolean
properties with is instead of get.

 Hibernate doesn’t require accessor methods. You can choose how the state of an
instance of your persistent classes should be persisted. Hibernate will either directly
access fields or call accessor methods. Your class design isn’t disturbed much by these
considerations. You can make some accessor methods non-public or completely
remove them—then configure Hibernate to rely on field access for these properties.
Licensed to Thomas Snead <n.ordickan@gmail.com>

40 CHAPTER 3 Domain models and metadata

Although trivial accessor methods are common, one of the reasons we like to use Java-
Beans-style accessor methods is that they provide encapsulation: you can change the
hidden internal implementation of an attribute without any changes to the public
interface. If you configure Hibernate to access attributes through methods, you
abstract the internal data structure of the class—the instance variables—from the
design of the database.

 For example, if your database stores the name of a user as a single NAME column,
but your User class has firstname and lastname fields, you can add the following per-
sistent name property to the class.

public class User {

 protected String firstname;
 protected String lastname;

 public String getName() {
 return firstname + ' ' + lastname;
 }

 public void setName(String name) {
 StringTokenizer t = new StringTokenizer(name);
 firstname = t.nextToken();
 lastname = t.nextToken();
 }
}

Listing 3.2 POJO implementation of the User class with logic in accessor methods

Should property fields and accessor methods be private,
protected, or package visible?
Typically, you want to discourage direct access to the internal state of your class, so
you don’t make attribute fields public. If you make fields or methods private, you’re
effectively declaring that nobody should ever access them; only you’re allowed to do
that (or a service like Hibernate). This is a definitive statement. There are often good
reasons for someone to access your “private” internals—usually to fix one of your
bugs—and you only make people angry if they have to fall back to reflection access
in an emergency. Instead, you might assume or know that the engineer who comes
after you has access to your code and knows what they’re doing.

The protected visibility then is a more reasonable default. You’re forbidding direct
public access, indicating that this particular member detail is internal, but allowing
access by subclasses if need be. You trust the engineer who creates the subclass.
Package visibility is rude: you’re forcing someone to create code in the same package
to access member fields and methods; this is extra work for no good reason. Most
important, these recommendations for visibility are relevant for environments without
security policies and a runtime SecurityManager. If you have to keep your internal
code private, make it private.
Licensed to Thomas Snead <n.ordickan@gmail.com>

41Implementing the domain model
Later, you’ll see that a custom type converter in the persistence service is a better way
to handle many of these kinds of situations. It helps to have several options.

 Another issue to consider is dirty checking. Hibernate automatically detects state
changes in order to synchronize the updated state with the database. It’s usually safe
to return a different instance from the getter method than the instance passed by
Hibernate to the setter. Hibernate compares them by value—not by object identity—
to determine whether the attribute’s persistent state needs to be updated. For exam-
ple, the following getter method doesn’t result in unnecessary SQL UPDATEs:

public String getFirstname() {
 return new String(firstname);
}

There is one important exception to this: collections are compared by identity! For a
property mapped as a persistent collection, you should return exactly the same collec-
tion instance from the getter method that Hibernate passed to the setter method. If
you don’t, Hibernate will update the database, even if no update is necessary, every
time the state held in memory is synchronized with the database. You should usually
avoid this kind of code in accessor methods:

protected String[] names = new String[0];

public void setNames(List<String> names) {
 this.names = names.toArray(new String[names.size()]);
}

public List<String> getNames() {
 return Arrays.asList(names);
}

Of course, this won’t be a problem if Hibernate is accessing the names field directly,
ignoring your getter and setter methods.

 How does Hibernate handle exceptions when your accessor methods throw them?
If Hibernate uses accessor methods when loading and storing instances and a Run-
timeException (unchecked) is thrown, the current transaction is rolled back, and the
exception is yours to handle in the code that called the Java Persistence (or Hibernate
native) API. If you throw a checked application exception, Hibernate wraps the excep-
tion into a RuntimeException.

 The example in listing 3.2 also defines a business method that calculates the cost
of shipping an item to a particular user (we left out the implementation of this
method).

 Next, we’ll focus on the relationships between entities and associations between
persistent classes.

3.2.4 Implementing POJO associations

You’ll now see how to associate and create different kinds of relationships between
objects: one-to-many, many-to-one, and bidirectional relationships. We’ll look at the

This is OK.

Don’t do this if Hibernate
accesses the methods!
Licensed to Thomas Snead <n.ordickan@gmail.com>

42 CHAPTER 3 Domain models and metadata
scaffolding code needed to create these associations,
how to simplify relationship management, and how
to enforce the integrity of these relationships.

 You create properties to express associations
between classes, and you (typically) call accessor
methods to navigate from instance to instance at
runtime. Let’s consider the associations defined
by the Item and Bid persistent classes, as shown in
figure 3.4.

 As with all of our UML class diagrams, we left out
the association-related attributes, Item#bids and
Bid#item. These properties and the methods that
manipulate their values are called scaffolding code.
This is what the scaffolding code for the Bid class
looks like:

public class Bid {

 protected Item item;

 public Item getItem() {
 return item;
 }

 public void setItem(Item item) {
 this.item = item;
 }
}

The item property allows navigation from a Bid to the related Item. This is an associa-
tion with many-to-one multiplicity; users can make many bids for each item. Here is the
Item class’s scaffolding code:

public class Item {

 protected Set<Bid> bids = new HashSet<Bid>();

 public Set<Bid> getBids() {
 return bids;
 }

 public void setBids(Set<Bid> bids) {
 this.bids = bids;
 }
}

This association between the two classes allows bidirectional navigation: the many-to-one
is from this perspective a one-to-many multiplicity (again, one item can have many
bids). The scaffolding code for the bids property uses a collection interface type,

PATH: /model/src/main/java/org/jpwh/model/simple/Bid.java

PATH: /model/src/main/java/org/jpwh/model/simple/Item.java

name : String
description : String
createdOn : Date
verified : boolean
auctionType : AuctionType
initialPrice : BigDecimal
auctionStart : Date
auctionEnd : Date

amount : BigDecimal
createdOn : Date

0..*

Bid

Item

Figure 3.4 Associations between
the Item and Bid classes
Licensed to Thomas Snead <n.ordickan@gmail.com>

43Implementing the domain model
java.util.Set. JPA requires interfaces for collection-typed properties, where you
must use java.util.Set, java.util.List, or java.util.Collection rather than
HashSet, for example. It’s good practice to program to collection interfaces anyway,
rather than concrete implementations, so this restriction shouldn’t bother you.

 You choose a Set and initialize the field to a new HashSet because the application
disallows duplicate bids. This is good practice because you avoid any NullPointer-
Exceptions when someone is accessing the property of a new Item without any bids.
The JPA provider is also required to set a non-empty value on any mapped collection-
valued property: for example, when an Item without bids is loaded from the database.
(It doesn’t have to use a HashSet; the implementation is up to the provider. Hibernate
has its own collection implementations with additional capabilities—for example,
dirty checking.)

Just like for basic properties, accessor methods for associations need to be declared
public only if they’re part of the external interface of the persistent class used by the
application logic to create a link between two instances. We’ll now focus on this issue,
because managing the link between an Item and a Bid is much more complicated in
Java code than it is in an SQL database, with declarative foreign key constraints. In our
experience, engineers are often unaware of this complication arising from a network
object model with bidirectional references (pointers). Let’s walk through the issue
step by step.

 The basic procedure for linking a Bid with an Item looks like this:

anItem.getBids().add(aBid);
aBid.setItem(anItem);

Whenever you create this bidirectional link, two actions are required:

 You must add the Bid to the bids collection of the Item.
 The item property of the Bid must be set.

Shouldn’t bids on an item be stored in a list?
The first reaction is often to preserve the order of elements as they’re entered by
users, because this may also be the order in which you will show them later. Cer-
tainly, in an auction application there has to be some defined order in which the user
sees bids for an item—for example, highest bid first or newest bid last. You might
even work with a java.util.List in your user interface code to sort and display bids
of an item. That doesn’t mean this display order should be durable; data integrity
isn’t affected by the order in which bids are displayed. You need to store the amount
of each bid, so you can find the highest bid, and you need to store a timestamp for
each bid when it’s created, so you can find the newest bid. When in doubt, keep your
system flexible and sort the data when it’s retrieved from the datastore (in a query)
and/or shown to the user (in Java code), not when it’s stored.
Licensed to Thomas Snead <n.ordickan@gmail.com>

44 CHAPTER 3 Domain models and metadata
JPA doesn’t manage persistent associations. If you want to manipulate an association,
you must write exactly the same code you would write without Hibernate. If an associ-
ation is bidirectional, you must consider both sides of the relationship. If you ever
have problems understanding the behavior of associations in JPA, just ask yourself,
“What would I do without Hibernate?” Hibernate doesn’t change the regular Java
semantics.

 We recommend that you add convenience methods that group these operations,
allowing reuse and helping ensure correctness, and in the end guaranteeing data
integrity (a Bid is required to have a reference to an Item). The next listing shows such
a convenience method in the Item class.

public void addBid(Bid bid) {
 if (bid == null)
 throw new NullPointerException("Can't add null Bid");
 if (bid.getItem() != null)
 throw new IllegalStateException("Bid is already assigned to an

➥ Item");

 getBids().add(bid);
 bid.setItem(this);
}

The addBid() method not only reduces the lines of code when dealing with Item and
Bid instances, but also enforces the cardinality of the association. You avoid errors that
arise from leaving out one of the two required actions. You should always provide this
kind of grouping of operations for associations, if possible. If you compare this with
the relational model of foreign keys in an SQL database, you can easily see how a net-
work and pointer model complicates a simple operation: instead of a declarative con-
straint, you need procedural code to guarantee data integrity.

 Because you want addBid() to be the only externally visible mutator method for
the bids of an item (possibly in addition to a removeBid() method), you can make the
Item#setBids() method private or drop it and configure Hibernate to directly access
fields for persistence. Consider making the Bid#setItem() method package-visible,
for the same reason.

 The Item#getBids() getter method still returns a modifiable collection, so clients
can use it to make changes that aren’t reflected on the inverse side. Bids added directly
to the collection wouldn’t have a reference to an item—an inconsistent state, accord-
ing to your database constraints. To prevent this, you can wrap the internal collection
before returning it from the getter method, with Collections.unmodifiable-
Collection(c) and Collections.unmodifiableSet(s). The client then gets an
exception if it tries to modify the collection; you therefore force every modification to
go through the relationship management method that guarantees integrity. Note that
in this case you’ll have to configure Hibernate for field access, because the collection

Listing 3.3 A convenience method simplifies relationship management

PATH: /model/src/main/java/org/jpwh/model/simple/Item.java

Be defensive
Licensed to Thomas Snead <n.ordickan@gmail.com>

45Implementing the domain model
returned by the getter method is then not the same as the one given to the setter
method.

 An alternative strategy is immutable instances. For example, you could enforce
integrity by requiring an Item argument in the constructor of Bid, as shown in the fol-
lowing listing.

public class Bid {

 protected Item item;

 public Bid(Item item) {
 this.item = item;
 item.getBids().add(this);
 }

 public Item getItem() {
 return item;
 }
}

In this constructor, the item field is set; no further modification of the field value
should occur. The collection on the “other” side is also updated for a bidirectional
relationship. There is no Bid#setItem() method, and you probably shouldn’t expose
a public Item#setBids() method.

 There are several problems with this approach. First, Hibernate can’t call this con-
structor. You need to add a no-argument constructor for Hibernate, and it needs to be
at least package-visible. Furthermore, because there is no setItem() method, Hiber-
nate would have to be configured to access the item field directly. This means the
field can’t be final, so the class isn’t guaranteed to be immutable.

 In the examples in this book, we’ll sometimes write scaffolding methods such as
the Item#addBid() shown earlier, or we may have additional constructors for required
values. It’s up to you how many convenience methods and layers you want to wrap
around the persistent association properties and/or fields, but we recommend being
consistent and applying the same strategy to all your domain model classes. For the
sake of readability, we won’t always show convenience methods, special constructors,
and other such scaffolding in future code samples and assume you’ll add them
according to your own taste and requirements.

 You now have seen domain model classes, how to represent their attributes, and
the relationships between them. Next, we’ll increase the level of abstraction, adding
metadata to the domain model implementation and declaring aspects such as valida-
tion and persistence rules.

Listing 3.4 Enforcing integrity of relationships with a constructor

PATH: /model/src/main/java/org/jpwh/model/simple/Bid.java

Bidirectional
Licensed to Thomas Snead <n.ordickan@gmail.com>

46 CHAPTER 3 Domain models and metadata
3.3 Domain model metadata
Metadata is data about data, so domain model metadata is information about your
domain model. For example, when you use the Java reflection API to discover the
names of classes of your domain model or the names of their attributes, you’re access-
ing domain model metadata.

 ORM tools also require metadata, to specify the mapping between classes and
tables, properties and columns, associations and foreign keys, Java types and SQL
types, and so on. This object/relational mapping metadata governs the transforma-
tion between the different type systems and relationship representations in object-
oriented and SQL systems. JPA has a metadata API, which you can call to obtain details
about the persistence aspects of your domain model, such as the names of persistent
entities and attributes. First, it’s your job as an engineer to create and maintain this
information.

 JPA standardizes two metadata options: annotations in Java code and externalized
XML descriptor files. Hibernate has some extensions for native functionality, also
available as annotations and/or XML descriptors. Usually we prefer either annotations
or XML files as the primary source of mapping metadata. After reading this section,
you’ll have the background information to make an educated decision for your own
project.

 We’ll also discuss Bean Validation (JSR 303) and how it provides declarative valida-
tion for your domain model (or any other) classes. The reference implementation of
this specification is the Hibernate Validator project. Most engineers today prefer Java
annotations as the primary mechanism for declaring metadata.

3.3.1 Annotation-based metadata

The big advantage of annotations is to put metadata next to the information it
describes, instead of separating it physically into a different file. Here’s an example:

import javax.persistence.Entity;

@Entity
public class Item {

}

You can find the standard JPA mapping annotations in the javax.persistence pack-
age. This example declares the Item class as a persistent entity using the @javax
.persistence.Entity annotation. All of its attributes are now automatically persis-
tent with a default strategy. That means you can load and store instances of Item, and
all properties of the class are part of the managed state.

 (If you followed the previous chapter, you probably notice the missing required
@Id annotation and identifier property. If you want to try the Item example, you’ll

PATH: /model/src/main/java/org/jpwh/model/simple/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

47Domain model metadata
have to add an identifier property. We’ll discuss identifier properties again in the next
chapter, in section 4.2.)

 Annotations are type-safe, and the JPA metadata is included in the compiled class
files. Hibernate then reads the classes and metadata with Java reflection when the
application starts. The IDE can also easily validate and highlight annotations—they’re
regular Java types, after all. If you refactor your code, you rename, delete, or move
classes and properties all the time. Most development tools and editors can’t refactor
XML element and attribute values, but annotations are part of the Java language and
are included in all refactoring operations.

When the standardized Java Persistence annotations are insufficient, a JPA provider
may offer additional annotations.

USING VENDOR EXTENSIONS

Even if you map most of your application’s model with JPA-compatible annotations
from the javax.persistence package, you’ll have to use vendor extensions at some
point. For example, some performance-tuning options you’d expect to be available in
high-quality persistence software are only available as Hibernate-specific annotations.
This is how JPA providers compete, so you can’t avoid annotations from other pack-
ages—there’s a reason why you picked Hibernate.

 This is the Item entity source code again with a Hibernate-only mapping option:

import javax.persistence.Entity;

@Entity
@org.hibernate.annotations.Cache(
 usage = org.hibernate.annotations.CacheConcurrencyStrategy.READ_WRITE
)
public class Item {

}

We prefer to prefix Hibernate annotations with the full org.hibernate.annotations
package name. Consider this good practice, because you can easily see what metadata
for this class is from the JPA specification and which is vendor-specific. You can also
easily search your source code for “org.hibernate.annotations” and get a complete
overview of all nonstandard annotations in your application in a single search result.

Is my class now dependent on JPA?
Yes, but it’s a compile-time only dependency. You need JPA libraries on your class-
path when compiling the source of your domain model class. The Java Persistence
API isn’t required on the classpath when you create an instance of the class: for
example, in a desktop client application that doesn’t execute any JPA code. Only
when you access the annotations through reflection at runtime (as Hibernate does
internally when it reads your metadata) will you need the packages on the classpath.
Licensed to Thomas Snead <n.ordickan@gmail.com>

48 CHAPTER 3 Domain models and metadata
 If you switch your Java Persistence provider, you only have to replace the vendor-
specific extensions where you can expect a similar feature set to be available with most
mature JPA implementations. Of course, we hope you’ll never have to do this, and it
doesn’t happen often in practice—just be prepared.

 Annotations on classes only cover metadata that is applicable to that particular
class. You often need metadata at a higher level, for an entire package or even the
whole application.

GLOBAL ANNOTATION METADATA

The @Entity annotation maps a particular class. JPA and Hibernate also have annota-
tions for global metadata. For example, a @NamedQuery has global scope; you don’t
apply it to a particular class. Where should you place this annotation?

 Although it’s possible to place such global annotations in the source file of a class
(any class, really, at the top), we’d rather keep global metadata in a separate file. Pack-
age-level annotations are a good choice; they’re in a file called package-info.java in a
particular package directory. You can see an example of global named query declara-
tions in the following listing.

@org.hibernate.annotations.NamedQueries({
 @org.hibernate.annotations.NamedQuery(
 name = "findItemsOrderByName",
 query = "select i from Item i order by i.name asc"
)
 ,
 @org.hibernate.annotations.NamedQuery(
 name = "findItemBuyNowPriceGreaterThan",
 query = "select i from Item i where i.buyNowPrice > :price",
 timeout = 60,
 comment = "Custom SQL comment"
)
})

package org.jpwh.model.querying;

Unless you’ve used package-level annotations before, the syntax of this file with the
package and import declarations at the bottom is probably new to you.

 There is a reason the previous code example only includes annotations from the
Hibernate package and no Java Persistence annotations. We ignored the standardized
JPA @org.javax.persistence.NamedQuery annotation and used the Hibernate alter-
native. The JPA annotations don’t have package applicability—we don’t know why. In
fact, JPA doesn’t allow annotations in a package-info.java file. The native Hibernate
annotations offer the same, and sometimes even more, functionality, so this shouldn’t
be too much of a problem. If you don’t want to use the Hibernate annotations, you’ll
have to either put the JPA annotations at the top of any class (you could have an

Listing 3.5 Global metadata in a package-info.java file

PATH: /model/src/main/java/org/jpwh/model/querying/package-info.java

Seconds!
Licensed to Thomas Snead <n.ordickan@gmail.com>

49Domain model metadata
otherwise empty MyNamedQueries class as part of your domain model) or use an XML
file, as you’ll see later in this section.

 Annotations will be our primary tool throughout this book for ORM metadata, and
there is much to learn about this subject. Before we look at some alternative mapping
styles with XML files, let’s use some simple annotations to improve the domain model
classes with validation rules.

3.3.2 Applying Bean Validation rules

Most applications contain a multitude of data-integrity checks. You’ve seen what hap-
pens when you violate one of the simplest data-integrity constraints: you get a Null-
PointerException when you expect a value to be available. Other examples are a
string-valued property that shouldn’t be empty (remember, an empty string isn’t
null), a string that has to match a particular regular expression pattern, and a num-
ber or date value that must be within a certain range.

 These business rules affect every layer of an application: The user interface code
has to display detailed and localized error messages. The business and persistence lay-
ers must check input values received from the client before passing them to the data-
store. The SQL database has to be the final validator, ultimately guaranteeing the
integrity of durable data.

 The idea behind Bean Validation is that declaring rules such as “This property
can’t be null” or “This number has to be in the given range” is much easier and less
error-prone than writing if-then-else procedures repeatedly. Furthermore, declaring
these rules on the central component of your application, the domain model imple-
mentation, enables integrity checks in every layer of the system. The rules are then
available to the presentation and persistence layers. And if you consider how data-
integrity constraints affect not only your Java application code but also your SQL data-
base schema—which is a collection of integrity rules—you might think of Bean Valida-
tion constraints as additional ORM metadata.

 Look at the following extended Item domain model class.

import javax.validation.constraints.Future;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
public class Item {

 @NotNull
 @Size(
 min = 2,
 max = 255,
 message = "Name is required, maximum 255 characters."
)
 protected String name;

Listing 3.6 Applying validation constraints on Item entity fields

PATH: /model/src/main/java/org/jpwh/model/simple/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

50 CHAPTER 3 Domain models and metadata
 @Future
 protected Date auctionEnd;
}

You add two more attributes—the name of an item and the auctionEnd date—when an
auction concludes. Both are typical candidates for additional constraints: you want to
guarantee that the name is always present and human readable (one-character item
names don’t make much sense), but it shouldn’t be too long—your SQL database will
be most efficient with variable-length strings up to 255 characters, and your user inter-
face also has some constraints on visible label space. The ending time of an auction
obviously should be in the future. If you don’t provide an error message, a default
message will be used. Messages can be keys to external properties files, for interna-
tionalization.

 The validation engine will access the fields directly if you annotate the fields. If you
prefer calls through accessor methods, annotate the getter method with validation
constraints, not the setter. Then constraints are part of the class’s API and included in
its Javadoc, making the domain model implementation easier to understand. Note
that this is independent from access by the JPA provider; that is, Hibernate Validator
may call accessor methods, whereas Hibernate ORM may call fields directly.

 Bean Validation isn’t limited to the built-in annotations; you can create your own
constraints and annotations. With a custom constraint, you can even use class-level
annotations and validate several attribute values at the same time on an instance of
the class. The following test code shows how you can manually check the integrity of
an Item instance.

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();

Item item = new Item();
item.setName("Some Item");
item.setAuctionEnd(new Date());

Set<ConstraintViolation<Item>> violations = validator.validate(item);

assertEquals(1, violations.size());

ConstraintViolation<Item> violation = violations.iterator().next();
String failedPropertyName =
 violation.getPropertyPath().iterator().next().getName();

assertEquals(failedPropertyName, "auctionEnd");

if (Locale.getDefault().getLanguage().equals("en"))
 assertEquals(violation.getMessage(), "must be in the future");

We’re not going to explain this code in detail but offer it for you to explore. You’ll
rarely write this kind of validation code; most of the time, this aspect is automatically

Listing 3.7 Testing an Item instance for constraint violations

PATH: /examples/src/test/java/org/jpwh/test/simple/ModelOperations.java

One validation error:
auction end date not

in the future!
Licensed to Thomas Snead <n.ordickan@gmail.com>

51Domain model metadata
handled by your user interface and persistence framework. It’s therefore important to
look for Bean Validation integration when selecting a UI framework. JSF version 2 and
newer automatically integrates with Bean Validation, for example.

 Hibernate, as required from any JPA provider, also automatically integrates with
Hibernate Validator if the libraries are available on the classpath and offers the follow-
ing features:

 You don’t have to manually validate instances before passing them to Hibernate
for storage.

 Hibernate recognizes constraints on persistent domain model classes and trig-
gers validation before database insert or update operations. When validation
fails, Hibernate throws a ConstraintViolationException, containing the fail-
ure details, to the code calling persistence-management operations.

 The Hibernate toolset for automatic SQL schema generation understands many
constraints and generates SQL DDL-equivalent constraints for you. For example,
an @NotNull annotation translates into an SQL NOT NULL constraint, and an
@Size(n) rule defines the number of characters in a VARCHAR(n)-typed column.

You can control this behavior of Hibernate with the <validation-mode> element in
your persistence.xml configuration file. The default mode is AUTO, so Hibernate will
only validate if it finds a Bean Validation provider (such as Hibernate Validator) on
the classpath of the running application. With mode CALLBACK, validation will always
occur, and you’ll get a deployment error if you forget to bundle a Bean Validation pro-
vider. The NONE mode disables automatic validation by the JPA provider.

 You’ll see Bean Validation annotations again later in this book; you’ll also find
them in the example code bundles. At this point we could write much more about
Hibernate Validator, but we’d only repeat what is already available in the project’s
excellent reference guide. Have a look, and find out more about features such as vali-
dation groups and the metadata API for discovery of constraints.

 The Java Persistence and Bean Validation standards embrace annotations aggres-
sively. The expert groups have been aware of the advantages of XML deployment
descriptors in certain situations, especially for configuration metadata that changes
with each deployment.

3.3.3 Externalizing metadata with XML files

You can replace or override every annotation in JPA with an XML descriptor element.
In other words, you don’t have to use annotations if you don’t want to, or if keeping
mapping metadata separate from source code is for whatever reason advantageous to
your system design.

XML METADATA WITH JPA
The following listing shows a JPA XML descriptor for a particular persistence unit.
Licensed to Thomas Snead <n.ordickan@gmail.com>

52 CHAPTER 3 Domain models and metadata

Fir
m

<entity-mappings
 version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence/orm
 http://xmlns.jcp.org/xml/ns/persistence/orm_2_1.xsd">

 <persistence-unit-metadata>

 <xml-mapping-metadata-complete/>

 <persistence-unit-defaults>
 <delimited-identifiers/>
 </persistence-unit-defaults>

 </persistence-unit-metadata>

 <entity class="org.jpwh.model.simple.Item" access="FIELD">
 <attributes>
 <id name="id">
 <generated-value strategy="AUTO"/>
 </id>
 <basic name="name"/>
 <basic name="auctionEnd">
 <temporal>TIMESTAMP</temporal>
 </basic>
 </attributes>
 </entity>

</entity-mappings>

The JPA provider automatically picks up this descriptor if you place it in a META-
INF/orm.xml file on the classpath of the persistence unit. If you prefer to use a differ-
ent name or several files, you’ll have to change the configuration of the persistence
unit in your META-INF/persistence.xml file:

<persistence-unit name="SimpleXMLCompletePU">
 ...

 <mapping-file>simple/Mappings.xml</mapping-file>
 <mapping-file>simple/Queries.xml</mapping-file>
 ...
</persistence-unit>

If you include the <xml-mapping-metadata-complete> element, the JPA provider
ignores all annotations on your domain model classes in this persistence unit and
relies only on the mappings as defined in the XML descriptor(s). You can (redundantly
in this case) enable this on an entity level, with <metadata-complete="true"/>. If
enabled, the JPA provider assumes that you mapped all attributes of the entity in XML
and that it should ignore all annotations for this particular entity.

Listing 3.8 JPA XML descriptor containing the mapping metadata of a persistence unit

PATH: /model/src/main/resources/META-INF/persistence.xml

st, global
etadata

Ignore all
annotations

and all
mapping

metadata in
XML files.

Some default settings

Escape all SQL
column, table, and

other names: for
example, if your SQL
names are keywords
(such as a “USER”).
Licensed to Thomas Snead <n.ordickan@gmail.com>

53Domain model metadata
 Instead, if you don’t want to ignore but override the annotation metadata, don’t
mark the XML descriptors as “complete”, and name the class and property to override:

<entity class="org.jpwh.model.simple.Item">
 <attributes>
 <basic name="name">
 <column name="ITEM_NAME"/>
 </basic>
 </attributes>
</entity>

Here you map the name property to the ITEM_NAME column; by default, the property
would map to the NAME column. Hibernate will now ignore any existing annotations
from the javax.persistence.annotation and org.hibernate.annotations pack-
ages on the name property of the Item class. But Hibernate doesn’t ignore Bean Vali-
dation annotations and still applies them for automatic validation and schema
generation! All other annotations on the Item class are also recognized. Note that you
don’t specify an access strategy in this mapping, so field access or accessor methods
are used, depending on the position of the @Id annotation in Item. (We’ll get back to
this detail in the next chapter.)

 We won’t talk much about JPA XML descriptors in this book. The syntax of these
documents is a 1:1 mirror of the JPA annotation syntax, so you shouldn’t have any
problems writing them. We’ll focus on the important aspect: the mapping strategies.
The syntax used to write down metadata is secondary.

 Unfortunately, like many other schemas in the Java EE world, the JPA orm_2_0.xsd
doesn’t allow vendor extensions. You can’t have elements and attributes from another
namespace in the JPA XML mapping documents. Consequently, using vendor exten-
sions and Hibernate native features requires falling back to a different XML syntax.

HIBERNATE XML MAPPING FILES

The native Hibernate XML mapping file format was the original metadata option
before JDK 5 introduced annotations. By convention, you name these files with the suf-
fix .hbm.xml. The following listing shows a basic Hibernate XML mapping document.

<?xml version="1.0"?>
<hibernate-mapping
 xmlns="http://www.hibernate.org/xsd/orm/hbm"
 package="org.jpwh.model.simple"
 default-access="field">

 <class name="Item">
 <id name="id">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="auctionEnd" type="timestamp"/>

Listing 3.9 Metadata document in Hibernate’s native XML syntax

PATH: /model/src/main/resources/simple/Native.hbm.xml

Override SQL
column name

Declare metadataB
Entity
class

mapping
Licensed to Thomas Snead <n.ordickan@gmail.com>

54 CHAPTER 3 Domain models and metadata

d
 </class>

 <query name="findItemsHibernate">select i from Item i</query>

 <database-object>
 <create>create index ITEM_NAME_IDX on ITEM(NAME)</create>
 <drop>drop index if exists

ITEM_NAME_IDX</drop>
 </database-object>

</hibernate-mapping>

B Metadata is declared ion a <hibernate-mapping> root element. Attributes such as
package name and default-access apply to all mappings in this file. You may include as
many entity class mappings as you like.

Note that this XML file declares a default XML namespace for all elements; this is a
new option in Hibernate 5. If you have existing mapping files for Hibernate 4 or older
with XML document type declarations, you can continue using them.

 Although it’s possible to declare mappings for multiple classes in one mapping file
by using multiple <class> elements, many older Hibernate projects are organized
with one mapping file per persistent class. The convention is to give the file the same
name and package as the mapped class: for example, my/model/Item.hbm.xml for
the my.model.Item class.

 A class mapping in a Hibernate XML document is a “complete” mapping; that is,
any other mapping metadata for that class, whether in annotations or JPA XML files,
will trigger a “duplicate mapping” error on startup. If you map a class in a Hibernate
XML file, this declaration has to include all mapping details. You can’t override indi-
vidual properties or extend an existing mapping. In addition, you have to list and map
all persistent properties of an entity class in a Hibernate XML file. If you don’t map a
property, Hibernate considers it transient state. Compare this with JPA mappings,
where the @Entity annotation alone will make all properties of a class persistent.

 Hibernate native XML files are no longer the primary choice for declaring the bulk
of a project’s ORM metadata. Most engineers now prefer annotations. Native XML
metadata files are mostly used to gain access to special Hibernate features that aren’t
available as annotations or are easier to maintain in XML files (for example, because
it’s deployment-dependent configuration metadata). You aren’t required to have any
<class> elements in a Hibernate XML mapping file. Thus, all metadata in these files
can be global to the persistence unit, such as externalized (even native SQL) query
strings, custom type definitions, auxiliary SQL DDL for particular DBMS products,
dynamic persistence context filters, and so on.

 When we later discuss such advanced and native Hibernate features, we’ll show you
how to declare them in Hibernate XML files. As already mentioned, your focus should
be on understanding the essence of a mapping strategy, and most of our examples will
use JPA and Hibernate annotations to express these strategies.

Externalize
queries

Auxiliary
schema

DDL
Licensed to Thomas Snead <n.ordickan@gmail.com>

55Domain model metadata
 The approaches we’ve described so far assume that all ORM metadata is known at
development (or deployment) time. Suppose that some information isn’t known
before the application starts. Can you programmatically manipulate the mapping
metadata at runtime? We’ve also mentioned the JPA metadata API for access to persis-
tence unit details. How does that work, and when is it useful?

3.3.4 Accessing metadata at runtime

The JPA specification provides programming interfaces for accessing the metamodel
of persistent classes. There are two flavors of the API. One is more dynamic in nature
and similar to basic Java reflection. The second option is a static metamodel, typically
produced by a Java 6 annotation processor. For both options, access is read-only; you
can’t modify the metadata at runtime.

 Hibernate also offers a native metamodel API that supports read and write access
and much more detail about the ORM. We don’t cover this native API (found in
org.hibernate.cfg.Configuration) in the book because it was already deprecated,
and a replacement API wasn’t available at the time of writing. Please refer to the
Hibernate documentation for the latest updates on this feature.

THE DYNAMIC METAMODEL API IN JAVA PERSISTENCE

Sometimes—for example, when you want to write some custom validation or generic
UI code—you’d like to get programmatic access to the persistent attributes of an
entity. You’d like to know what persistent classes and attributes your domain model
has dynamically. The code in the next listing shows how to read metadata with Java
Persistence interfaces.

Metamodel mm = entityManagerFactory.getMetamodel();

Set<ManagedType<?>> managedTypes = mm.getManagedTypes();
assertEquals(managedTypes.size(), 1);

ManagedType itemType = managedTypes.iterator().next();
assertEquals(
 itemType.getPersistenceType(),
 Type.PersistenceType.ENTITY
);

You can get the Metamodel from either the EntityManagerFactory, of which you typi-
cally have only one instance in an application per data source, or, if it’s more conve-
nient, from calling EntityManager#getMetamodel(). The set of managed types
contains information about all persistent entities and embedded classes (which we’ll
discuss in the next chapter). In this example, there’s only one: the Item entity. This is
how you can dig deeper and find out more about each attribute.

Listing 3.10 Obtaining entity type information with the Metamodel API

PATH: /examples/src/test/java/org/jpwh/test/simple/AccessJPAMetamodel.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

56 CHAPTER 3 Domain models and metadata

N

SingularAttribute nameAttribute =
 itemType.getSingularAttribute("name");
assertEquals(
 nameAttribute.getJavaType(),
 String.class
);
assertEquals(
 nameAttribute.getPersistentAttributeType(),
 Attribute.PersistentAttributeType.BASIC
);
assertFalse(
 nameAttribute.isOptional()
);

SingularAttribute auctionEndAttribute =
 itemType.getSingularAttribute("auctionEnd");
assertEquals(
 auctionEndAttribute.getJavaType(),
 Date.class
);
assertFalse(
 auctionEndAttribute.isCollection()
);
assertFalse(
 auctionEndAttribute.isAssociation()
);

The attributes of the entity are accessed with a string: name B and auctionEnd C.
This obviously isn’t type-safe, and if you change the names of the attributes, this code
becomes broken and obsolete. The strings aren’t automatically included in the refac-
toring operations of your IDE.

 JPA also offers a static type-safe metamodel.

USING A STATIC METAMODEL

Java (at least up to version 8) has no first-class support for properties. You can’t access
the fields or accessor methods of a bean in a type-safe fashion—only by their names,
using strings. This is particularly inconvenient with JPA criteria querying, a type-safe
alternative to string-based query languages. Here’s an example:

CriteriaBuilder cb = entityManager.getCriteriaBuilder();

CriteriaQuery<Item> query =
cb.createQuery(Item.class);

Root<Item> fromItem = query.from(Item.class);
query.select(fromItem);

List<Item> items =
 entityManager.createQuery(query)
 .getResultList();

assertEquals(items.size(), 2);

Listing 3.11 Obtaining entity attribute information with the Metamodel API

PATH: /examples/src/test/java/org/jpwh/test/simple/AccessJPAMetamodel.java

Entity attributeB

NOT
ULL

Entity attributeC

This query is
the equivalent
of “select i
from Item i.”
Licensed to Thomas Snead <n.ordickan@gmail.com>

57Domain model metadata
This query returns all items in the database; here there are two. If you now want to
restrict this result and only return items with a particular name, you have to use a
like expression, comparing the name attribute of each item with the pattern set in a
parameter:

Path<String> namePath = fromItem.get("name");
query.where(
 cb.like(
 namePath,
 cb.parameter(String.class, "pattern")
)
);

items =
 entityManager.createQuery(query)
 .setParameter("pattern", "%some item%")
 .getResultList();

assertEquals(items.size(), 1);
assertEquals(items.iterator().next().getName(), "This is some item");

Notice how the namePath lookup requires the name string. This is where the type-safety
of the criteria query breaks down. You can rename the Item entity class with your IDE’s
refactoring tools, and the query will still work. But as soon as you touch the Item#name
property, manual adjustments are necessary. Luckily, you’ll catch this when the test fails.

 A much better approach, safe for refactoring and detecting mismatches at com-
pile-time and not runtime, is the type-safe static metamodel:

query.where(
 cb.like(
 fromItem.get(Item_.name),
 cb.parameter(String.class, "pattern")
)
);

The special class here is Item_; note the underscore. This class is a metadata class and
lists all the attributes of the Item entity class:

@javax.persistence.metamodel.StaticMetamodel(Item.class)
public abstract class Item_ {

 public static volatile SingularAttribute<Item, Long> id;
 public static volatile SingularAttribute<Item, String> name;
 public static volatile SingularAttribute<Item, Date> auctionEnd;

}

You can write this class by hand or, as intended by the designers of this API, have it
automatically generated by the annotation processing tool (apt) of the Java compiler. The
Hibernate JPA2 Metamodel Generator (a distinct subproject of the Hibernate suite) uses

“where i.name
like :pattern”

Has to be a Path<String>
for like() operator!

Wildcards!

Static Item_ metamodel!
Licensed to Thomas Snead <n.ordickan@gmail.com>

58 CHAPTER 3 Domain models and metadata
this extension point. Its only purpose is to generate static metamodel classes from
your managed persistent classes. You can download its JAR file and integrate it with
your IDE (or your Maven build, as in the example code for this book). It will run auto-
matically whenever you compile (or modify, depending on the IDE) the Item entity
class and generate the appropriate Item_ metadata class.

Although you’ve seen some mapping constructs in the previous sections, we haven’t
introduced more sophisticated class and property mappings so far. You should now
decide which mapping metadata strategy you’d like to use in your project—we recom-
mend annotations, and XML only when necessary—and then read more about class
and property mappings in the next chapter.

3.4 Summary
 You’ve implemented persistent classes free of any crosscutting concerns like

logging, authorization, and transaction demarcation; your persistent classes
only depend on JPA at compile time. Even persistence-related concerns should
not leak into the domain model implementation.

 Transparent persistence is important if you want to execute and test your busi-
ness objects independently and easily.

 You’ve learned the best practices and requirements for the POJO and JPA entity
programming model, and what concepts they have in common with the old Jav-
aBean specification.

 You’re ready to write more complex mappings, possibly with a combination of
JDK annotations or JPA/Hibernate XML mapping files.

What is the annotation processing tool (apt)?
Java includes the command-line utility apt, or annotation processing tool, which finds
and executes annotation processors based on annotations in source code. An anno-
tation processor uses reflection APIs to process program annotations (JSR 175). The
apt APIs provide a build-time, source file, and read-only view of programs to model
the Java type system. Annotation processors may first produce new source code and
files, which apt can then compile along with the original source.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 2

Mapping strategies

This part is all about actual ORM, from classes and properties to tables and
columns. Chapter 4 starts with regular class and property mappings and explains
how you can map fine-grained Java domain models. Next, in chapter 5, you’ll see
how to map basic properties and embeddable components, and how to control
mapping between Java and SQL types. In chapter 6, you’ll map inheritance hier-
archies of entities to the database using four basic inheritance-mapping strate-
gies; you’ll also map polymorphic associations. Chapter 7 is all about mapping
collections and entity associations: you map persistent collections, collections of
basic and embeddable types, and simple many-to-one and one-to-many entity
associations. Chapter 8 dives deeper with advanced entity association mappings
like mapping one-to-one entity associations, one-to-many mapping options, and
many-to-many and ternary entity relationships. Finally, you’ll find chapter 9 most
interesting if you need to introduce Hibernate in an existing application, or if
you have to work with legacy database schemas and handwritten SQL. We’ll also
talk about customized SQL DDL for schema generation in this chapter.

 After reading this part of the book, you’ll be ready to create even the most
complex mappings quickly and with the right strategy. You’ll understand how
the problem of inheritance mapping can be solved and how to map collections
and associations. You’ll also be able to tune and customize Hibernate for integra-
tion with any existing database schema or application.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Mapping persistent classes
This chapter presents some fundamental mapping options and explains how to
map entity classes to SQL tables. We show and discuss how you can handle database
identity and primary keys, and how you can use various other metadata settings to
customize how Hibernate loads and stores instances of your domain model classes.
All mapping examples use JPA annotations. First, though, we define the essential
distinction between entities and value types, and explain how you should approach
the object/relational mapping of your domain model.

In this chapter
 Understanding entities and value type concepts

 Mapping entity classes with identity

 Controlling entity-level mapping options

Major new feature in JPA 2
You can globally enable escaping of all names in generated SQL statements with the
<delimited-identifiers> element in the persistence.xml configuration file.
61

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

62 CHAPTER 4 Mapping persistent classes
4.1 Understanding entities and value types
When you look at your domain model, you’ll notice a difference between classes:
some of the types seem more important, representing first-class business objects (the
term object is used here in its natural sense). Examples are the Item, Category, and
User classes: these are entities in the real world you’re trying to represent (refer back
to figure 3.3 for a view of the example domain model). Other types present in your
domain model, such as Address, String, and Integer, seem less important. In this
section, we look at what it means to use fine-grained domain models and making the
distinction between entity and value types.

4.1.1 Fine-grained domain models

A major objective of Hibernate is support for fine-grained and rich domain models.
It’s one reason we work with POJOs. In crude terms, fine-grained means more classes
than tables.

 For example, a user may have a home address in your domain model. In the data-
base, you may have a single USERS table with the columns HOME_STREET, HOME_CITY, and
HOME_ZIPCODE. (Remember the problem of SQL types we discussed in section 1.2.1?)

 In the domain model, you could use the same approach, representing the address
as three string-valued properties of the User class. But it’s much better to model this
using an Address class, where User has a homeAddress property. This domain model
achieves improved cohesion and greater code reuse, and it’s more understandable
than SQL with inflexible type systems.

 JPA emphasizes the usefulness of fine-grained classes for implementing type safety
and behavior. For example, many people model an email address as a string-valued
property of User. A more sophisticated approach is to define an EmailAddress class,
which adds higher-level semantics and behavior—it may provide a prepareMail()
method (it shouldn’t have a sendMail() method, because you don’t want your
domain model classes to depend on the mail subsystem).

 This granularity problem leads us to a distinction of central importance in ORM. In
Java, all classes are of equal standing—all instances have their own identity and life
cycle. When you introduce persistence, some instances may not have their own iden-
tity and life cycle but depend on others. Let’s walk through an example.

4.1.2 Defining application concepts

Two people live in the same house, and they both register user accounts in Caveat-
Emptor. Let’s call them John and Jane.

 An instance of User represents each account. Because you want to load, save, and
delete these User instances independently, User is an entity class and not a value type.
Finding entity classes is easy.

 The User class has a homeAddress property; it’s an association with the Address
class. Do both User instances have a runtime reference to the same Address instance,
Licensed to Thomas Snead <n.ordickan@gmail.com>

63Understanding entities and value types
or does each User instance have a reference to its own Address? Does it matter that
John and Jane live in the same house?

 In figure 4.1, you can see how two User instances share a single Address instance
(this is a UML object diagram, not a class diagram). If Address is supposed to support
shared runtime references, it’s an entity type. The Address instance has its own life,
you can’t delete it when John removes his User account—Jane might still have a refer-
ence to the Address.

 Now let’s look at the alternative model where each User has a reference to its own
homeAddress instance, as shown in figure 4.2. In this case, you can make an instance
of Address dependent on an instance of User: you make it a value type. When John
removes his User account, you can safely delete his Address instance. Nobody else will
hold a reference.

 Hence, we make the following essential distinction:

 You can retrieve an instance of entity type using its persistent identity: for exam-
ple, a User, Item, or Category instance. A reference to an entity instance (a
pointer in the JVM) is persisted as a reference in the database (a foreign key–
constrained value). An entity instance has its own life cycle; it may exist inde-
pendently of any other entity. You map selected classes of your domain model
as entity types.

 An instance of value type has no persistent identifier property; it belongs to an
entity instance. Its lifespan is bound to the owning entity instance. A value type
instance doesn’t support shared references. The most obvious value types are
all JDK-defined classes such as String, Integer, and even primitives. You can
also map your own domain model classes as value types: for example, Address
and MonetaryAmount.

username="johndoe"

lastname="Doe"

jd: User

street="Some Street"
zipCode=12345
city="Some City"

home: Address
homeAddress

username="janeroe"

lastname="Roe"

jr: User
homeAddress

firstname="John"

firstname="Jane" Figure 4.1 Two User instances have
a reference to a single Address.

username="johndoe"

lastname="Doe"

jd: User
street="Some Street"
zipCode=12345
city="Some City"

home1: Address
homeAddress

username="janeroe"

lastname="Roe"

jr: User
homeAddress

street="Some Street"
zipCode=12345
city="Some City"

home2: Address

firstname="John"

firstname="Jane" Figure 4.2 Two User instances each
have their own dependent Address.
Licensed to Thomas Snead <n.ordickan@gmail.com>

64 CHAPTER 4 Mapping persistent classes
If you read the JPA specification, you’ll find the same concept. But value types in JPA
are called basic property types or embeddable classes. We come back to this in the next
chapter; first our focus is on entities.

 Identifying entities and value types in your domain model isn’t an ad hoc task but
follows a certain procedure.

4.1.3 Distinguishing entities and value types

You may find it helpful to add stereotype (a UML extensibility mechanism) informa-
tion to your UML class diagrams so you can immediately recognize entities and value
types. This practice also forces you to think about this distinction for all your classes,
which is a first step to an optimal mapping and well-performing persistence layer. Fig-
ure 4.3 shows an example.

 The Item and User classes are obvious entities. They each have their own identity,
their instances have references from many other instances (shared references), and
they have independent lifespans.

 Marking the Address as a value type is also easy: a single User instance references a
particular Address instance. You know this because the association has been created
as a composition, where the User instance has been made fully responsible for the life
cycle of the referenced Address instance. Therefore, Address instances can’t be refer-
enced by anyone else and don’t need their own identity.

 The Bid class could be a problem. In object-oriented modeling, this is marked as a
composition (the association between Item and Bid with the diamond). Thus, an Item
is the owner of its Bid instances and holds a collection of references. At first, this
seems reasonable, because bids in an auction system are useless when the item they
were made for is gone.

 But what if a future extension of the domain model requires a User#bids collec-
tion, containing all bids made by a particular User? Right now, the association
between Bid and User is unidirectional; a Bid has a bidder reference. What if this was
bidirectional?

 In that case, you have to deal with possible shared references to Bid instances, so
the Bid class needs to be an entity. It has a dependent life cycle, but it must have its
own identity to support (future) shared references.

 You’ll often find this kind of mixed behavior; but your first reaction should be to
make everything a value typed class and promote it to an entity only when absolutely
necessary. Try to simplify your associations: persistent collections, for example, fre-
quently add complexity without offering any advantages. Instead of mapping

<<Entity>>
Item

<<Entity>>
Userseller

0..*

<< Value type >>
Address

home

<< Entity >>
Bid 0..*

bidder

0..*

Figure 4.3 Diagramming stereotypes for entities and value types
Licensed to Thomas Snead <n.ordickan@gmail.com>

65Mapping entities with identity
Item#bids and User#bids collections, you can write queries to obtain all the bids for
an Item and those made by a particular User. The associations in the UML diagram
would point from the Bid to the Item and User, unidirectionally, and not the other
way. The stereotype on the Bid class would then be <<Value type>>. We come back to
this point again in chapter 7.

 Next, take your domain model diagram and implement POJOs for all entities and
value types. You’ll have to take care of three things:

 Shared references—Avoid shared references to value type instances when you
write your POJO classes. For example, make sure only one User can reference
an Address. You can make Address immutable with no public setUser()
method and enforce the relationship with a public constructor that has a User
argument. Of course, you still need a no-argument, probably protected con-
structor, as we discussed in the previous chapter, so Hibernate can also create
an instance.

 Life cycle dependencies—If a User is deleted, its Address dependency has to be
deleted as well. Persistence metadata will include the cascading rules for all
such dependencies, so Hibernate (or the database) can take care of removing
the obsolete Address. You must design your application procedures and user
interface to respect and expect such dependencies—write your domain model
POJOs accordingly.

 Identity—Entity classes need an identifier property in almost all cases. Value type
classes (and of course JDK classes such as String and Integer) don’t have an
identifier property, because instances are identified through the owning entity.

We come back to references, associations, and life cycle rules when we discuss more-
advanced mappings throughout later chapters in this book. Object identity and iden-
tifier properties are our next topic.

4.2 Mapping entities with identity
Mapping entities with identity requires you to understand Java identity and equality
before we can walk through an entity class example and its mapping. After that, we’ll
be able to dig in deeper and select a primary key, configure key generators, and finally
go through identifier generator strategies. First, it’s vital to understand the difference
between Java object identity and object equality before we discuss terms like database
identity and the way JPA manages identity.

4.2.1 Understanding Java identity and equality

Java developers understand the difference between Java object identity and equality.
Object identity (==) is a notion defined by the Java virtual machine. Two references
are identical if they point to the same memory location.

 On the other hand, object equality is a notion defined by a class’s equals()
method, sometimes also referred to as equivalence. Equivalence means two different
Licensed to Thomas Snead <n.ordickan@gmail.com>

66 CHAPTER 4 Mapping persistent classes
(non-identical) instances have the same value—the same state. Two different
instances of String are equal if they represent the same sequence of characters, even
though each has its own location in the memory space of the virtual machine. (If
you’re a Java guru, we acknowledge that String is a special case. Assume we used a dif-
ferent class to make the same point.)

 Persistence complicates this picture. With object/relational persistence, a persis-
tent instance is an in-memory representation of a particular row (or rows) of a data-
base table (or tables). Along with Java identity and equality, we define database
identity. You now have three methods for distinguishing references:

 Objects are identical if they occupy the same memory location in the JVM. This
can be checked with the a == b operator. This concept is known as object identity.

 Objects are equal if they have the same state, as defined by the
a.equals(Object b) method. Classes that don’t explicitly override this method
inherit the implementation defined by java.lang.Object, which compares
object identity with ==. This concept is known as object equality.

 Objects stored in a relational database are identical if they share the same table
and primary key value. This concept, mapped into the Java space, is known as
database identity.

We now need to look at how database identity relates to object identity and how to
express database identity in the mapping metadata. As an example, you’ll map an
entity of a domain model.

4.2.2 A first entity class and mapping

We weren’t completely honest in the previous chapter: the @Entity annotation isn’t
enough to map a persistent class. You also need an @Id annotation, as shown in the
following listing.

@Entity
public class Item {

 @Id
 @GeneratedValue(generator = "ID_GENERATOR")
 protected Long id;

 public Long getId() {
 return id;
 }
}

This is the most basic entity class, marked as “persistence capable” with the @Entity
annotation, and with an @Id mapping for the database identifier property. The class
maps by default to a table named ITEM in the database schema.

Listing 4.1 Mapped Item entity class with an identifier property

PATH: /model/src/main/java/org/jpwh/model/simple/Item.java

Optional but useful
Licensed to Thomas Snead <n.ordickan@gmail.com>

67Mapping entities with identity
 Every entity class has to have an @Id property; it’s how JPA exposes database iden-
tity to the application. We don’t show the identifier property in our diagrams; we
assume that each entity class has one. In our examples, we always name the identifier
property id. This is a good practice for your own project; use the same identifier prop-
erty name for all your domain model entity classes. If you specify nothing else, this
property maps to a primary key column named ID of the ITEM table in your database
schema.

 Hibernate will use the field to access the identifier property value when loading
and storing items, not getter or setter methods. Because @Id is on a field, Hibernate
will now enable every field of the class as a persistent property by default. The rule in
JPA is this: if @Id is on a field, the JPA provider will access fields of the class directly and
consider all fields part of the persistent state by default. You’ll see how to override this
later in this chapter—in our experience, field access is often the best choice, because
it gives you more freedom for accessor method design.

 Should you have a (public) getter method for the identifier property? Well, the
application often uses database identifiers as a convenient handle to a particular
instance, even outside the persistence layer. For example, it’s common for web appli-
cations to display the results of a search screen to the user as a list of summaries. When
the user selects a particular element, the application may need to retrieve the selected
item, and it’s common to use a lookup by identifier for this purpose—you’ve probably
already used identifiers this way, even in applications that rely on JDBC.

 Should you have a setter method? Primary key values never change, so you shouldn’t
allow modification of the identifier property value. Hibernate won’t update a primary
key column, and you shouldn’t expose a public identifier setter method on an entity.

 The Java type of the identifier property, java.lang.Long in the previous example,
depends on the primary key column type of the ITEM table and how key values are
produced. This brings us to the @GeneratedValue annotation and primary keys in
general.

4.2.3 Selecting a primary key

The database identifier of an entity is mapped to some table primary key, so let’s first
get some background on primary keys without worrying about mappings. Take a step
back and think about how you identify entities.

 A candidate key is a column or set of columns that you could use to identify a partic-
ular row in a table. To become the primary key, a candidate key must satisfy the follow-
ing requirements:

 The value of any candidate key column is never null. You can’t identify some-
thing with data that is unknown, and there are no nulls in the relational model.
Some SQL products allow defining (composite) primary keys with nullable col-
umns, so you must be careful.

 The value of the candidate key column(s) is a unique value for any row.
 The value of the candidate key column(s) never changes; it’s immutable.
Licensed to Thomas Snead <n.ordickan@gmail.com>

68 CHAPTER 4 Mapping persistent classes
If a table has only one identifying attribute, it becomes, by definition, the primary key.
But several columns or combinations of columns may satisfy these properties for a par-
ticular table; you choose between candidate keys to decide the best primary key for
the table. You should declare candidate keys not chosen as the primary key as unique
keys in the database if their value is indeed unique (but maybe not immutable).

 Many legacy SQL data models use natural primary keys. A natural key is a key with
business meaning: an attribute or combination of attributes that is unique by virtue of
its business semantics. Examples of natural keys are the US Social Security Number
and Australian Tax File Number. Distinguishing natural keys is simple: if a candidate
key attribute has meaning outside the database context, it’s a natural key, regardless of
whether it’s automatically generated. Think about the application users: if they refer
to a key attribute when talking about and working with the application, it’s a natural
key: “Can you send me the pictures of item #123-abc?”

 Experience has shown that natural primary keys usually cause problems in the end.
A good primary key must be unique, immutable, and never null. Few entity attributes
satisfy these requirements, and some that do can’t be efficiently indexed by SQL data-
bases (although this is an implementation detail and shouldn’t be the deciding factor
for or against a particular key). In addition, you should make certain that a candidate
key definition never changes throughout the lifetime of the database. Changing the
value (or even definition) of a primary key, and all foreign keys that refer to it, is a
frustrating task. Expect your database schema to survive decades, even if your applica-
tion won’t.

 Furthermore, you can often only find natural candidate keys by combining several
columns in a composite natural key. These composite keys, although certainly appropri-
ate for some schema artifacts (like a link table in a many-to-many relationship), poten-
tially make maintenance, ad hoc queries, and schema evolution much more difficult.
We talk about composite keys later in the book, in section 9.2.1.

 For these reasons, we strongly recommend that you add synthetic identifiers, also
called surrogate keys. Surrogate keys have no business meaning—they have unique val-
ues generated by the database or application. Application users ideally don’t see or
refer to these key values; they’re part of the system internals. Introducing a surrogate

Must primary keys be immutable?
The relational model defines that a candidate key must be unique and irreducible (no
subset of the key attributes has the uniqueness property). Beyond that, picking a
candidate key as the primary key is a matter of taste. But Hibernate expects a can-
didate key to be immutable when used as the primary key. Hibernate doesn’t sup-
port updating primary key values with an API; if you try to work around this
requirement, you’ll run into problems with Hibernate’s caching and dirty-checking
engine. If your database schema relies on updatable primary keys (and maybe uses
ON UPDATE CASCADE foreign key constraints), you must change the schema before
it will work with Hibernate.
Licensed to Thomas Snead <n.ordickan@gmail.com>

69Mapping entities with identity
key column is also appropriate in the common situation when there are no candidate
keys. In other words, (almost) every table in your schema should have a dedicated sur-
rogate primary key column with only this purpose.

 There are a number of well-known approaches to generating surrogate key values.
The aforementioned @GeneratedValue annotation is how you configure this.

4.2.4 Configuring key generators

The @Id annotation is required to mark the identifier property of an entity class. With-
out the @GeneratedValue next to it, the JPA provider assumes that you’ll take care of
creating and assigning an identifier value before you save an instance. We call this an
application-assigned identifier. Assigning an entity identifier manually is necessary when
you’re dealing with a legacy database and/or natural primary keys. We have more to
say about this kind of mapping in a dedicated section, 9.2.1.

 Usually you want the system to generate a primary key value when you save an entity
instance, so you write the @GeneratedValue annotation next to @Id. JPA standardizes
several value-generation strategies with the javax.persistence.GenerationType
enum, which you select with @GeneratedValue(strategy = ...):

 GenerationType.AUTO—Hibernate picks an appropriate strategy, asking the
SQL dialect of your configured database what is best. This is equivalent to
@GeneratedValue() without any settings.

 GenerationType.SEQUENCE—Hibernate expects (and creates, if you use the
tools) a sequence named HIBERNATE_SEQUENCE in your database. The sequence
will be called separately before every INSERT, producing sequential numeric
values.

 GenerationType.IDENTITY—Hibernate expects (and creates in table DDL) a
special auto-incremented primary key column that automatically generates a
numeric value on INSERT, in the database.

 GenerationType.TABLE—Hibernate will use an extra table in your database
schema that holds the next numeric primary key value, one row for each entity
class. This table will be read and updated accordingly, before INSERTs. The
default table name is HIBERNATE_SEQUENCES with columns SEQUENCE_NAME and
SEQUENCE_NEXT_HI_VALUE. (The internal implementation uses a more complex
but efficient hi/lo generation algorithm; more on this later.)

Although AUTO seems convenient, you need more control, so you usually shouldn’t
rely on it and explicitly configure a primary key generation strategy. In addition, most
applications work with database sequences, but you may want to customize the name
and other settings of the database sequence. Therefore, instead of picking one of the
JPA strategies, we recommend a mapping of the identifier with @Generated-
Value(generator = "ID_GENERATOR"), as shown in the previous example.

 This is a named identifier generator; you are now free to set up the ID_GENERATOR
configuration independently from your entity classes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

70 CHAPTER 4 Mapping persistent classes

H

 JPA has two built-in annotations you can use to configure named generators: @javax
.persistence.SequenceGenerator and @javax.persistence.TableGenerator. With
these annotations, you can create a named generator with your own sequence and
table names. As usual with JPA annotations, you can unfortunately only use them at the
top of a (maybe otherwise empty) class, and not in a package-info.java file.

For this reason, and because the JPA annotations don’t give us access to the full Hiber-
nate feature set, we prefer an alternative: the native @org.hibernate.annotations
.GenericGenerator annotation. It supports all Hibernate identifier generator strate-
gies and their configuration details. Unlike the rather limited JPA annotations, you can
use the Hibernate annotation in a package-info.java file, typically in the same package
as your domain model classes. The next listing shows a recommended configuration.

@org.hibernate.annotations.GenericGenerator(
 name = "ID_GENERATOR",
 strategy = "enhanced-sequence",
 parameters = {
 @org.hibernate.annotations.Parameter(
 name = "sequence_name",
 value = "JPWH_SEQUENCE"
),
 @org.hibernate.annotations.Parameter(
 name = "initial_value",
 value = "1000"
)
})

This Hibernate-specific generator configuration has the following advantages:

 The enhanced-sequence B strategy produces sequential numeric values. If
your SQL dialect supports sequences, Hibernate will use an actual database
sequence. If your DBMS doesn’t support native sequences, Hibernate will man-
age and use an extra “sequence table,” simulating the behavior of a sequence.
This gives you real portability: the generator can always be called before per-
forming an SQL INSERT, unlike, for example, auto-increment identity columns,
which produce a value on INSERT that has to be returned to the application
afterward.

 You can configure the sequence_name C. Hibernate will either use an existing
sequence or create it when you generate the SQL schema automatically. If your
DBMS doesn’t support sequences, this will be the special “sequence table”
name.

Listing 4.2 Hibernate identifier generator configured as package-level metadata

PATH: /model/src/main/java/org/jpwh/model/package-info.java

ibernate Feature

enhanced-sequence strategyB

sequence_nameC

initial_valueD
Licensed to Thomas Snead <n.ordickan@gmail.com>

71Mapping entities with identity

H

 You can start with an initial_value D that gives you room for test data. For
example, when your integration test runs, Hibernate will make any new data
insertions from test code with identifier values greater than 1000. Any test data
you want to import before the test can use numbers 1 to 999, and you can refer
to the stable identifier values in your tests: “Load item with id 123 and run some
tests on it.” This is applied when Hibernate generates the SQL schema and
sequence; it’s a DDL option.

You can share the same database sequence among all your domain model classes.
There is no harm in specifying @GeneratedValue(generator = "ID_GENERATOR") in
all your entity classes. It doesn’t matter if primary key values aren’t contiguous for a
particular entity, as long as they’re unique within one table. If you’re worried about
contention, because the sequence has to be called prior to every INSERT, we discuss a
variation of this generator configuration later, in section 20.1.

 Finally, you use java.lang.Long as the type of the identifier property in the entity
class, which maps perfectly to a numeric database sequence generator. You could also
use a long primitive. The main difference is what someItem.getId() returns on a new
item that hasn’t been stored in the database: either null or 0. If you want to test
whether an item is new, a null check is probably easier to understand for someone
else reading your code. You shouldn’t use another integral type such as int or short
for identifiers. Although they will work for a while (perhaps even years), as your data-
base size grows, you may be limited by their range. An Integer would work for almost
two months if you generated a new identifier each millisecond with no gaps, and a
Long would last for about 300 million years.

 Although recommended for most applications, the enhanced-sequence strategy as
shown in listing 4.2 is just one of the strategies built into Hibernate.

4.2.5 Identifier generator strategies

Following is a list of all available Hibernate identifier generator strategies, their
options, and our usage recommendations. If you don’t want to read the whole list
now, enable GenerationType.AUTO and check what Hibernate defaults to for your
database dialect. It’s most likely sequence or identity—a good but maybe not the
most efficient or portable choice. If you require consistent portable behavior, and
identifier values to be available before INSERTs, use enhanced-sequence, as shown in
the previous section. This is a portable, flexible, and modern strategy, also offering
various optimizers for large datasets.

 We also show the relationship between each standard JPA strategy and its native
Hibernate equivalent. Hibernate has been growing organically, so there are now two
sets of mappings between standard and native strategies; we call them Old and New in
the list. You can switch this mapping with the hibernate.id.new_generator_mappings

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

72 CHAPTER 4 Mapping persistent classes
setting in your persistence.xml file. The default is true; hence the New mapping. Soft-
ware doesn’t age quite as well as wine:

 native—Automatically selects other strategies, such as sequence or identity,
depending on the configured SQL dialect. You have to look at the Javadoc (or
even the source) of the SQL dialect you configured in persistence.xml. Equiva-
lent to JPA GenerationType.AUTO with the Old mapping.

 sequence—Uses a native database sequence named HIBERNATE_SEQUENCE. The
sequence is called before each INSERT of a new row. You can customize the
sequence name and provide additional DDL settings; see the Javadoc for the
class org.hibernate.id.SequenceGenerator.

 sequence-identity—Generates key values by calling a database sequence on
insertion: for example, insert into ITEM(ID) values (HIBERNATE_SEQUENCE
.nextval). The key value is retrieved after INSERT, the same behavior as the
identity strategy. Supports the same parameters and property types as the
sequence strategy; see the Javadoc for the class org.hibernate.id.Sequence-
IdentityGenerator and its parent.

 enhanced-sequence—Uses a native database sequence when supported; other-
wise falls back to an extra database table with a single column and row, emulating
a sequence. Defaults to name HIBERNATE_SEQUENCE. Always calls the database
“sequence” before an INSERT, providing the same behavior independently of
whether the DBMS supports real sequences. Supports an org.hibernate
.id.enhanced.Optimizer to avoid hitting the database before each INSERT;
defaults to no optimization and fetching a new value for each INSERT. You can
find more examples in chapter 20. For all parameters, see the Javadoc for the
class org.hibernate.id.enhanced.SequenceStyleGenerator. Equivalent to JPA
GenerationType.SEQUENCE and GenerationType.AUTO with the New mapping
enabled, most likely your best option of the built-in strategies.

 seqhilo—Uses a native database sequence named HIBERNATE_SEQUENCE, opti-
mizing calls before INSERT by combining hi/lo values. If the hi value retrieved

Generating identifiers before or after INSERT: what’s the difference?
An ORM service tries to optimize SQL INSERTs: for example, by batching several at
the JDBC level. Hence, SQL execution occurs as late as possible during a unit of
work, not when you call entityManager.persist(someItem). This merely queues
the insertion for later execution and, if possible, assigns the identifier value. But if
you now call someItem.getId(), you might get null back if the engine wasn’t able
to generate an identifier before the INSERT. In general, we prefer pre-insert genera-
tion strategies that produce identifier values independently, before INSERT. A com-
mon choice is a shared and concurrently accessible database sequence. Auto-
incremented columns, column default values, or trigger-generated keys are only avail-
able after the INSERT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

73Mapping entities with identity
from the sequence is 1, the next 9 insertions will be made with key values 11, 12,
13, …, 19. Then the sequence is called again to obtain the next hi value (2 or
higher), and the procedure repeats with 21, 22, 23, and so on. You can config-
ure the maximum lo value (9 is the default) with the max_lo parameter. Unfor-
tunately, due to a quirk in Hibernate’s code, you can not configure this strategy
in @GenericGenerator. The only way to use it is with JPA Generation-
Type.SEQUENCE and the Old mapping. You can configure it with the standard
JPA @SequenceGenerator annotation on a (maybe otherwise empty) class. See
the Javadoc for the class org.hibernate.id.SequenceHiLoGenerator and its
parent for more information. Consider using enhanced-sequence instead, with
an optimizer.

 hilo—Uses an extra table named HIBERNATE_UNIQUE_KEY with the same algo-
rithm as the seqhilo strategy. The table has a single column and row, holding
the next value of the sequence. The default maximum lo value is 32767, so you
most likely want to configure it with the max_lo parameter. See the Javadoc for
the class org.hibernate.id.TableHiLoGenerator for more information. We
don’t recommend this legacy strategy; use enhanced-sequence instead with an
optimizer.

 enhanced-table—Uses an extra table named HIBERNATE_SEQUENCES, with one
row by default representing the sequence, storing the next value. This value is
selected and updated when an identifier value has to be generated. You can
configure this generator to use multiple rows instead: one for each generator;
see the Javadoc for org.hibernate.id.enhanced.TableGenerator. Equivalent
to JPA GenerationType.TABLE with the New mapping enabled. Replaces the
outdated but similar org.hibernate.id.MultipleHiLoPerTableGenerator,
which is the Old mapping for JPA GenerationType.TABLE.

 identity—Supports IDENTITY and auto-increment columns in DB2, MySQL,
MS SQL Server, and Sybase. The identifier value for the primary key column will
be generated on INSERT of a row. Has no options. Unfortunately, due to a quirk
in Hibernate’s code, you can not configure this strategy in @GenericGenerator.
The only way to use it is with JPA GenerationType.IDENTITY and the Old or
New mapping, making it the default for GenerationType.IDENTITY.

 increment—At Hibernate startup, reads the maximum (numeric) primary key
column value of each entity’s table and increments the value by one each time a
new row is inserted. Especially efficient if a non-clustered Hibernate application
has exclusive access to the database; but don’t use it in any other scenario.

 select—Hibernate won’t generate a key value or include the primary key col-
umn in an INSERT statement. Hibernate expects the DBMS to assign a (default
in schema or by trigger) value to the column on insertion. Hibernate then
retrieves the primary key column with a SELECT query after insertion. Required
parameter is key, naming the database identifier property (such as id) for the
Licensed to Thomas Snead <n.ordickan@gmail.com>

74 CHAPTER 4 Mapping persistent classes
SELECT. This strategy isn’t very efficient and should only be used with old JDBC
drivers that can’t return generated keys directly.

 uuid2—Produces a unique 128-bit UUID in the application layer. Useful when
you need globally unique identifiers across databases (say, you merge data from
several distinct production databases in batch runs every night into an archive).
The UUID can be encoded either as a java.lang.String, a byte[16], or a java
.util.UUID property in your entity class. Replaces the legacy uuid and uuid
.hex strategies. You configure it with an org.hibernate.id.UUIDGeneration-
Strategy; see the Javadoc for the class org.hibernate.id.UUIDGenerator for
more details.

 guid—Uses a globally unique identifier produced by the database, with an SQL
function available on Oracle, Ingres, MS SQL Server, and MySQL. Hibernate
calls the database function before an INSERT. Maps to a java.lang.String
identifier property. If you need full control over identifier generation, config-
ure the strategy of @GenericGenerator with the fully qualified name of a class
that implements the org.hibernate.id.IdentityGenerator interface.

To summarize, our recommendations on identifier generator strategies are as follows:

 In general, we prefer pre-insert generation strategies that produce identifier
values independently before INSERT.

 Use enhanced-sequence, which uses a native database sequence when sup-
ported and otherwise falls back to an extra database table with a single column
and row, emulating a sequence.

We assume from now on that you’ve added identifier properties to the entity classes of
your domain model and that after you complete the basic mapping of each entity and
its identifier property, you continue to map the value-typed properties of the entities.
We talk about value-type mappings in the next chapter. Read on for some special
options that can simplify and enhance your class mappings.

4.3 Entity-mapping options
You’ve now mapped a persistent class with @Entity, using defaults for all other set-
tings, such as the mapped SQL table name. The following section explores some class-
level options and how you control them:

 Naming defaults and strategies
 Dynamic SQL generation
 Entity mutability

These are options; you can skip this section and come back later when you have to
deal with a specific problem.

4.3.1 Controlling names

Let’s first talk about the naming of entity classes and tables. If you only specify
@Entity on the persistence-capable class, the default mapped table name is the same
Licensed to Thomas Snead <n.ordickan@gmail.com>

75Entity-mapping options
as the class name. Note that we write SQL artifact names in UPPERCASE to make them
easier to distinguish—SQL is actually case insensitive. So the Java entity class Item
maps to the ITEM table. You can override the table name with the JPA @Table annota-
tion, as shown next.

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 // ...
}

The User entity would map to the USER table; this is a reserved keyword in most SQL
DBMSs. You can’t have a table with that name, so you instead map it to USERS. The
@javax.persistence.Table annotation also has catalog and schema options, if your
database layout requires these as naming prefixes.

 If you really have to, quoting allows you to use reserved SQL names and even work
with case-sensitive names.

QUOTING SQL IDENTIFIERS

From time to time, especially in legacy databases, you’ll encounter identifiers with
strange characters or whitespace, or wish to force case sensitivity. Or, as in the previous
example, the automatic mapping of a class or property would require a table or col-
umn name that is a reserved keyword.

 Hibernate 5 knows the reserved keywords of your DBMS through the configured
database dialect. Hibernate 5 can automatically put quotes around such strings when
generating SQL. You can enable this automatic quoting with hibernate.auto_quote
_keyword=true in your persistence unit configuration. If you’re using an older version
of Hibernate, or you find that the dialect’s information is incomplete, you must still
apply quotes on names manually in your mappings if there is a conflict with a keyword.

 If you quote a table or column name in your mapping with backticks, Hibernate
always quotes this identifier in the generated SQL. This still works in latest versions of
Hibernate, but JPA 2.0 standardized this functionality as delimited identifiers with dou-
ble quotes.

 This is the Hibernate-only quoting with backticks, modifying the previous example:

@Table(name = "`USER`")

To be JPA-compliant, you also have to escape the quotes in the string:

@Table(name = "\"USER\"")

Listing 4.3 @Table annotation overrides the mapped table name

PATH: /model/src/main/java/org/jpwh/model/simple/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

76 CHAPTER 4 Mapping persistent classes

H

Either way works fine with Hibernate. It knows the native quote character of your dia-
lect and now generates SQL accordingly: [USER] for MS SQL Server, 'USER' for
MySQL, "USER" for H2, and so on.

 If you have to quote all SQL identifiers, create an orm.xml file and add the setting
<delimited-identifiers/> to its <persistence-unit-defaults> section, as shown
in listing 3.8. Hibernate then enforces quoted identifiers everywhere.

 You should consider renaming tables or columns with reserved keyword names
whenever possible. Ad hoc SQL queries are difficult to write in an SQL console if you
have to quote and escape everything properly by hand.

 Next, you’ll see how Hibernate can help when you encounter organizations with
strict conventions for database table and column names.

IMPLEMENTING NAMING CONVENTIONS

Hibernate provides a feature that allows you to enforce naming standards automati-
cally. Suppose that all table names in CaveatEmptor should follow the pattern
CE_<table name>. One solution is to manually specify an @Table annotation on all
entity classes. This approach is time-consuming and easily forgotten. Instead, you can
implement Hibernate’s PhysicalNamingStrategy interface or override an existing
implementation, as in the following listing.

public class CENamingStrategy extends
 org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl {

 @Override
 public Identifier toPhysicalTableName(Identifier name,
 JdbcEnvironment context) {
 return new Identifier("CE_" + name.getText(), name.isQuoted());
 }

}

The overridden method toPhysicalTableName() prepends CE_ to all generated table
names in your schema. Look at the Javadoc of the PhysicalNamingStrategy inter-
face; it offers methods for custom naming of columns, sequences, and other artifacts.

 You have to enable the naming-strategy implementation in persistence.xml:

<persistence-unit>name="CaveatEmptorPU">
 ...
 <properties>
 <property name="hibernate.physical_naming_strategy"
 value="org.jpwh.shared.CENamingStrategy"/>
 </properties>
</persistence-unit>

Listing 4.4 PhysicalNamingStrategy, overriding default naming conventions

PATH: /shared/src/main/java/org/jpwh/shared/CENamingStrategy.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

77Entity-mapping options

H

A second option for naming customization is ImplicitNamingStrategy. Whereas the
physical naming strategy acts at the lowest level, when schema artifact names are ulti-
mately produced, the implicit-naming strategy is called before. If you map an entity
class and don’t have an @Table annotation with an explicit name, the implicit-naming
strategy implementation is asked what the table name should be. This is based on fac-
tors such as the entity name and class name. Hibernate ships with several strategies to
implement legacy- or JPA-compliant default names. The default strategy is Implicit-
NamingStrategyJpaCompliantImpl.

 Let’s have a quick look at another related issue, the naming of entities for queries.

NAMING ENTITIES FOR QUERYING

By default, all entity names are automatically imported into the namespace of the
query engine. In other words, you can use short class names without a package prefix
in JPA query strings, which is convenient:

List result = em.createQuery("select i from Item i")
 .getResultList();

This only works when you have one Item class in your persistence unit. If you add
another Item class in a different package, you should rename one of them for JPA if
you want to continue using the short form in queries:

package my.other.model;

@javax.persistence.Entity(name = "AuctionItem")
public class Item {
 // ...
}

The short query form is now select i from AuctionItem i for the Item class in the
my.other.model package. Thus you resolve the naming conflict with another Item
class in another package. Of course, you can always use fully qualified long names with
the package prefix.

 This completes our tour of the naming options in Hibernate. Next, we discuss how
Hibernate generates the SQL that contains these names.

4.3.2 Dynamic SQL generation

By default, Hibernate creates SQL statements for each persistent class when the persis-
tence unit is created, on startup. These statements are simple create, read, update,
and delete (CRUD) operations for reading a single row, deleting a row, and so on. It’s
cheaper to store these in memory up front, instead of generating SQL strings every
time such a simple query has to be executed at runtime. In addition, prepared state-
ment caching at the JDBC level is much more efficient if there are fewer statements.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

78 CHAPTER 4 Mapping persistent classes

H

 How can Hibernate create an UPDATE statement on startup? After all, the columns
to be updated aren’t known at this time. The answer is that the generated SQL state-
ment updates all columns, and if the value of a particular column isn’t modified, the
statement sets it to its old value.

 In some situations, such as a legacy table with hundreds of columns where the SQL
statements will be large for even the simplest operations (say, only one column needs
updating), you should disable this startup SQL generation and switch to dynamic state-
ments generated at runtime. An extremely large number of entities can also impact
startup time, because Hibernate has to generate all SQL statements for CRUD up front.
Memory consumption for this query statement cache will also be high if a dozen state-
ments must be cached for thousands of entities. This can be an issue in virtual envi-
ronments with memory limitations, or on low-power devices.

 To disable generation of INSERT and UPDATE SQL statements on startup, you need
native Hibernate annotations:

@Entity
@org.hibernate.annotations.DynamicInsert
@org.hibernate.annotations.DynamicUpdate
public class Item {
 // ...
}

By enabling dynamic insertion and updates, you tell Hibernate to produce the SQL
strings when needed, not up front. The UPDATE will only contain columns with
updated values, and the INSERT will only contain non-nullable columns.

 We talk again about SQL generation and customizing SQL in chapter 17. Some-
times you can avoid generating an UPDATE statement altogether, if your entity is
immutable.

4.3.3 Making an entity immutable

Instances of a particular class may be immutable. For example, in CaveatEmptor, a Bid
made for an item is immutable. Hence, Hibernate never needs to execute UPDATE
statements on the BID table. Hibernate can also make a few other optimizations, such
as avoiding dirty checking, if you map an immutable class as shown in the next exam-
ple. Here, the Bid class is immutable and instances are never modified:

@Entity
@org.hibernate.annotations.Immutable
public class Bid {
 // ...
}

A POJO is immutable if no public setter methods for any properties of the class are
exposed—all values are set in the constructor. Hibernate should access the fields

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

79Entity-mapping options

H

directly when loading and storing instances. We talked about this earlier in this chap-
ter: if the @Id annotation is on a field, Hibernate will access the fields directly, and you
are free to design your getter and setter methods as you see fit. Also, remember that
not all frameworks work with POJOs without setter methods; JSF, for example, doesn’t
access fields directly to populate an instance.

 When you can’t create a view in your database schema, you can map an immutable
entity class to an SQL SELECT query.

4.3.4 Mapping an entity to a subselect

Sometimes your DBA won’t allow you to change the database schema; even adding a
new view might not be possible. Let’s say you want to create a view that contains the
identifier of an auction Item and the number of bids made for that item.

 Using a Hibernate annotation, you can create an application-level view, a read-only
entity class mapped to an SQL SELECT:

@Entity
@org.hibernate.annotations.Immutable
@org.hibernate.annotations.Subselect(
 value = "select i.ID as ITEMID, i.ITEM_NAME as NAME, " +
 "count(b.ID) as NUMBEROFBIDS " +
 "from ITEM i left outer join BID b on i.ID = b.ITEM_ID " +
 "group by i.ID, i.ITEM_NAME"
)

@org.hibernate.annotations.Synchronize({"Item", "Bid"})
public class ItemBidSummary {

 @Id
 protected Long itemId;

 protected String name;

 protected long numberOfBids;

 public ItemBidSummary() {
 }

 // Getter methods...

 // ...
}

When an instance of ItemBidSummary is loaded, Hibernate executes your custom SQL
SELECT as a subselect:

ItemBidSummary itemBidSummary = em.find(ItemBidSummary.class, ITEM_ID);
// select * from (

PATH: /model/src/main/java/org/jpwh/model/advanced/ItemBidSummary.java

PATH: /examples/src/test/java/org/jpwh/test/advanced/MappedSubselect.java

ibernate Feature

TODO: table names
are case sensitive
(Hibernate bug
HHH-8430)
Licensed to Thomas Snead <n.ordickan@gmail.com>

80 CHAPTER 4 Mapping persistent classes
// select i.ID as ITEMID, i.ITEM_NAME as NAME, ...
//) where ITEMID = ?

You should list all table names referenced in your SELECT in the @org.hibernate
.annotations.Synchronize annotation. (At the time of writing, Hibernate has a bug
tracked under issue HHH-84301 that makes the synchronized table names case sensi-
tive.) Hibernate will then know it has to flush modifications of Item and Bid instances
before it executes a query against ItemBidSummary:

Item item = em.find(Item.class, ITEM_ID);
item.setName("New name");

// ItemBidSummary itemBidSummary = em.find(ItemBidSummary.class, ITEM_ID);

Query query = em.createQuery(
 "select ibs from ItemBidSummary ibs where ibs.itemId = :id"
);
ItemBidSummary itemBidSummary =
 (ItemBidSummary)query.setParameter("id", ITEM_ID).getSingleResult();

Note that Hibernate doesn’t flush automatically before a find() operation—only
before a Query is executed, if necessary. Hibernate detects that the modified Item will
affect the result of the query, because the ITEM table is synchronized with ItemBid-
Summary. Hence, a flush and the UPDATE of the ITEM row are necessary to avoid the
query returning stale data.

4.4 Summary
 Entities are the coarser-grained classes of your system. Their instances have an

independent life cycle and their own identity, and many other instances can ref-
erence them.

 Value types, on the other hand, are dependent on a particular entity class. A
value type instance is bound to its owning entity instance, and only one entity
instance can reference it—it has no individual identity.

 We looked at Java identity, object equality, and database identity, and at what
makes good primary keys. You learned which generators for primary key values
Hibernate provides out of the box, and how to use and extend this identifier
system.

 We discussed some useful class mapping options, such as naming strategies and
dynamic SQL generation.

1 See https://hibernate.atlassian.net/browse/HHH-8430.

PATH: /examples/src/test/java/org/jpwh/test/advanced/MappedSubselect.java

No flush before retrieval
by the identifier

Automatic flush before queries if
synchronized tables are affected
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://hibernate.atlassian.net/browse/HHH-8430

Mapping value types
After spending the previous chapter almost exclusively on entities and the respec-
tive class- and identity-mapping options, we now focus on value types in their various
forms. We split value types into two categories: basic value-typed classes that come
with the JDK, such as String, Date, primitives, and their wrappers; and developer-
defined value-typed classes, such as Address and MonetaryAmount in CaveatEmptor.

 In this chapter, we first map persistent properties with JDK types and learn the
basic mapping annotations. You see how to work with various aspects of properties:
overriding defaults, customizing access, and generated values. You also see how
SQL is used with derived properties and transformed column values. We wrap up
basic properties with temporal properties and mapping enumerations. We then dis-
cuss custom value-typed classes and map them as embeddable components. You
learn how classes relate to the database schema and make your classes embeddable,
while allowing for overriding embedded attributes. We complete embeddable
components by mapping nested components. Finally, we discuss how to customize
loading and storing of property values at a lower level with flexible JPA converters, a
standardized extension point of every JPA provider.

In this chapter
 Mapping basic properties

 Mapping embeddable components

 Controlling mapping between Java and SQL types
81

Licensed to Thomas Snead <n.ordickan@gmail.com>

82 CHAPTER 5 Mapping value types

5.1 Mapping basic properties
When you map a persistent class, whether it’s an entity or an embeddable type (more
about these later, in section 5.2), all of its properties are considered persistent by
default. The default JPA rules for properties of persistent classes are these:

 If the property is a primitive or a primitive wrapper, or of type String, BigInteger,
BigDecimal, java.util.Date, java.util.Calendar, java.sql.Date, java.sql
.Time, java.sql.Timestamp, byte[], Byte[], char[], or Character[], it’s auto-
matically persistent. Hibernate loads and stores the value of the property in a col-
umn with an appropriate SQL type and the same name as the property.

 Otherwise, if you annotate the class of the property as @Embeddable, or you map
the property itself as @Embedded, Hibernate maps the property as an embedded
component of the owning class. We discuss embedding of components later in
this chapter, with the Address and MonetaryAmount embeddable classes of
CaveatEmptor.

 Otherwise, if the type of the property is java.io.Serializable, its value is
stored in its serialized form. This typically isn’t what you want, and you should
always map Java classes instead of storing a heap of bytes in the database. Imag-
ine maintaining a database with this binary information when the application is
gone in a few years.

 Otherwise, Hibernate will throw an exception on startup, complaining that it
doesn’t understand the type of the property.

This configuration by exception approach means you don’t have to annotate a property to
make it persistent; you only have to configure the mapping in an exceptional case. Sev-
eral annotations are available in JPA to customize and control basic property mappings.

5.1.1 Overriding basic property defaults

You might not want all properties of an entity class to be persistent. For example,
although it makes sense to have a persistent Item#initialPrice property, an
Item#totalPriceIncludingTax property shouldn’t be persistent if you only com-
pute and use its value at runtime, and hence shouldn’t be stored in the database. To

Major new features in JPA 2
 Switchable access through either field or property getter/setter methods for

an entity hierarchy, or individual properties, with the @Access annotation
 Nesting multiple levels of embeddable component classes, and the ability

to apply @AttributeOverride to nested embedded properties with dot
notation

 Addition of Converter API for basic-typed attributes, so you can control how
values are loaded and stored and transform them if necessary
Licensed to Thomas Snead <n.ordickan@gmail.com>

83Mapping basic properties
exclude a property, mark the field or the getter method of the property with the
@javax.persistence.Transient annotation or use the Java transient keyword. The
transient keyword usually only excludes fields for Java serialization, but it’s also rec-
ognized by JPA providers.

 We’ll come back to the placement of the annotation on fields or getter methods in
a moment. Let’s assume as we have before that Hibernate will access fields directly
because @Id has been placed on a field. Therefore, all other JPA and Hibernate map-
ping annotations are also on fields.

 If you don’t want to rely on property mapping defaults, apply the @Basic annota-
tion to a particular property—for example, the initialPrice of an Item:

@Basic(optional = false)
BigDecimal initialPrice;

We have to admit that this annotation isn’t very useful. It only has two parameters: the
one shown here, optional, marks the property as not optional at the Java object level.
By default, all persistent properties are nullable and optional; an Item may have an
unknown initialPrice. Mapping the initialPrice property as non-optional makes
sense if you have a NOT NULL constraint on the INITIALPRICE column in your SQL
schema. If Hibernate is generating the SQL schema, it will include a NOT NULL con-
straint automatically for non-optional properties.

 Now, when you store an Item and forget to set a value on the initialPrice field,
Hibernate will complain with an exception before hitting the database with an SQL
statement. Hibernate knows that a value is required to perform an INSERT or UPDATE.
If you don’t mark the property as optional and try to save a NULL, the database will
reject the SQL statement, and Hibernate will throw a constraint-violation exception.
There isn’t much difference in the end result, but it’s cleaner to avoid hitting the data-
base with a statement that fails. We’ll talk about the other parameter of @Basic, the
fetch option, when we explore optimization strategies later, in section 12.1.

 Instead of @Basic, most engineers use the more versatile @Column annotation to
declare nullability:

@Column(nullable = false)
BigDecimal initialPrice;

We’ve now shown you three ways to declare whether a property value is required: with
the @Basic annotation, the @Column annotation, and earlier with the Bean Validation
@NotNull annotation in section 3.3.2. All have the same effect on the JPA provider:
Hibernate does a null check when saving and generates a NOT NULL constraint in the
database schema. We recommend the Bean Validation @NotNull annotation so you
can manually validate an Item instance and/or have your user interface code in the
presentation layer execute validation checks automatically.

 The @Column annotation can also override the mapping of the property name to
the database column:
Licensed to Thomas Snead <n.ordickan@gmail.com>

84 CHAPTER 5 Mapping value types

M

e

@Column(name = "START_PRICE", nullable = false)
BigDecimal initialPrice;

The @Column annotation has a few other parameters, most of which control SQL-level
details such as catalog and schema names. They’re rarely needed, and we only show
them throughout this book when necessary.

 Property annotations aren’t always on fields, and you may not want Hibernate to
access fields directly.

5.1.2 Customizing property access

The persistence engine accesses the properties of a class either directly through fields
or indirectly through getter and setter methods. An annotated entity inherits the
default from the position of the mandatory @Id annotation. For example, if you’ve
declared @Id on a field, not a getter method, all other mapping annotations for that
entity are expected on fields. Annotations are never on the setter methods.

 The default access strategy isn’t only applicable to a single entity class. Any
@Embedded class inherits the default or explicitly declared access strategy of its own-
ing root entity class. We cover embedded components later in this chapter. Further-
more, Hibernate accesses any @MappedSuperclass properties with the default or
explicitly declared access strategy of the mapped entity class. Inheritance is the topic
of chapter 6.

 The JPA specification offers the @Access annotation for overriding the default
behavior, with the parameters AccessType.FIELD and AccessType.PROPERTY. If you
set @Access on the class/entity level, Hibernate accesses all properties of the class
according to the selected strategy. You then set any other mapping annotations,
including the @Id, on either fields or getter methods, respectively.

 You can also use the @Access annotation to override the access strategy of individ-
ual properties. Let’s explore this with an example.

@Entity
public class Item {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @Access(AccessType.PROPERTY)
 @Column(name = "ITEM_NAME")
 protected String name;

 public String getName() {
 return name;
 }

Listing 5.1 Overriding access strategy for the name property

PATH: /model/src/main/java/org/jpwh/model/advanced/Item.java

 @Id is on a field.B

Switches property
to runtime access

C
appings
are still
xpected

here!

Called when
loading/storing

D

Licensed to Thomas Snead <n.ordickan@gmail.com>

../../../Users/Dottie/AppData/Local/Temp/jpwh-2e-preview.xhtml#Caching
../../../Users/Dottie/AppData/Local/Temp/jpwh-2e-preview.xhtml#Caching

85Mapping basic properties

H

 public void setName(String name) {
 this.name =
 !name.startsWith("AUCTION: ") ? "AUCTION: " + name : name;
 }
}

B The Item entity defaults to field access. The @Id is on a field. (You also move the brit-
tle ID_GENERATOR string into a constant.)

C The @Access(AccessType.PROPERTY) setting on the name field switches this particular
property to runtime access through getter/setter methods by the JPA provider.

D Hibernate calls getName() and setName() when loading and storing items.

Note that the position of other mapping annotations like @Column doesn’t change—
only how instances are accessed at runtime.

 Now turn it around: if the default (or explicit) access type of the entity would be
through property getter and setter methods, @Access(AccessType.FIELD) on a getter
method would tell Hibernate to access the field directly. All other mapping informa-
tion would still have to be on the getter method, not the field.

Hibernate has a rarely needed extension: the noop property accessor. This sounds
strange, but it lets you refer to a virtual property in queries. This is useful if you have a
database column you’d like to use only in JPA queries. For example, let’s say the ITEM
database table has a VALIDATED column and your Hibernate application won’t access
this column through the domain model. It might be a legacy column or a column
maintained by another application or database trigger. All you want is to refer to this
column in a JPA query such as select i from Item i where i.validated = true or
select i.id, i.validated from Item i. The Java Item class in your domain model
doesn’t have this property; hence there is no place to put annotations. The only way to
map such a virtual property is with an hbm.xml native metadata file:

<hibernate-mapping>
 <class name="Item">
 <id name="id">
 ...
 </id>
 <property name="validated"
 column="VALIDATED"
 access="noop"/>
 </class>
</hibernate-mapping>

This mapping tells Hibernate that you’d like to access the virtual Item#validated
property, mapped to the VALIDATED column, in queries; but for value read/writes at
runtime, you want “no operation” on an instance of Item. The class doesn’t have that
attribute. Remember that such a native mapping file has to be complete: any annota-
tions on the Item class are now ignored!

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

86 CHAPTER 5 Mapping value types

H

 If none of the built-in access strategies are appropriate, you can define your own
customized property-access strategy by implementing the interface org.hibernate
.property.PropertyAccessor. You enable a custom accessor by setting its fully quali-
fied name in a Hibernate extension annotation: @org.hibernate.annotations
.AttributeAccessor("my.custom.Accessor"). Note that AttributeAccessor is new
in Hibernate 4.3 and replaces the deprecated org.hibernate.annotations.Access-
Type, which was easily confused with the JPA enum javax.persistence.AccessType.

 Some properties don’t map to a column. In particular, a derived property takes its
value from an SQL expression.

5.1.3 Using derived properties

The value of a derived property is calculated at runtime by evaluating an SQL expres-
sion declared with the @org.hibernate.annotations.Formula annotation; see the
next listing.

@org.hibernate.annotations.Formula(
 "substr(DESCRIPTION, 1, 12) || '...'"
)
protected String shortDescription;

@org.hibernate.annotations.Formula(
 "(select avg(b.AMOUNT) from BID b where b.ITEM_ID = ID)"
)
protected BigDecimal averageBidAmount;

The given SQL formulas are evaluated every time the Item entity is retrieved from the
database and not at any other time, so the result may be outdated if other properties
are modified. The properties never appear in an SQL INSERT or UPDATE, only in
SELECTs. Evaluation occurs in the database; Hibernate embeds the SQL formula in the
SELECT clause when loading the instance.

 Formulas may refer to columns of the database table, they can call SQL functions,
and they may even include SQL subselects. In the previous example, the SUBSTR()
function is called, as well as the || concat operator. The SQL expression is passed to
the underlying database as is; if you aren’t careful, you may rely on vendor-specific
operators or keywords and bind your mapping metadata to a particular database prod-
uct. Notice that unqualified column names refer to columns of the table of the class to
which the derived property belongs.

 The database evaluates SQL expressions in formulas only when Hibernate retrieves
an entity instance from the database. Hibernate also supports a variation of formulas
called column transformers, allowing you to write a custom SQL expression for reading
and writing a property value.

Listing 5.2 Two read-only derived properties

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

87Mapping basic properties

H

5.1.4 Transforming column values

Let’s say you have a database column called IMPERIALWEIGHT, storing the weight of an
Item in pounds. The application, however, has the property Item#metricWeight in
kilograms, so you have to convert the value of the database column when reading and
writing a row from and to the ITEM table. You can implement this with a Hibernate
extension: the @org.hibernate.annotations.ColumnTransformer annotation.

@Column(name = "IMPERIALWEIGHT")
@org.hibernate.annotations.ColumnTransformer(
 read = "IMPERIALWEIGHT / 2.20462",
 write = "? * 2.20462"
)
protected double metricWeight;

When reading a row from the ITEM table, Hibernate embeds the expression
IMPERIALWEIGHT / 2.20462, so the calculation occurs in the database and Hibernate
returns the metric value in the result to the application layer. For writing to the col-
umn, Hibernate sets the metric value on the mandatory, single placeholder (the ques-
tion mark), and your SQL expression calculates the actual value to be inserted or
updated.

 Hibernate also applies column converters in query restrictions. For example, the
following query retrieves all items with a weight of two kilograms:

List<Item> result =
 em.createQuery("select i from Item i where i.metricWeight = :w")
 .setParameter("w", 2.0)
 .getResultList();

The actual SQL executed by Hibernate for this query contains the following restric-
tion in the WHERE clause:

// ...
where
 i.IMPERIALWEIGHT / 2.20462=?

Note that your database probably won’t be able to rely on an index for this restriction;
you’ll see a full table scan, because the weight for all ITEM rows has to be calculated to
evaluate the restriction.

 Another special kind of property relies on database-generated values.

Listing 5.3 Transforming column values with SQL expressions

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

88 CHAPTER 5 Mapping value types

H

5.1.5 Generated and default property values

The database sometimes generates a property value, usually when you insert a row for
the first time. Examples of database-generated values are a creation timestamp, a
default price for an item, and a trigger that runs for every modification.

 Typically, Hibernate applications need to refresh instances that contain any prop-
erties for which the database generates values, after saving. This means you would
have to make another round trip to the database to read the value after inserting or
updating a row. Marking properties as generated, however, lets the application dele-
gate this responsibility to Hibernate. Essentially, whenever Hibernate issues an SQL
INSERT or UPDATE for an entity that has declared generated properties, it does a
SELECT immediately afterward to retrieve the generated values.

 You mark generated properties with the @org.hibernate.annotations.Generated
annotation.

@Temporal(TemporalType.TIMESTAMP)
@Column(insertable = false, updatable = false)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
protected Date lastModified;

@Column(insertable = false)
@org.hibernate.annotations.ColumnDefault("1.00")
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.INSERT
)
protected BigDecimal initialPrice;

Available settings for GenerationTime are ALWAYS and INSERT.
 With ALWAYS, Hibernate refreshes the entity instance after every SQL UPDATE or

INSERT. The example assumes that a database trigger will keep the lastModified
property current. The property should also be marked read-only, with the updatable
and insertable parameters of @Column. If both are set to false, the property’s col-
umn(s) never appear in the INSERT or UPDATE statements, and you let the database
generate the value.

 With GenerationTime.INSERT, refreshing only occurs after an SQL INSERT, to
retrieve the default value provided by the database. Hibernate also maps the property
as not insertable. The @ColumnDefault Hibernate annotation sets the default value
of the column when Hibernate exports and generates the SQL schema DDL.

 Timestamps are frequently automatically generated values, either by the database,
as in the previous example, or by the application. Let’s have a closer look at the
@Temporal annotation you saw in listing 5.4.

Listing 5.4 Database-generated property values

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

89Mapping basic properties

H

5.1.6 Temporal properties

The lastModified property of the last example was of type java.util.Date, and a
database trigger on SQL INSERT generated its value. The JPA specification requires
that you annotate temporal properties with @Temporal to declare the accuracy of the
SQL data type of the mapped column. The Java temporal types are java.util.Date,
java.util.Calendar, java.sql.Date, java.sql.Time, and java.sql.Timestamp.
Hibernate also supports the classes of the java.time package available in JDK 8. (Actu-
ally, the annotation isn’t required if a converter is applied or applicable for the prop-
erty. You’ll see converters again later in this chapter.)

 The next listing shows a JPA-compliant example: a typical “this item was created
on” timestamp property that is saved once but never updated.

@Temporal(TemporalType.TIMESTAMP)
@Column(updatable = false)
@org.hibernate.annotations.CreationTimestamp
protected Date createdOn;

// Java 8 API
// protected Instant reviewedOn;

Available TemporalType options are DATE, TIME, and TIMESTAMP, establishing what part
of the temporal value should be stored in the database.

Hibernate defaults to TemporalType.TIMESTAMP when no @Temporal annotation is
present. Furthermore, you’ve used the @CreationTimestamp Hibernate annotation to
mark the property. This is a sibling of the @Generated annotation from the previous
section: it tells Hibernate to generate the property value automatically. In this case,
Hibernate sets the value to the current time before it inserts the entity instance into
the database. A similar built-in annotation is @UpdateTimestamp. You can also write
and configure custom value generators, running in the application or database. Have
a look at org.hibernate.annotations.GeneratorType and ValueGenerationType.

 Another special property type is enumerations.

5.1.7 Mapping enumerations

An enumeration type is a common Java idiom where a class has a constant (small)
number of immutable instances. In CaveatEmptor, for example, you can apply this to
auctions:

public enum AuctionType {
 HIGHEST_BID,
 LOWEST_BID,
 FIXED_PRICE
}

Listing 5.5 Property of a temporal type that must be annotated with @Temporal

JPA says @Temporal is required,
but Hibernate defaults to
TIMESTAMP without it.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

90 CHAPTER 5 Mapping value types
You can now set the appropriate auctionType on each Item:

@NotNull
@Enumerated(EnumType.STRING)
protected AuctionType auctionType = AuctionType.HIGHEST_BID;

Without the @Enumerated annotation, Hibernate would store the ORDINAL position of
the value. That is, it would store 1 for HIGHEST_BID, 2 for LOWEST_BID, and 3 for
FIXED_PRICE. This is a brittle default; if you make changes to the AuctionType enum,
existing values may no longer map to the same position. The EnumType.STRING option
is therefore a better choice; Hibernate stores the label of the enum value as is.

 This completes our tour of basic properties and their mapping options. So far, we
have been showing properties of JDK-supplied types such as String, Date, and Big-
Decimal. Your domain model also has custom value-typed classes, those with a compo-
sition association in the UML diagram.

5.2 Mapping embeddable components
So far, the classes of the domain model you’ve mapped have all been entity classes,
each with its own life cycle and identity. The User class, however, has a special kind of
association with the Address class, as shown in figure 5.1.

In object-modeling terms, this association is a kind of aggregation—a part-of relation-
ship. Aggregation is a strong form of association; it has some additional semantics with
regard to the life cycle of objects. In this case, you have an even stronger form, compo-
sition, where the life cycle of the part is fully dependent on the life cycle of the whole.
A composed class in UML such as Address is often a candidate value type for your
object/relational mapping.

5.2.1 The database schema

Let’s map such a composition relationship with
Address as a value type, with the same semantics as
String or BigDecimal, and User as an entity. First,
have a look at the SQL schema you’re targeting, in
figure 5.2.

 There is only one mapped table, USERS, for the
User entity. This table embeds all details of the com-
ponents, where a single row holds a particular User
and their homeAddress and billingAddress. If
another entity has a reference to an Address—for

Defaults to
ORDINAL

username : String

lastname : String

User
street : String
zipcode : String
city : String

Addresshome

billingfirstname : String
Figure 5.1 Composition of User and Address

ID <<PK>>
USERNAME
FIRSTNAME
LASTNAME
STREET
ZIPCODE
CITY
BILLING_STREET
BILLING_ZIPCODE
BILLING_CITY

<< Table >>
USERS

Component
columns

Figure 5.2 The columns of the
components are embedded in the
entity table.
Licensed to Thomas Snead <n.ordickan@gmail.com>

91Mapping embeddable components

g

VARC
example, Shipment#deliveryAddress—then the SHIPMENT table will also have all col-
umns needed to store an Address.

 This schema reflects value type semantics: a particular Address can’t be shared; it
doesn’t have its own identity. Its primary key is the mapped database identifier of the
owning entity. An embedded component has a dependent life cycle: when the owning
entity instance is saved, the component instance is saved. When the owning entity
instance is deleted, the component instance is deleted. Hibernate doesn’t even have
to execute any special SQL for this; all the data is in a single row.

 Having “more classes than tables” is how Hibernate supports fine-grained domain
models. Let’s write the classes and mapping for this structure.

5.2.2 Making classes embeddable

Java has no concept of composition—a class or property can’t be marked as a compo-
nent or composition life cycle. The only difference from an entity is the database iden-
tifier: a component class has no individual identity; hence, the component class
requires no identifier property or identifier mapping. It’s a simple POJO, as you can
see in the following listing.

@Embeddable
public class Address {

 @NotNull
 @Column(nullable = false)
 protected String street;

 @NotNull
 @Column(nullable = false, length = 5)
 protected String zipcode;

 @NotNull
 @Column(nullable = false)
 protected String city;

 protected Address() {
 }

 public Address(String street, String zipcode, String city) {
 this.street = street;
 this.zipcode = zipcode;
 this.city = city;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

Listing 5.6 Address class: an embeddable component

PATH: /model/src/main/java/org/jpwh/model/simple/Address.java

@Embeddable
instead of @EntityB

Ignored
for DDL

eneration Used for DDL generation

Overrides
HAR(255)

No-args constructorC

Convenience constructor D
Licensed to Thomas Snead <n.ordickan@gmail.com>

92 CHAPTER 5 Mapping value types
 public String getZipcode() {
 return zipcode;
 }

 public void setZipcode(String zipcode) {
 this.zipcode = zipcode;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }
}

B Instead of @Entity, this component POJO is marked with @Embeddable. It has no iden-
tifier property.

C Hibernate calls this no-argument constructor to create an instance and then popu-
lates the fields directly.

D You can have additional (public) constructors for convenience.

The properties of the embeddable class are all by default persistent, just like the prop-
erties of a persistent entity class. You can configure the property mappings with the
same annotations, such as @Column or @Basic. The properties of the Address class
map to the columns STREET, ZIPCODE, and CITY and are constrained with NOT NULL.

That’s the entire mapping. There’s nothing special about the User entity:

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 public Long getId() {
 return id;

PATH: /model/src/main/java/org/jpwh/model/simple/User.java

Issue: Hibernate Validator doesn’t generate NOT NULL constraints
At the time of writing, an open issue remains with Hibernate Validator: Hibernate
won’t map @NotNull constraints on embeddable component properties to NOT NULL
constraints when generating your database schema. Hibernate will only use @Not-
Null on your components’ properties at runtime, for Bean Validation. You have to
map the property with @Column(nullable = false) to generate the constraint in
the schema. The Hibernate bug database is tracking this issue as HVAL-3.
Licensed to Thomas Snead <n.ordickan@gmail.com>

93Mapping embeddable components
 }

 protected Address homeAddress;

 public Address getHomeAddress() {
 return homeAddress;
 }

 public void setHomeAddress(Address homeAddress) {
 this.homeAddress = homeAddress;
 }

 // ...
}

Hibernate detects that the Address class is annotated with @Embeddable; the STREET,
ZIPCODE, and CITY columns are mapped on the USERS table, the owning entity’s table.

 When we talked about property access earlier in this chapter, we mentioned that
embeddable components inherit their access strategy from their owning entity. This
means Hibernate will access the properties of the Address class with the same strategy
as for User properties. This inheritance also affects the placement of mapping annota-
tions in embeddable component classes. The rules are as follows:

 If the owning @Entity of an embedded component is mapped with field access,
either implicitly with @Id on a field or explicitly with @Access(AccessType
.FIELD) on the class, all mapping annotations of the embedded component
class are expected on fields of the component class. Hibernate expects annota-
tions on the fields of the Address class and reads/writes the fields directly at
runtime. Getter and setter methods on Address are optional.

 If the owning @Entity of an embedded component is mapped with property
access, either implicitly with @Id on a getter method or explicitly with
@Access(AccessType.PROPERTY) on the class, all mapping annotations of the
embedded component class are expected on getter methods of the component
class. Hibernate then reads and writes values by calling getter and setter meth-
ods on the embeddable component class.

 If the embedded property of the owning entity class—User#homeAddress in the
last example—is marked with @Access(AccessType.FIELD), Hibernate expects
annotations on the fields of the Address class and access fields at runtime.

 If the embedded property of the owning entity class—User#homeAddress in the
last example—is marked with @Access(AccessType.PROPERTY), Hibernate
expects annotations on getter methods of the Address class and access getter
and setter methods at runtime.

 If @Access annotates the embeddable class itself, Hibernate will use the selected
strategy for reading mapping annotations on the embeddable class and run-
time access.

The Address is @Embeddable;
no annotation is needed here.
Licensed to Thomas Snead <n.ordickan@gmail.com>

94 CHAPTER 5 Mapping value types

H

There’s one more caveat to remember: there’s no elegant way to represent a null ref-
erence to an Address. Consider what would happen if the columns STREET, ZIPCODE,
and CITY were nullable. When Hibernate loads a User without any address informa-
tion, what should be returned by someUser.getHomeAddress()? Hibernate returns a
null in this case. Hibernate also stores a null embedded property as NULL values in all
mapped columns of the component. Consequently, if you store a User with an
“empty” Address (you have an Address instance but all its properties are null), no
Address instance will be returned when you load the User. This can be counterintui-
tive; on the other hand, you probably shouldn’t have nullable columns anyway and
avoid ternary logic.

 You should override the equals() and hashCode() methods of Address and com-
pare instances by value. This isn’t critically important as long as you don’t have to
compare instances: for example, by putting them in a HashSet. We’ll discuss this issue
later, in the context of collections; see section 7.2.1.

 In a more realistic scenario, a user would probably have separate addresses for dif-
ferent purposes. Figure 5.1 showed an additional composition relationship between
User and Address: the billingAddress.

5.2.3 Overriding embedded attributes

The billingAddress is another embedded component property of the User class, so
another Address has to be stored in the USERS table. This creates a mapping conflict:
so far, you only have columns in the schema to store one Address in STREET, ZIPCODE,
and CITY.

 You need additional columns to store another Address for each USERS row. When
you map the billingAddress, override the column names:

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name = "street",
 column = @Column(name = "BILLING_STREET")),
 @AttributeOverride(name = "zipcode",
 column = @Column(name = "BILLING_ZIPCODE", length = 5)),
 @AttributeOverride(name = "city",
 column = @Column(name = "BILLING_CITY"))
 })
 protected Address billingAddress;

 public Address getBillingAddress() {
 return billingAddress;
 }

PATH: /model/src/main/java/org/jpwh/model/simple/User.java

ibernate Feature

Not necessary

NULLable!
Licensed to Thomas Snead <n.ordickan@gmail.com>

95Mapping embeddable components
 public void setBillingAddress(Address billingAddress) {
 this.billingAddress = billingAddress;
 }

 // ...
}

The @Embedded annotation actually isn’t necessary. It’s an alternative to @Embeddable:
mark either the component class or the property in the owning entity class (both
doesn’t hurt but has no advantage). The @Embedded annotation is useful if you want to
map a third-party component class without source and no annotations, but using the
right getter/setter methods (like regular JavaBeans).

 The @AttributeOverrides selectively overrides property mappings of the embed-
ded class; in this example, you override all three properties and provide different col-
umn names. Now you can store two Address instances in the USERS table, each
instance in a different set of columns (check the schema again in figure 5.2).

 Each @AttributeOverride for a component property is “complete”: any JPA or
Hibernate annotation on the overridden property is ignored. This means the @Column
annotations on the Address class are ignored—all BILLING_* columns are NULLable!
(Bean Validation still recognizes the @NotNull annotation on the component prop-
erty, though; Hibernate only overrides persistence annotations.)

 You can further improve reusability of your domain model, and make it more fine-
grained, by nesting embedded components.

5.2.4 Mapping nested embedded components

Let’s consider the Address class and how it encapsulates address details: instead of a
simple city string, you could move this detail into a new City embeddable class. Look
at the changed domain model diagram in figure 5.3. The SQL schema we’re targeting
for the mapping still has only one USERS table, as shown in figure 5.4.

username : String

lastname : String

User

street : String
Address zipcode : String

name : String
country: String

City

firstname : String

ID <<PK>>
USERNAME
FIRSTNAME
LASTNAME
STREET
ZIPCODE
CITY
COUNTRY

<< Table >>
USERS

Component
columns

Figure 5.4 Embedded columns
hold Address and City details.

Figure 5.3 Nested composition of Address and City
Licensed to Thomas Snead <n.ordickan@gmail.com>

96 CHAPTER 5 Mapping value types
An embeddable class can have an embedded property. Address has a city property:

@Embeddable
public class Address {

 @NotNull
 @Column(nullable = false)
 protected String street;

 @NotNull
 @AttributeOverrides(
 @AttributeOverride(
 name = "name",
 column = @Column(name = "CITY", nullable = false)
)
)
 protected City city;

 // ...
}

The embeddable City class has only basic properties:

@Embeddable
public class City {

 @NotNull
 @Column(nullable = false, length = 5)
 protected String zipcode;

 @NotNull
 @Column(nullable = false)
 protected String name;

 @NotNull
 @Column(nullable = false)
 protected String country;

 // ...
}

You could continue this kind of nesting by creating a Country class, for example. All
embedded properties, no matter how deep they are in the composition, are mapped
to columns of the owning entity’s table—here, the USERS table.

 You can declare @AttributeOverrides at any level, as you do for the name property
of the City class, mapping it to the CITY column. This can be achieved with either (as
shown) an @AttributeOverride in Address or an override in the root entity class,
User. Nested properties can be referenced with dot notation: for example, on
User#address, @AttributeOveride(name = "city.name") references the Address
#City#name attribute.

PATH: /model/src/main/java/org/jpwh/model/advanced/Address.java

PATH: /model/src/main/java/org/jpwh/model/advanced/City.java

Override VARCHAR(255).
Licensed to Thomas Snead <n.ordickan@gmail.com>

97Mapping Java and SQL types with converters
 We’ll come back to embedded components later, in section 7.2. You can even map
collections of components or have references from a component to an entity.

 At the beginning of this chapter, we talked about basic properties and how Hiber-
nate maps a JDK type such as java.lang.String, for example, to an appropriate SQL
type. Let’s find out more about this type system and how values are converted at a
lower level.

5.3 Mapping Java and SQL types with converters
Until now, you’ve assumed that Hibernate selects the right SQL type when you map a
java.lang.String property. Nevertheless, what is the correct mapping between the
Java and SQL types, and how can you control it?

5.3.1 Built-in types

Any JPA provider has to support a minimum set of Java-to-SQL type conversions; you
saw this list at the beginning of this chapter, in section 5.1. Hibernate supports all of
these mappings, as well as some additional adapters that aren’t standard but are useful
in practice. First, the Java primitives and their SQL equivalents.

PRIMITIVE AND NUMERIC TYPES

The built-in types shown in table 5.1 map Java primitives, and their wrappers, to
appropriate SQL standard types. We’ve also included some other numeric types.

The names are Hibernate-specific; you’ll need them later when customizing type
mappings.

 You probably noticed that your DBMS product doesn’t support some of the men-
tioned SQL types. These SQL type names are ANSI-standard type names. Most DBMS
vendors ignore this part of the SQL standard, usually because their legacy type systems
predate the standard. But JDBC provides a partial abstraction of vendor-specific data

Table 5.1 Java primitive types that map to SQL standard types

Name Java type ANSI SQL type

integer int, java.lang.Integer INTEGER

long long, java.lang.Long BIGINT

short short, java.lang.Short SMALLINT

float float, java.lang.Float FLOAT

double double, java.lang.Double DOUBLE

byte byte, java.lang.Byte TINYINT

boolean boolean, java.lang.Boolean BOOLEAN

big_decimal java.math.BigDecimal NUMERIC

big_integer java.math.BigInteger NUMERIC
Licensed to Thomas Snead <n.ordickan@gmail.com>

98 CHAPTER 5 Mapping value types
types, allowing Hibernate to work with ANSI-standard types when executing DML state-
ments such as INSERT and UPDATE. For product-specific schema generation, Hibernate
translates from the ANSI-standard type to an appropriate vendor-specific type using
the configured SQL dialect. This means you usually don’t have to worry about SQL
data types if you let Hibernate create the schema for you.

 If you have an existing schema and/or you need to know the native data type for
your DBMS, look at the source of your configured SQL dialect. For example, the
H2Dialect shipping with Hibernate contains this mapping from the ANSI NUMERIC
type to the vendor-specific DECIMAL type: registerColumnType(Types.NUMERIC,
"decimal($p,$s)").

 The NUMERIC SQL type supports decimal precision and scale settings. The default
precision and scale setting, for a BigDecimal property, for example, is NUMERIC(19,
2). To override this for schema generation, apply the @Column annotation on the
property and set its precision and scale parameters.

 Next are types that map to strings in the database.

CHARACTER TYPES

Table 5.2 shows types that map character and string value representations.

The Hibernate type system picks an SQL data type depending on the declared length
of a string value: if your String property is annotated with @Column(length = ...) or
@Length of Bean Validation, Hibernate selects the right SQL data type for the given
string size. This selection also depends on the configured SQL dialect. For example,
for MySQL, a length of up to 65,535 produces a regular VARCHAR(length) column
when the schema is generated by Hibernate. For a length of up to 16,777,215, a
MySQL-specific MEDIUMTEXT data type is produced, and even greater lengths use a
LONGTEXT. The default length of Hibernate for all java.lang.String properties is
255, so without any further mapping, a String property maps to a VARCHAR(255)
column. You can customize this type selection by extending the class of your SQL

Table 5.2 Adapters for character and string values

Name Java type ANSI SQL type

string java.lang.String VARCHAR

character char[], Character[], java.lang.String CHAR

yes_no boolean, java.lang.Boolean CHAR(1), 'Y' or 'N'

true_false boolean, java.lang.Boolean CHAR(1), 'T' or 'F'

class java.lang.Class VARCHAR

locale java.util.Locale VARCHAR

timezone java.util.TimeZone VARCHAR

currency java.util.Currency VARCHAR
Licensed to Thomas Snead <n.ordickan@gmail.com>

99Mapping Java and SQL types with converters
dialect; read the dialect documentation and source code to find out more details for
your DBMS product.

 A database usually enables internationalization of text with a sensible (UTF-8)
default character set for your entire database, or at least whole tables. This is a DBMS-
specific setting. If you need more fine-grained control and want to switch to NVARCHAR,
NCHAR, or NCLOB column types, annotate your property mapping with @org.hibernate
.annotations.Nationalized.

 Also built in are some special converters for legacy databases or DBMSs with limited
type systems, such as Oracle. The Oracle DBMS doesn’t even have a truth-valued data
type, the only data type required by the relational model. Many existing Oracle sche-
mas therefore represent Boolean values with Y/N or T/F characters. Or—and this is
the default in Hibernate’s Oracle dialect—a column of type NUMBER(1,0) is expected
and generated. Again, we refer you to the SQL dialect of your DBMS if you want to
know all mappings from ANSI data type to vendor-specific type.

 Next are types that map to dates and times in the database.

DATE AND TIME TYPES

Table 5.3 lists types associated with dates, times, and timestamps.

In your domain model, you may choose to represent date and time data as either
java.util.Date, java.util.Calendar, or the subclasses of java.util.Date defined
in the java.sql package. This is a matter of taste, and we leave the decision to you—

Table 5.3 Date and time types

Name Java type ANSI SQL type

date java.util.Date, java.sql.Date DATE

time java.util.Date, java.sql.Time TIME

timestamp java.util.Date, java.sql.Timestamp TIMESTAMP

calendar java.util.Calendar TIMESTAMP

calendar_date java.util.Calendar DATE

duration java.time.Duration BIGINT

instant java.time.Instant TIMESTAMP

localdatetime java.time.LocalDateTime TIMESTAMP

localdate java.time.LocalDate DATE

localtime java.time.LocalTime TIME

offsetdatetime java.time.OffsetDateTime TIMESTAMP

offsettime java.time.OffsetTime TIME

zoneddatetime java.time.ZonedDateTime TIMESTAMP
Licensed to Thomas Snead <n.ordickan@gmail.com>

100 CHAPTER 5 Mapping value types
make sure you’re consistent. You might not want to bind the domain model to types
from the JDBC package.

 You can also use the Java 8 API in the java.time package. Note that this is Hibernate-
specific and not standardized in JPA 2.1.

 Hibernate’s behavior for java.util.Date properties might surprise you at first:
when you store a java.util.Date, Hibernate won’t return a java.util.Date after
loading. It will return a java.sql.Date, a java.sql.Time, or a java.sql.Timestamp,
depending on whether you mapped the property with TemporalType.DATE, TemporalType
.TIME, or TemporalType.TIMESTAMP.

 Hibernate has to use the JDBC subclass when loading data from the database
because the database types have higher accuracy than java.util.Date. A
java.util.Date has millisecond accuracy, but a java.sql.Timestamp includes nano-
second information that may be present in the database. Hibernate won’t cut off this
information to fit the value into java.util.Date. This Hibernate behavior may lead
to problems if you try to compare java.util.Date values with the equals() method;
it’s not symmetric with the java.sql.Timestamp subclass’s equals() method.

 The solution is simple, and not even specific to Hibernate: don’t call
aDate.equals(bDate). You should always compare dates and times by comparing
Unix time milliseconds (assuming you don’t care about the nanoseconds):
aDate.getTime() > bDate.getTime(), for example, is true if aDate is a later time
than bDate. Be careful: collections such as HashSet call the equals() method as well.
Don’t mix java.util.Date and java.sql.Date|Time|Timestamp values in such a col-
lection. You won’t have this kind of problem with a Calendar property. If you store a
Calendar value, Hibernate will always return a Calendar value, created with Calendar
.getInstance() (the actual type depends on locale and time zone).

 Alternatively, you can write your own converter, as shown later in this chapter, and
transform any instance of a java.sql temporal type, given to you by Hibernate, into a
plain java.util.Date instance. A custom converter is also a good starting point if, for
example, a Calendar instance should have a non-default time zone after loading the
value from the database.

 Next are types that map to binary data and large values in the database.

BINARY AND LARGE VALUE TYPES

Table 5.4 lists types for handling binary data and large values. Note that only binary is
supported as the type of an identifier property.

 First, consider how Hibernate represents your potentially large value, as binary
or text.

Table 5.4 Binary and large value types

Name Java type ANSI SQL type

binary byte[], java.lang.Byte[] VARBINARY

text java.lang.String CLOB
Licensed to Thomas Snead <n.ordickan@gmail.com>

101Mapping Java and SQL types with converters
If a property in your persistent Java class is of type byte[], Hibernate maps it to a VAR-
BINARY column. The real SQL data type depends on the dialect; for example, in Post-
greSQL, the data type is BYTEA, and in Oracle DBMS, it’s RAW. In some dialects, the
length set with @Column also has an effect on the selected native type: for example,
LONG RAW for length of 2000 and greater in Oracle.

 A java.lang.String property is mapped to an SQL VARCHAR column, and the
same for char[] and Character[]. As we’ve discussed, some dialects register different
native types depending on declared length.

 In both cases, Hibernate initializes the property value right away, when the entity
instance that holds the property variable is loaded. This is inconvenient when you have
to deal with potentially large values, so you usually want to override this default map-
ping. The JPA specification has a convenient shortcut annotation for this purpose, @Lob:

@Entity
public class Item {

 @Lob
 protected byte[] image;

 @Lob
 protected String description;

 // ...
}

This maps the byte[] to an SQL BLOB data type and the String to a CLOB. Unfortu-
nately, you still don’t get lazy loading with this design. Hibernate would have to inter-
cept field access and, for example, load the bytes of the image when you call
someItem.getImage(). This approach requires bytecode instrumentation of your
classes after compilation, for the injection of extra code. We’ll discuss lazy loading
through bytecode instrumentation and interception in section 12.1.3.

 Alternatively, you can switch the type of property in your Java class. JDBC supports
locator objects (LOBs) directly. If your Java property is java.sql.Clob or java
.sql.Blob, you get lazy loading without bytecode instrumentation:

@Entity
public class Item {

 @Lob
 protected java.sql.Blob imageBlob;

clob java.sql.Clob CLOB

blob java.sql.Blob BLOB

serializable java.io.Serializable VARBINARY

Table 5.4 Binary and large value types (continued)

Name Java type ANSI SQL type
Licensed to Thomas Snead <n.ordickan@gmail.com>

102 CHAPTER 5 Mapping value types

Yo
st

the
direct

H

 @Lob
 protected java.sql.Clob description;

 // ...
}

These JDBC classes include behavior to load values on demand. When the owning
entity instance is loaded, the property value is a placeholder, and the real value isn’t
immediately materialized. Once you access the property, within the same transaction,
the value is materialized or even streamed directly (to the client) without consuming
temporary memory:

Item item = em.find(Item.class, ITEM_ID);

InputStream imageDataStream = item.getImageBlob().getBinaryStream();

ByteArrayOutputStream outStream = new ByteArrayOutputStream();
StreamUtils.copy(imageDataStream, outStream);
byte[] imageBytes = outStream.toByteArray();

The downside is that your domain model is then bound to JDBC; in unit tests, you
can’t access LOB properties without a database connection.

To create and set a Blob or Clob value, Hibernate offers some convenience methods.
This example reads byteLength bytes from an InputStream directly into the database,
without consuming temporary memory:

Session session = em.unwrap(Session.class);
Blob blob = session.getLobHelper()
 .createBlob(imageInputStream, byteLength);

someItem.setImageBlob(blob);
em.persist(someItem);

Finally, Hibernate provides fallback serialization for any property type that is
java.io.Serializable. This mapping converts the value of the property to a byte
stream stored in a VARBINARY column. Serialization and deserialization occur when

PATH: /examples/src/test/java/org/jpwh/test/advanced/LazyProperties.java

What does BLOB/CLOB mean?
Jim Starkey, who came up with the idea of LOBs, says that the marketing department
created the terms BLOB and CLOB and that they don’t mean anything. You can inter-
pret them any way you like. We prefer locator objects, as a hint that they’re placehold-
ers that help us locate and access the real thing.

u can
ream
bytes
ly … … or materialize

them into memory.

ibernate Feature

Need the native
Hibernate API

Need to know the number of bytes
you want to read from the stream
Licensed to Thomas Snead <n.ordickan@gmail.com>

103Mapping Java and SQL types with converters

H

the owning entity instance is stored and loaded. Naturally, you should use this strategy
with extreme caution, because data lives longer than applications. One day, nobody
will know what those bytes in your database mean. Serialization is sometimes useful
for temporary data, such as user preferences, login session data, and so on.

 Hibernate will pick the right type adapter depending on the Java type of your
property. If you don’t like the default mapping, read on to override it.

SELECTING A TYPE ADAPTER

You have seen many adapters and their Hibernate names in the previous sections. Use
the name when you override Hibernate’s default type selection, and explicitly select a
particular adapter:

@Entity
public class Item {

 @org.hibernate.annotations.Type(type = "yes_no")
 protected boolean verified = false;
}

Instead of BIT, this boolean now maps to a CHAR column with values Y or N.
 You can also override an adapter globally in the Hibernate boot configuration with

a custom user type, which you’ll learn how to write later in this chapter:

metaBuilder.applyBasicType(new MyUserType(), new String[]{"date"});

This setting will override the built-in date type adapter and delegate value conversion
for java.util.Date properties to your custom implementation.

 We consider this extensible type system one of Hibernate’s core features and an
important aspect that makes it so flexible. Next, we explore the type system and JPA
custom converters in more detail.

5.3.2 Creating custom JPA converters

A new requirement for the online auction system is multiple currencies. Rolling out
this kind of change can be complex. You have to modify the database schema, you
may have to migrate existing data from the old to the new schema, and you have to
update all applications that access the database. In this section, we show you how JPA
converters and the extensible Hibernate type system can assist you in this process, pro-
viding an additional, flexible buffer between your application and the database.

 To support multiple currencies, let’s introduce a new class in the CaveatEmptor
domain model: MonetaryAmount, shown in the following listing.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

104 CHAPTER 5 Mapping value types

public class MonetaryAmount implements Serializable {

 protected final BigDecimal value;
 protected final Currency currency;

 public MonetaryAmount(BigDecimal value, Currency currency) {
 this.value = value;
 this.currency = currency;
 }

 public BigDecimal getValue() {
 return value;
 }

 public Currency getCurrency() {
 return currency;
 }

 public boolean equals(Object o) {

 if (this == o) return true;
 if (!(o instanceof MonetaryAmount)) return false;

 final MonetaryAmount monetaryAmount = (MonetaryAmount) o;

 if (!value.equals(monetaryAmount.value)) return false;
 if (!currency.equals(monetaryAmount.currency)) return false;

 return true;
 }

 public int hashCode() {
 int result;
 result = value.hashCode();
 result = 29 * result + currency.hashCode();
 return result;
 }

 public String toString() {
 return getValue() + " " + getCurrency();
 }

 public static MonetaryAmount fromString(String s) {
 String[] split = s.split(" ");
 return new MonetaryAmount(
 new BigDecimal(split[0]),
 Currency.getInstance(split[1])
);
 }
}

B This value-typed class should be java.io.Serializable: when Hibernate stores entity
instance data in the shared second-level cache (see section 20.2), it disassembles the
entity’s state. If an entity has a MonetaryAmount property, the serialized representation

Listing 5.7 Immutable MonetaryAmount value-type class

PATH: /model/src/main/java/org/jpwh/model/advanced/MonetaryAmount.java

Value-typed class is
java.io.SerializableB

No special constructor neededC

Implements equals()
and hashcode()

D

Implements equals()
and hashcode()

D

Creates instance from
String

E

Licensed to Thomas Snead <n.ordickan@gmail.com>

105Mapping Java and SQL types with converters
of the property value is stored in the second-level cache region. When entity data is
retrieved from the cache region, the property value is deserialized and reassembled.

C The class doesn’t need a special constructor. You can make it immutable, even with
final fields, because your code will be the only place an instance is created.

D You should implement the equals() and hashCode() methods and compare mone-
tary amounts “by value.”

E You need a String representation of a monetary amount. Implement the toString()
method and a static method to create an instance from a String.

Next, you update other parts of the auction domain model and use MonetaryAmount
for all properties involving money, such as Item#buyNowPrice and Bid#amount.

CONVERTING BASIC PROPERTY VALUES

As is often the case, the database folks can’t implement multiple currencies right away
and need more time. All they can provide quickly is a column data type change, in the
database schema. They suggest that you store the BUYNOWPRICE in the ITEM table in a
VARCHAR column and that you append the currency code of the monetary amount to
its string value. You store, for example, the value 11.23 USD or 99 EUR.

 You have to convert an instance of MonetaryAmount to such a String representation
when storing data. When loading data, you convert the String back into a Monetary-
Amount.

 The simplest solution is a javax.persistence.AttributeConverter, as shown in
the next listing, a standardized extension point in JPA.

@Converter(autoApply = true)
public class MonetaryAmountConverter
 implements AttributeConverter<MonetaryAmount, String> {

 @Override
 public String convertToDatabaseColumn(MonetaryAmount monetaryAmount) {
 return monetaryAmount.toString();
 }

 @Override
 public MonetaryAmount convertToEntityAttribute(String s) {
 return MonetaryAmount.fromString(s);
 }
}

A converter has to implement the AttributeConverter interface; the two type argu-
ments are the type of the Java property and the type in the database schema. The Java
type is MonetaryAmount, and the database type is String, which maps, as usual, to an
SQL VARCHAR. You must annotate the class with @Converter or declare it as such in the
orm.xml metadata. With autoApply enabled, any MonetaryAmount property in your
domain model, be it of an entity or an embeddable class, without further mapping will

Listing 5.8 Converting between strings and MonetaryValue

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountConverter.java

Default for
MonetaryAmount
properties
Licensed to Thomas Snead <n.ordickan@gmail.com>

106 CHAPTER 5 Mapping value types
now be handled by this converter automatically. (Don’t be distracted by the convert-
ToEntityAttribute() method of the AttributeConverter interface; it’s not the best
name.)

 An example of such a MonetaryAmount property in the domain model is
Item#buyNowPrice:

@Entity
public class Item {

 @NotNull
 @Convert(
 converter = MonetaryAmountConverter.class,
 disableConversion = false)
 @Column(name = "PRICE", length = 63)
 protected MonetaryAmount buyNowPrice;

 // ...
}

The @Convert annotation is optional: apply it to override or disable a converter for a
particular property. @Column renames the mapped database column PRICE; the
default is BUYNOWPRICE. For automatic schema generation, define it as VARCHAR with a
length of 63 characters.

 Later, when your DBA upgrades the database schema and offers you separate col-
umns for the monetary amount value and currency, you only have to change your
application in a few places. Drop the MonetaryAmountConverter from your project
and make MonetaryAmount an @Embeddable; it then maps automatically to two data-
base columns. It’s easy to selectively enable and disable converters, too, if some tables
in the schema haven’t been upgraded.

 The converter you just wrote is for MonetaryAmount, a new class in the domain
model. Converters aren’t limited to custom classes: you can even override Hibernate’s
built-in type adapters. For example, you could create a custom converter for some or
even all java.util.Date properties in your domain model.

 You can apply converters to properties of entity classes, like Item#buyNowPrice in
the last example. You can also apply them to properties of embeddable classes.

CONVERTING PROPERTIES OF COMPONENTS

We’ve been making the case for fine-grained
domain models in this chapter. Earlier, you
isolated the address information of the User
and mapped the Address embeddable class.
Let’s continue this process and introduce
inheritance, with an abstract Zipcode class
as shown in figure 5.5.

PATH: /model/src/main/java/org/jpwh/model/advanced/converter/Item.java

Optional: autoApply
is enabled.

street : String
city : String

Address

value : String
Zipcode

GermanZipcode SwissZipcode

Figure 5.5 The abstract Zipcode class has
two concrete subclasses.
Licensed to Thomas Snead <n.ordickan@gmail.com>

107Mapping Java and SQL types with converters
 The Zipcode class is trivial, but don’t forget to implement equality by value:

abstract public class Zipcode {

 protected String value;

 public Zipcode(String value) {
 this.value = value;
 }

 public String getValue() {
 return value;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Zipcode zipcode = (Zipcode) o;
 return value.equals(zipcode.value);
 }

 @Override
 public int hashCode() {
 return value.hashCode();
 }
}

You can now encapsulate domain subclasses, the difference between German and
Swiss postal codes, and any processing:

public class GermanZipcode extends Zipcode {

 public GermanZipcode(String value) {
 super(value);
 }
}

You haven’t implemented any special processing in the subclass. Let’s start with the
most obvious difference: German zip codes are five numbers long, Swiss are four. A
custom converter will take care of this:

@Converter
public class ZipcodeConverter
 implements AttributeConverter<Zipcode, String> {

 @Override
 public String convertToDatabaseColumn(Zipcode attribute) {

PATH: /model/src/main/java/org/jpwh/model/advanced/converter/Zipcode.java

PATH: /model/src/main/java/org/jpwh/model/advanced/converter/
GermanZipcode.java

PATH: /model/src/main/java/org/jpwh/converter/ZipcodeConverter.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

108 CHAPTER 5 Mapping value types
 return attribute.getValue();
 }

 @Override
 public Zipcode convertToEntityAttribute(String s) {
 if (s.length() == 5)
 return new GermanZipcode(s);
 else if (s.length() == 4)
 return new SwissZipcode(s);

 throw new IllegalArgumentException(
 "Unsupported zipcode in database: " + s
);
 }
}

Hibernate calls the convertToDatabaseColumn() method of this converter when stor-
ing a property value; you return a String representation. The column in the schema
is VARCHAR. When loading a value, you examine its length and create either a German-
Zipcode or SwissZipcode instance. This is a custom type discrimination routine; you
can pick the Java type of the given value.

 Now apply this converter on some Zipcode properties—for example, the embed-
ded homeAddress of a User:

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 @Convert(
 converter = ZipcodeConverter.class,
 attributeName = "zipcode"
)
 protected Address homeAddress;

 // ...
}

The attributeName declares the zipcode attribute of the embeddable Address class.
This setting supports a dot syntax for the attribute path; if zipcode isn’t a property of
the Address class but is a property of a nested embeddable City class (as shown ear-
lier in this chapter), reference it with city.zipcode, its nested path.

 If several @Convert annotations are required on a single embedded property, to
convert several attributes of the Address, for example, you can group them within an
@Converts annotation. You can also apply converters to values of collections and
maps, if their values and/or keys are of basic or embeddable type. For example, you
can add the @Convert annotation on a persistent Set<Zipcode>. We’ll show you how
to map persistent collections later, with @ElementCollection, in chapter 7.

 For persistent maps, the attributeName option of the @Convert annotation has
some special syntax:

PATH: /model/src/main/java/org/jpwh/model/advanced/converter/User.java

If you get to this point,
consider cleaning up
your database … or
create an
InvalidZipCode subclass
and return it here.

Group multiple
attribute conversions
with @Converts

Or "city.zipcode" for
nested embeddables
Licensed to Thomas Snead <n.ordickan@gmail.com>

109Mapping Java and SQL types with converters

H

 On a persistent Map<Address, String>, you can apply a converter for the
zipcode property of each map key with the attribute name key.zipcode.

 On a persistent Map<String, Address>, you can apply a converter for the
zipcode property of each map value with the attribute name value.zipcode.

 On a persistent Map<Zipcode, String>, you can apply a converter for the key
of each map entry with the attribute name key.

 On a persistent Map<String, Zipcode>, you can apply a converter for the value
of each map entry by not setting any attributeName.

As before, the attribute name can be a dot-separated path if your embeddable classes
are nested; you can write key.city.zipcode to reference the zipcode property of the
City class, in a composition with the Address class.

 Some limitations of the JPA converters are as follows:

 You can’t apply them to identifier or version properties of an entity.
 You shouldn’t apply a converter on a property mapped with @Enumerated or

@Temporal, because these annotations already declare what kind of conversion
has to occur. If you want to apply a custom converter for enums or date/time
properties, don’t annotate them with @Enumerated or @Temporal.

 You can apply a converter to a property mapping in an hbm.xml file, but you
have to prefix the name: type="converter:qualified.ConverterName".

Let’s get back to multiple currency support in CaveatEmptor. The database adminis-
trators changed the schema again and asked you to update the application.

5.3.3 Extending Hibernate with UserTypes

Finally, you’ve added new columns to the database schema to support multiple cur-
rencies. The ITEM table now has a BUYNOWPRICE_AMOUNT and a separate column for the
currency of the amount, BUYNOWPRICE_CURRENCY. There are also INITIALPRICE_
AMOUNT and INITIALPRICE_CURRENCY columns. You have to map these columns to the
MonetaryAmount properties of the Item class, buyNowPrice and initialPrice.

 Ideally, you don’t want to change the domain model; the properties already use
the MonetaryAmount class. Unfortunately, the standardized JPA converters don’t sup-
port transformation of values from/to multiple columns. Another limitation of JPA
converters is integration with the query engine. You can’t write the following query:
select i from Item i where i.buyNowPrice.amount > 100. Thanks to the converter
from the previous section, Hibernate knows how to convert a MonetaryAmount to and
from a string. It doesn’t know that MonetaryAmount has an amount attribute, so it can’t
parse such a query.

 A simple solution would be to map MonetaryAmount as @Embeddable, as discussed
earlier in this chapter for the Address class. Each property of MonetaryAmount—
amount and currency—maps to its respective database column.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

110 CHAPTER 5 Mapping value types
 Your database admins, however, add a twist to their requirements: because other,
old applications also access the database, you have to convert each amount to a target
currency before storing it in the database. For example, Item#buyNowPrice should be
stored in US dollars, and Item#initialPrice should be stored in Euros. (If this exam-
ple seems far-fetched, we can assure you that you’ll see worse in the real world. Evolu-
tion of a shared database schema can be costly but is of course necessary because data
always lives longer than applications.) Hibernate offers a native converter API: an
extension point that allows much more detailed and low-level customization access.

THE EXTENSION POINTS

Hibernate’s extension interfaces for its type system can found in the org.hibernate
.usertype package. The following interfaces are available:

 UserType—You can transform values by interacting with the plain JDBC
PreparedStatement (when storing data) and ResultSet (when loading data).
By implementing this interface, you can also control how Hibernate caches and
dirty-checks values. The adapter for MonetaryAmount has to implement this
interface.

 CompositeUserType—This extends UserType, providing Hibernate with more
details about your adapted class. You can tell Hibernate that the Monetary-
Amount component has two properties: amount and currency. You can then ref-
erence these properties in queries with dot notation: for example, select
avg(i.buyNowPrice.amount) from Item i.

 ParameterizedUserType—This provides settings to your adapter in mappings.
You have to implement this interface for the MonetaryAmount conversion,
because in some mappings you want to convert the amount to US dollars and in
other mappings to Euros. You only have to write a single adapter and can cus-
tomize its behavior when mapping a property.

 DynamicParameterizedType—This more powerful settings API gives you access
to dynamic information in the adapter, such as the mapped column and table
names. You might as well use this instead of ParameterizedUserType; there is
no additional cost or complexity.

 EnhancedUserType—This is an optional interface for adapters of identifier
properties and discriminators. Unlike JPA converters, a UserType in Hibernate
can be an adapter for any kind of entity property. Because MonetaryAmount
won’t be the type of an identifier property or discriminator, you won’t need it.

 UserVersionType—This is an optional interface for adapters of version properties.
 UserCollectionType—This rarely needed interface is used to implement cus-

tom collections. You have to implement it to persist a non-JDK collection and
preserve additional semantics.

The custom type adapter for MonetaryAmount will implement several of these
interfaces.
Licensed to Thomas Snead <n.ordickan@gmail.com>

111Mapping Java and SQL types with converters
IMPLEMENTING THE USERTYPE

Because MonetaryAmountUserType is a large class, we examine it in several steps.
These are the interfaces you implement:

public class MonetaryAmountUserType
 implements CompositeUserType, DynamicParameterizedType {

 // ...
}

First you implement DynamicParameterizedType. You need to configure the target
currency for the conversion by examining a mapping parameter:

protected Currency convertTo;

public void setParameterValues(Properties parameters) {

 ParameterType parameterType =
 (ParameterType) parameters.get(PARAMETER_TYPE);
 String[] columns = parameterType.getColumns();
 String table = parameterType.getTable();
 Annotation[] annotations = parameterType.getAnnotationsMethod();

 String convertToParameter = parameters.getProperty("convertTo");
 this.convertTo = Currency.getInstance(
 convertToParameter != null ? convertToParameter : "USD"
);
}

B You can access some dynamic parameters here, such as the name of the mapped col-
umns, the mapped (entity) table, or even the annotations on the field/getter of the
mapped property. You don’t need them in this example, though.

C You only use the convertTo parameter to determine the target currency when saving a
value into the database. If the parameter hasn’t been set, default to US dollars.

Next, here’s some scaffolding code that any UserType must implement:

public Class returnedClass() {
 return MonetaryAmount.class;
}

public boolean isMutable() {
 return false;
}

public Object deepCopy(Object value) {
 return value;
}

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountUserType.java

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountUserType.java

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountUserType.java

Accesses
dynamic
parameters

B

Determines target currency C

Adapts classB

Enables optimizationsC

Copies valueD
Licensed to Thomas Snead <n.ordickan@gmail.com>

112 CHAPTER 5 Mapping value types
public Serializable disassemble(Object value,
 SessionImplementor session) {
 return value.toString();
}

public Object assemble(Serializable cached,
 SessionImplementor session, Object owner) {
 return MonetaryAmount.fromString((String) cached);
}

public Object replace(Object original, Object target,
 SessionImplementor session, Object owner) {
 return original;
}

public boolean equals(Object x, Object y) {
 return x == y || !(x == null || y == null) && x.equals(y);
}

public int hashCode(Object x) {
 return x.hashCode();
}

B The method returnedClass adapts the given class, in this case MonetaryAmount.

C Hibernate can enable some optimizations if it knows that MonetaryAmount is immu-
table.

D If Hibernate has to make a copy of the value, it calls this method. For simple immuta-
ble classes like MonetaryAmount, you can return the given instance.

E Hibernate calls disassemble when it stores a value in the global shared second-level
cache. You need to return a Serializable representation. For MonetaryAmount, a
String representation is an easy solution. Or, because MonetaryAmount is Serializable,
you could return it directly.

F Hibernate calls this method when it reads the serialized representation from the
global shared second-level cache. You create a MonetaryAmount instance from the
String representation. Or, if you stored a serialized MonetaryAmount, you could
return it directly.

G This is called during EntityManager#merge() operations. You need to return a copy
of the original. Or, if your value type is immutable, like MonetaryAmount, you can
return the original.

H Hibernate uses value equality to determine whether the value was changed and the
database needs to be updated. You rely on the equality routine you already wrote on
the MonetaryAmount class.

Returns
Serializable
representation

E

Creates
MonetaryAmount
instance

F

Returns copy
of original

G

Determines whether
value has changed H
Licensed to Thomas Snead <n.ordickan@gmail.com>

113Mapping Java and SQL types with converters
The real work of the adapter happens when values are loaded and stored, as imple-
mented with the following methods:

public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 SessionImplementor session,
 Object owner) throws SQLException {

 BigDecimal amount = resultSet.getBigDecimal(names[0]);
 if (resultSet.wasNull())
 return null;
 Currency currency =
 Currency.getInstance(resultSet.getString(names[1]));
 return new MonetaryAmount(amount, currency);
}

public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index,
 SessionImplementor session) throws SQLException {

 if (value == null) {
 statement.setNull(
 index,
 StandardBasicTypes.BIG_DECIMAL.sqlType());
 statement.setNull(
 index + 1,
 StandardBasicTypes.CURRENCY.sqlType());
 } else {
 MonetaryAmount amount = (MonetaryAmount) value;
 MonetaryAmount dbAmount = convert(amount, convertTo);
 statement.setBigDecimal(index, dbAmount.getValue());
 statement.setString(index + 1, convertTo.getCurrencyCode());
 }
}

protected MonetaryAmount convert(MonetaryAmount amount,
 Currency toCurrency) {
 return new MonetaryAmount(
 amount.getValue().multiply(new BigDecimal(2)),
 toCurrency
);
}

B This is called to read the ResultSet when a MonetaryAmount value has to be retrieved
from the database. You take the amount and currency values as given in the query
result and create a new instance of MonetaryAmount.

C This is called when a MonetaryAmount value has to be stored in the database. You con-
vert the value to the target currency and then set the amount and currency on the pro-
vided PreparedStatement (unless MonetaryAmount was null, in which case you call
setNull() to prepare the statement).

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountUserType.java

Reads ResultSetB

Stores
MonetaryAmount

C

When
saving,
convert
to target
currency

Converts
currency

D

Licensed to Thomas Snead <n.ordickan@gmail.com>

114 CHAPTER 5 Mapping value types
D Here you can implement whatever currency conversion routine you need. For the
sake of the example, you double the value so you can easily test whether conversion
was successful. You’ll have to replace this code with a real currency converter in a real
application. It’s not a method of the Hibernate UserType API.

Finally, following are the methods required by the CompositeUserType interface, pro-
viding the details of the MonetaryAmount properties so Hibernate can integrate the
class with the query engine:

public String[] getPropertyNames() {
 return new String[]{"value", "currency"};
}

public Type[] getPropertyTypes() {
 return new Type[]{
 StandardBasicTypes.BIG_DECIMAL,
 StandardBasicTypes.CURRENCY
 };
}

public Object getPropertyValue(Object component,
 int property) {
 MonetaryAmount monetaryAmount = (MonetaryAmount) component;
 if (property == 0)
 return monetaryAmount.getValue();
 else
 return monetaryAmount.getCurrency();
}

public void setPropertyValue(Object component,
 int property,
 Object value) {
 throw new UnsupportedOperationException(
 "MonetaryAmount is immutable"
);
}

The MonetaryAmountUserType is now complete, and you can already use it in map-
pings with its fully qualified class name in @org.hibernate.annotations.Type, as
shown in the section “Selecting a type adapter.” This annotation also supports param-
eters, so you can set the convertTo argument to the target currency.

 But we recommend that you create type definitions, bundling your adapter with
some parameters.

USING TYPE DEFINITIONS

You need an adapter that converts to US dollars and an adapter that converts to
Euros. If you declare these parameters once as a type definition, you don’t have to
repeat them in property mappings. A good location for type definitions is package
metadata, in a package-info.java file:

PATH: /model/src/main/java/org/jpwh/converter/MonetaryAmountUserType.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

115Mapping Java and SQL types with converters

@org.hibernate.annotations.TypeDefs({
 @org.hibernate.annotations.TypeDef(
 name = "monetary_amount_usd",
 typeClass = MonetaryAmountUserType.class,
 parameters = {@Parameter(name = "convertTo", value = "USD")}
),
 @org.hibernate.annotations.TypeDef(
 name = "monetary_amount_eur",
 typeClass = MonetaryAmountUserType.class,
 parameters = {@Parameter(name = "convertTo", value = "EUR")}
)
})
package org.jpwh.converter;

import org.hibernate.annotations.Parameter;

You’re now ready to use the adapters in mappings, using the names
monetary_amount_usd and monetary_amount_eur.

 Let’s map the buyNowPrice and initialPrice of Item:

@Entity
public class Item {

 @NotNull
 @org.hibernate.annotations.Type(
 type = "monetary_amount_usd"
)
 @org.hibernate.annotations.Columns(columns = {
 @Column(name = "BUYNOWPRICE_AMOUNT"),
 @Column(name = "BUYNOWPRICE_CURRENCY", length = 3)
 })
 protected MonetaryAmount buyNowPrice;

 @NotNull
 @org.hibernate.annotations.Type(
 type = "monetary_amount_eur"
)
 @org.hibernate.annotations.Columns(columns = {
 @Column(name = "INITIALPRICE_AMOUNT"),
 @Column(name = "INITIALPRICE_CURRENCY", length = 3)
 })
 protected MonetaryAmount initialPrice;

 // ...
}

If UserType transforms values for only a single column, you don’t need an @Column
annotation. MonetaryAmountUserType, however, accesses two columns, so you need to
explicitly declare two columns in the property mapping. Because JPA doesn’t support
multiple @Column annotations on a single property, you have to group them with the

PATH: /model/src/main/java/org/jpwh/converter/package-info.java

PATH: /model/src/main/java/org/jpwh/model/advanced/usertype/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

116 CHAPTER 5 Mapping value types
proprietary @org.hibernate.annotations.Columns annotation. Note that order of
the annotations is now important! Re-check the code for MonetaryAmountUserType;
many operations rely on indexed access of arrays. The order when accessing
PreparedStatement or ResultSet is the same as that of the declared columns in the
mapping. Also note that the number of columns isn’t relevant for your choice of
UserType versus CompositeUserType—only your desire to expose value type proper-
ties for queries.

 With MonetaryAmountUserType, you’ve extended the buffer between the Java
domain model and the SQL database schema. Both representations are now more
robust to changes, and you can handle even rather eccentric requirements without
modifying the essence of the domain model classes.

5.4 Summary
 We discussed the mapping of basic and embedded properties of an entity class.
 You saw how to override basic mappings, how to change the name of a mapped

column, and how to use derived, default, temporal, and enumeration properties.
 We covered embeddable component classes and how you can create fine-

grained domain models.
 You can map the properties of several Java classes in a composition, such as

Address and City, to one entity table.
 We looked at how Hibernate selects Java to SQL type converters, and what types

are built into Hibernate.
 You wrote a custom type converter for the MonetaryAmount class with the stan-

dard JPA extension interfaces, and then a low-level adapter with the native
Hibernate UserType API.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Mapping inheritance
We deliberately haven’t talked much about inheritance mapping so far. Mapping a
hierarchy of classes to tables can be a complex issue, and we present various strate-
gies in this chapter.

 A basic strategy for mapping classes to database tables might be “one table for
every entity persistent class.” This approach sounds simple enough and indeed
works well, until we encounter inheritance.

 Inheritance is such a visible structural mismatch between the object-oriented
and relational worlds because object-oriented systems model both is a and has a
relationships. SQL-based models provide only has a relationships; SQL database
management systems don’t support type inheritance—and even when it’s available,
it’s usually proprietary or incomplete.

 There are four different strategies for representing an inheritance hierarchy:

 Use one table per concrete class and default runtime polymorphic behavior.
 Use one table per concrete class but discard polymorphism and inheritance

relationships completely from the SQL schema. Use SQL UNION queries for
runtime polymorphic behavior.

In this chapter
 Inheritance-mapping strategies

 Polymorphic associations
117

Licensed to Thomas Snead <n.ordickan@gmail.com>

118 CHAPTER 6 Mapping inheritance
 Use one table per class hierarchy: enable polymorphism by denormalizing
the SQL schema and relying on row-based discrimination to determine super/
subtypes.

 Use one table per subclass: represent is a (inheritance) relationships as has a
(foreign key) relationships, and use SQL JOIN operations.

This chapter takes a top-down approach, assuming that you’re starting with a domain
model and trying to derive a new SQL schema. The mapping strategies described are
just as relevant if you’re working bottom-up, starting with existing database tables. We
show some tricks along the way to help you deal with imperfect table layouts.

6.1 Table per concrete class with implicit polymorphism
Suppose we stick with the simplest approach suggested: exactly one table for each con-
crete class. You can map all properties of a class, including inherited properties, to col-
umns of this table, as shown in figure 6.1.

If you’re relying on this implicit polymorphism, you map concrete classes with
@Entity, as usual. By default, properties of the superclass are ignored and not persis-
tent! You have to annotate the superclass with @MappedSuperclass to enable embed-
ding of its properties in the concrete subclass tables; see the following listing.

@MappedSuperclass
public abstract class BillingDetails {

 @NotNull
 protected String owner;

 // ...
}

Listing 6.1 Mapping BillingDetails (abstract superclass) with implicit polymorphism

PATH: /model/src/main/java/org/jpwh/model/inheritance/mappedsuperclass/
BillingDetails.java

ID << PK >>
CC_OWNER
CARDNUMBER
EXPMONTH
EXPYEAR

<< Table >>
CREDITCARD

owner : String
BillingDetails

id : Long
cardNumber : String
expMonth : String
expYear : String

CreditCard
id : Long
account : String
bankname : String
swift : String

BankAccount

ID << PK >>
OWNER
ACCOUNT
BANKNAME
SWIFT

<< Table >>
BANKACCOUNT

Figure 6.1 Mapping all concrete classes to an independent table
Licensed to Thomas Snead <n.ordickan@gmail.com>

119Table per concrete class with implicit polymorphism
Now map the concrete subclasses.

@Entity
@AttributeOverride(
 name = "owner",
 column = @Column(name = "CC_OWNER", nullable = false))
public class CreditCard extends BillingDetails {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull
 protected String cardNumber;

 @NotNull
 protected String expMonth;

 @NotNull
 protected String expYear;

 // ...
}

The mapping for the BankAccount class looks the same, so we won’t show it here.
 You can override column mappings from the superclass in a subclass with the

@AttributeOverride annotation or several with @AttributeOverrides. The previous
example renamed the OWNER column to CC_OWNER in the CREDITCARD table.

 You could declare the identifier property in the superclass, with a shared column
name and generator strategy for all subclasses, so you wouldn’t have to repeat it. We
haven’t done this in the examples to show you that it’s optional.

 The main problem with implicit inheritance mapping is that it doesn’t support
polymorphic associations very well. In the database, you usually represent associations
as foreign key relationships. In the schema shown in figure 6.1, if the subclasses are all
mapped to different tables, a polymorphic association to their superclass (abstract
BillingDetails) can’t be represented as a simple foreign key relationship. You can’t
have another entity mapped with a foreign key “referencing BILLINGDETAILS”—there
is no such table. This would be problematic in the domain model, because Billing-
Details is associated with User; both the CREDITCARD and BANKACCOUNT tables would
need a foreign key reference to the USERS table. None of these issues can be easily
resolved, so you should consider an alternative mapping strategy.

 Polymorphic queries that return instances of all classes that match the interface of
the queried class are also problematic. Hibernate must execute a query against the
superclass as several SQL SELECTs, one for each concrete subclass. The JPA query
select bd from BillingDetails bd requires two SQL statements:

Listing 6.2 Mapping CreditCard (concrete subclass)

PATH: /model/src/main/java/org/jpwh/model/inheritance/mappedsuperclass/
CreditCard.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

120 CHAPTER 6 Mapping inheritance
select
 ID, OWNER, ACCOUNT, BANKNAME, SWIFT
from
 BANKACCOUNT
select
 ID, CC_OWNER, CARDNUMBER, EXPMONTH, EXPYEAR
from
 CREDITCARD

Hibernate uses a separate SQL query for each concrete subclass. On the other hand,
queries against the concrete classes are trivial and perform well—Hibernate uses only
one of the statements.

 A further conceptual problem with this mapping strategy is that several different
columns, of different tables, share exactly the same semantics. This makes schema
evolution more complex. For example, renaming or changing the type of a superclass
property results in changes to multiple columns in multiple tables. Many of the stan-
dard refactoring operations offered by your IDE would require manual adjustments,
because the automatic procedures usually don’t account for things like @Attribute-
Overrides. It also makes it much more difficult to implement database integrity con-
straints that apply to all subclasses.

 We recommend this approach (only) for the top level of your class hierarchy,
where polymorphism isn’t usually required, and when modification of the superclass
in the future is unlikely. It isn’t a good fit for the CaveatEmptor domain model, where
queries and other entities refer to BillingDetails.

 With the help of the SQL UNION operation, you can eliminate most of the issues
with polymorphic queries and associations.

6.2 Table per concrete class with unions
First, let’s consider a union subclass mapping with BillingDetails as an abstract class
(or interface), as in the previous section. In this situation, you again have two tables
and duplicate superclass columns in both: CREDITCARD and BANKACCOUNT. What’s new
is an inheritance strategy known as TABLE_PER_CLASS, declared on the superclass, as
shown next.

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class BillingDetails {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull

Listing 6.3 Mapping BillingDetails with TABLE_PER_CLASS

PATH: /model/src/main/java/org/jpwh/model/inheritance/tableperclass/
BillingDetails.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

121Table per concrete class with unions
 protected String owner;

 // ...
}

The database identifier and its mapping have to be present in the superclass, to share
it in all subclasses and their tables. This is no longer optional, as it was for the previous
mapping strategy. The CREDITCARD and BANKACCOUNT tables both have an ID primary
key column. All concrete class mappings inherit persistent properties from the super-
class (or interface). An @Entity annotation on each subclass is all that is required.

@Entity
public class CreditCard extends BillingDetails {

 @NotNull
 protected String cardNumber;

 @NotNull
 protected String expMonth;

 @NotNull
 protected String expYear;

 // ...
}

Keep in mind that the SQL schema still isn’t aware of the inheritance; the tables look
exactly alike, as shown in figure 6.1.

 Note that the JPA standard specifies that TABLE_PER_CLASS is optional, so not all
JPA implementations may support it. The implementation is also vendor dependent—
in Hibernate, it’s equivalent to a <union-subclass> mapping in the old native Hiber-
nate XML metadata (don’t worry about this if you’ve never used native Hibernate XML
files).

 If BillingDetails were concrete, you’d need an additional table to hold
instances. We have to emphasize again that there is still no relationship between the
database tables, except for the fact that they have some (many) similar columns.

 The advantages of this mapping strategy are clearer if we examine polymorphic
queries. For example, the query select bd from BillingDetails bd generates the
following SQL statement:

select
 ID, OWNER, EXPMONTH, EXPYEAR, CARDNUMBER,
 ACCOUNT, BANKNAME, SWIFT, CLAZZ_
 from
 (select
 ID, OWNER, EXPMONTH, EXPYEAR, CARDNUMBER,
 null as ACCOUNT,
 null as BANKNAME,

Listing 6.4 Mapping CreditCard

PATH: /model/src/main/java/org/jpwh/model/inheritance/tableperclass/Credit-
Card.java
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

122 CHAPTER 6 Mapping inheritance
 null as SWIFT,
 1 as CLAZZ_
 from
 CREDITCARD
 union all
 select
 id, OWNER,
 null as EXPMONTH,
 null as EXPYEAR,
 null as CARDNUMBER,
 ACCOUNT, BANKNAME, SWIFT,
 2 as CLAZZ_
 from
 BANKACCOUNT
) as BILLINGDETAILS

This SELECT uses a FROM-clause subquery to retrieve all instances of BillingDetails
from all concrete class tables. The tables are combined with a UNION operator, and a
literal (in this case, 1 and 2) is inserted into the intermediate result; Hibernate reads
this to instantiate the correct class given the data from a particular row. A union
requires that the queries that are combined project over the same columns; hence,
you have to pad and fill nonexistent columns with NULL. You may ask whether this
query will really perform better than two separate statements. Here you can let the
database optimizer find the best execution plan to combine rows from several tables,
instead of merging two result sets in memory as Hibernate’s polymorphic loader
engine would do.

 Another much more important advantage is the ability to handle polymorphic asso-
ciations; for example, an association mapping from User to BillingDetails would
now be possible. Hibernate can use a UNION query to simulate a single table as the tar-
get of the association mapping. We cover this topic in detail later in this chapter.

 So far, the inheritance-mapping strategies we’ve discussed don’t require extra con-
sideration with regard to the SQL schema. This situation changes with the next strategy.

6.3 Table per class hierarchy
You can map an entire class hierarchy to a single table. This table includes columns
for all properties of all classes in the hierarchy. The value of an extra type discrimina-
tor column or formula identifies the concrete subclass represented by a particular
row. Figure 6.2 shows this approach.

ID << PK >>
BD_TYPE << Discriminator >>
OWNER
CARDNUMBER
EXPMONTH
EXPYEAR
ACCOUNT
BANKNAME
SWIFT

<< Table >>
BILLINGDETAILSid : Long

owner : String

BillingDetails

cardNumber : String
expMonth : String
expYear : String

CreditCard
account : String
bankname : String
swift : String

BankAccount

Figure 6.2 Mapping an entire class hierarchy to a single table
Licensed to Thomas Snead <n.ordickan@gmail.com>

123Table per class hierarchy
This mapping strategy is a winner in terms of both performance and simplicity. It’s the
best-performing way to represent polymorphism—both polymorphic and non-
polymorphic queries perform well—and it’s even easy to write queries by hand. Ad
hoc reporting is possible without complex joins or unions. Schema evolution is
straightforward.

 There is one major problem: data integrity. You must declare columns for properties
declared by subclasses to be nullable. If your subclasses each define several non-
nullable properties, the loss of NOT NULL constraints may be a serious problem from the
point of view of data correctness. Imagine that an expiration date for credit cards is
required, but your database schema can’t enforce this rule because all columns of the
table can be NULL. A simple application programming error can lead to invalid data.

 Another important issue is normalization. You’ve created functional dependencies
between non-key columns, violating the third normal form. As always, denormalization
for performance reasons can be misleading, because it sacrifices long-term stability,
maintainability, and the integrity of data for immediate gains that may be also achieved
by proper optimization of the SQL execution plans (in other words, ask your DBA).

 Use the SINGLE_TABLE inheritance strategy to create a table-per-class hierarchy
mapping, as shown in the following listing.

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "BD_TYPE")
public abstract class BillingDetails {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull
 @Column(nullable = false)
 protected String owner;

 // ...
}

The root class BillingDetails of the inheritance hierarchy is mapped to the table
BILLINGDETAILS automatically. Shared properties of the superclass can be NOT NULL
in the schema; every subclass instance must have a value. An implementation quirk of
Hibernate requires that you declare nullability with @Column because Hibernate
ignores Bean Validation’s @NotNull when it generates the database schema.

 You have to add a special discriminator column to distinguish what each row repre-
sents. This isn’t a property of the entity; it’s used internally by Hibernate. The column
name is BD_TYPE, and the values are strings—in this case, "CC" or "BA". Hibernate
automatically sets and retrieves the discriminator values.

Listing 6.5 Mapping BillingDetails with SINGLE_TABLE

PATH: /model/src/main/java/org/jpwh/model/inheritance/singletable/
BillingDetails.java

Ignored by Hibernate for
schema generation!
Licensed to Thomas Snead <n.ordickan@gmail.com>

124 CHAPTER 6 Mapping inheritance

H

 If you don’t specify a discriminator column in the superclass, its name defaults to
DTYPE and the value are strings. All concrete classes in the inheritance hierarchy can
have a discriminator value, such as CreditCard.

@Entity
@DiscriminatorValue("CC")
public class CreditCard extends BillingDetails {

 @NotNull
 protected String cardNumber;

 @NotNull
 protected String expMonth;

 @NotNull
 protected String expYear;

 // ...
}

Without an explicit discriminator value, Hibernate defaults to the fully qualified class
name if you use Hibernate XML files and the simple entity name if you use annota-
tions or JPA XML files. Note that JPA doesn’t specify a default for non-string discrimina-
tor types; each persistence provider can have different defaults. Therefore, you should
always specify discriminator values for your concrete classes.

 Annotate every subclass with @Entity, and then map properties of a subclass to col-
umns in the BILLINGDETAILS table. Remember that NOT NULL constraints aren’t
allowed in the schema, because a BankAccount instance won’t have an expMonth prop-
erty, and the EXPMONTH column must be NULL for that row. Hibernate ignores the
@NotNull for schema DDL generation, but it observes it at runtime, before inserting a
row. This helps you avoid programming errors; you don’t want to accidentally save
credit card data without its expiration date. (Other, less well-behaved applications can
of course still store incorrect data in this database.)

 Hibernate generates the following SQL for select bd from BillingDetails bd:

select
 ID, OWNER, EXPMONTH, EXPYEAR, CARDNUMBER,
 ACCOUNT, BANKNAME, SWIFT, BD_TYPE
from
 BILLINGDETAILS

To query the CreditCard subclass, Hibernate adds a restriction on the discriminator
column:

Listing 6.6 Mapping CreditCard

PATH: /model/src/main/java/org/jpwh/model/inheritance/singletable/
CreditCard.java

Ignored by Hibernate
for DDL generation!

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

125Table per subclass with joins

H

select
 ID, OWNER, EXPMONTH, EXPYEAR, CARDNUMBER
from
 BILLINGDETAILS
where
 BD_TYPE='CC'

Sometimes, especially in legacy schemas, you don’t have the freedom to include an
extra discriminator column in your entity tables. In this case, you can apply an expres-
sion to calculate a discriminator value for each row. Formulas for discrimination
aren’t part of the JPA specification, but Hibernate has an extension annotation,
@DiscriminatorFormula.

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@org.hibernate.annotations.DiscriminatorFormula(
 "case when CARDNUMBER is not null then 'CC' else 'BA' end"
)
public abstract class BillingDetails {
 // ...
}

There is no discriminator column in the schema, so this mapping relies on an SQL
CASE/WHEN expression to determine whether a particular row represents a credit card
or a bank account (many developers have never used this kind of SQL expression;
check the ANSI standard if you aren’t familiar with it). The result of the expression is a
literal, CC or BA, which you declare on the subclass mappings.

 The disadvantages of the table-per-class hierarchy strategy may be too serious for
your design—considering denormalized schemas can become a major burden in the
long term. Your DBA may not like it at all. The next inheritance-mapping strategy
doesn’t expose you to this problem.

6.4 Table per subclass with joins
The fourth option is to represent inheritance relationships as SQL foreign key associa-
tions. Every class/subclass that declares persistent properties—including abstract
classes and even interfaces—has its own table.

 Unlike the table-per-concrete-class strategy we mapped first, the table of a concrete
@Entity here contains columns only for each non-inherited property, declared by the
subclass itself, along with a primary key that is also a foreign key of the superclass
table. This is easier than it sounds; have a look at figure 6.3.

Listing 6.7 Mapping BillingDetails with a @DiscriminatorFormula

PATH: /model/src/main/java/org/jpwh/model/inheritance/singletableformula/
BillingDetails.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

126 CHAPTER 6 Mapping inheritance
If you make an instance of the CreditCard subclass persistent, Hibernate inserts two
rows. The values of properties declared by the BillingDetails superclass are stored
in a new row of the BILLINGDETAILS table. Only the values of properties declared by
the subclass are stored in a new row of the CREDITCARD table. The primary key shared
by the two rows links them together. Later, the subclass instance may be retrieved from
the database by joining the subclass table with the superclass table.

 The primary advantage of this strategy is that it normalizes the SQL schema.
Schema evolution and integrity-constraint definition are straightforward. A foreign
key referencing the table of a particular subclass may represent a polymorphic associa-
tion to that particular subclass. Use the JOINED inheritance strategy to create a table-
per-subclass hierarchy mapping.

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class BillingDetails {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull
 protected String owner;

 // ...
}

The root class BillingDetails is mapped to the table BILLINGDETAILS. Note that no
discriminator is required with this strategy.

 In subclasses, you don’t need to specify the join column if the primary key column
of the subclass table has (or is supposed to have) the same name as the primary key
column of the superclass table.

Listing 6.8 Mapping BillingDetails with JOINED

PATH: /model/src/main/java/org/jpwh/model/inheritance/joined/BillingDetails.java

ID << PK >>
OWNER

<< Table >>
BILLINGDETAILS

ID << PK >> << FK >>
CARDNUMBER
EXPMONTH
EXPYEAR

<< Table >>
CREDITCARD

ID << PK >> << FK >>
ACCOUNT
BANKNAME
SWIFT

<< Table >>
BANKACCOUNT

id : Long
owner : String

BillingDetails

cardNumber : String
expMonth : String
expYear : String

CreditCard
account : String
bankname : String
swift : String

BankAccount

Figure 6.3 Mapping all classes of the hierarchy to their own table
Licensed to Thomas Snead <n.ordickan@gmail.com>

127Table per subclass with joins

@Entity
public class BankAccount extends BillingDetails {

 @NotNull
 protected String account;

 @NotNull
 protected String bankname;

 @NotNull
 protected String swift;

 // ...
}

This entity has no identifier property; it automatically inherits the ID property and
column from the superclass, and Hibernate knows how to join the tables if you want
to retrieve instances of BankAccount. Of course, you can specify the column name
explicitly.

@Entity
@PrimaryKeyJoinColumn(name = "CREDITCARD_ID")
public class CreditCard extends BillingDetails {

 @NotNull
 protected String cardNumber;

 @NotNull
 protected String expMonth;

 @NotNull
 protected String expYear;

 // ...
}

The primary key columns of the BANKACCOUNT and CREDITCARD tables each also have a
foreign key constraint referencing the primary key of the BILLINGDETAILS table.

 Hibernate relies on an SQL outer join for select bd from BillingDetails bd:

select
 BD.ID, BD.OWNER,
 CC.EXPMONTH, CC.EXPYEAR, CC.CARDNUMBER,
 BA.ACCOUNT, BA.BANKNAME, BA.SWIFT,
 case
 when CC.CREDITCARD_ID is not null then 1
 when BA.ID is not null then 2

Listing 6.9 Mapping BankAccount (concrete class)

PATH: /model/src/main/java/org/jpwh/model/inheritance/joined/BankAccount.java

Listing 6.10 Mapping CreditCard

PATH: /model/src/main/java/org/jpwh/model/inheritance/joined/CreditCard.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

128 CHAPTER 6 Mapping inheritance
 when BD.ID is not null then 0
 end
from
 BILLINGDETAILS BD
 left outer join CREDITCARD CC on BD.ID=CC.CREDITCARD_ID
 left outer join BANKACCOUNT BA on BD.ID=BA.ID

The SQL CASE ... WHEN clause detects the existence (or absence) of rows in the sub-
class tables CREDITCARD and BANKACCOUNT, so Hibernate can determine the concrete
subclass for a particular row of the BILLINGDETAILS table.

 For a narrow subclass query like select cc from CreditCard cc, Hibernate uses
an inner join:

select
 CREDITCARD_ID, OWNER, EXPMONTH, EXPYEAR, CARDNUMBER
from
 CREDITCARD
 inner join BILLINGDETAILS on CREDITCARD_ID=ID

As you can see, this mapping strategy is more difficult to implement by hand—even ad
hoc reporting is more complex. This is an important consideration if you plan to mix
Hibernate code with handwritten SQL.

 Furthermore, even though this mapping strategy is deceptively simple, our experi-
ence is that performance can be unacceptable for complex class hierarchies. Queries
always require a join across many tables, or many sequential reads.

Before we show you when to choose which strategy, let’s consider mixing inheritance-
mapping strategies in a single class hierarchy.

6.5 Mixing inheritance strategies
You can map an entire inheritance hierarchy with the TABLE_PER_CLASS,
SINGLE_TABLE, or JOINED strategy. You can’t mix them—for example, to switch from a

Inheritance with joins and discriminator
Hibernate doesn’t need a special discriminator database column to implement the
InheritanceType.JOINED strategy, and the JPA specification doesn’t contain any
requirements either. The CASE ... WHEN clause in the SQL SELECT statement is a
smart way to distinguish the entity type of each retrieved row. Some JPA examples
you might find elsewhere, however, use InheritanceType.JOINED and an
@DiscriminatorColumn mapping. Apparently some other JPA providers don’t use
CASE ... WHEN clauses and rely only on a discriminator value, even for the
InheritanceType.JOINED strategy. Hibernate doesn’t need the discriminator but
uses a declared @DiscriminatorColumn, even with a JOINED mapping strategy. If
you prefer to ignore the discriminator mapping with JOINED (it was ignored in older
Hibernate versions), enable the configuration property hibernate.discriminator
.ignore_explicit_for_joined.
Licensed to Thomas Snead <n.ordickan@gmail.com>

129Mixing inheritance strategies
table-per-class hierarchy with a discriminator to a normalized table-per-subclass strat-
egy. Once you’ve made a decision for an inheritance strategy, you have to stick with it.

 This isn’t completely true, however. By using some tricks, you can switch the map-
ping strategy for a particular subclass. For example, you can map a class hierarchy to a
single table, but, for a particular subclass, switch to a separate table with a foreign key–
mapping strategy, just as with table-per-subclass. Look at the schema in figure 6.4.

 Map the superclass BillingDetails with InheritanceType.SINGLE_TABLE, as you
did before. Now map the subclass you want to break out of the single table to a sec-
ondary table.

@Entity
@DiscriminatorValue("CC")
@SecondaryTable(
 name = "CREDITCARD",
 pkJoinColumns = @PrimaryKeyJoinColumn(name = "CREDITCARD_ID")
)
public class CreditCard extends BillingDetails {

 @NotNull
 @Column(table = "CREDITCARD", nullable = false)
 protected String cardNumber;

 @Column(table = "CREDITCARD", nullable = false)
 protected String expMonth;

Listing 6.11 Mapping CreditCard

PATH: /model/src/main/java/org/jpwh/model/inheritance/mixed/CreditCard.java

ID << PK >>
BD_TYPE << Discriminator >>
OWNER
ACCOUNT
BANKNAME
SWIFT

<< Table >>
BILLINGDETAILS

CREDITCARD_ID << PK >> << FK >>
CARDNUMBER
EXPMONTH
EXPYEAR

<< Table >>
CREDITCARD

id : Long
owner : String

BillingDetails

cardNumber : String
expMonth : String
expYear : String

CreditCard
account : String
bankname : String
swift : String

BankAccount

Figure 6.4 Breaking out a subclass to its own secondary table

Ignored by JPA for DDL; the
strategy is SINGLE_TABLE!

Override the
primary table.
Licensed to Thomas Snead <n.ordickan@gmail.com>

130 CHAPTER 6 Mapping inheritance

H

 @Column(table = "CREDITCARD", nullable = false)
 protected String expYear;

 // ...
}

The @SecondaryTable and @Column annotations group some properties and tell
Hibernate to get them from a secondary table. You map all properties that you moved
into the secondary table with the name of that secondary table. This is done with the
table parameter of @Column, which we haven’t shown before. This mapping has many
uses, and you’ll see it again later in this book. In this example, it separates the Credit-
Card properties from the single table strategy into the CREDITCARD table.

 The CREDITCARD_ID column of this table is at the same time the primary key, and it
has a foreign key constraint referencing the ID of the single hierarchy table. If you
don’t specify a primary key join column for the secondary table, the name of the pri-
mary key of the single inheritance table is used—in this case, ID.

 Remember that InheritanceType.SINGLE_TABLE enforces all columns of sub-
classes to be nullable. One of the benefits of this mapping is that you can now declare
columns of the CREDITCARD table as NOT NULL, guaranteeing data integrity.

 At runtime, Hibernate executes an outer join to fetch BillingDetails and all sub-
class instances polymorphically:

select
 ID, OWNER, ACCOUNT, BANKNAME, SWIFT,
 EXPMONTH, EXPYEAR, CARDNUMBER,
 BD_TYPE
from
 BILLINGDETAILS
 left outer join CREDITCARD on ID=CREDITCARD_ID

You can also use this trick for other subclasses in your class hierarchy. If you have an
exceptionally wide class hierarchy, the outer join can become a problem. Some data-
base systems (Oracle, for example) limit the number of tables in an outer join opera-
tion. For a wide hierarchy, you may want to switch to a different fetching strategy that
executes an immediate second SQL select instead of an outer join.

Switching the fetching strategy for this mapping isn’t available in JPA or Hibernate
annotations at the time of writing, so you have to map the class in a native Hibernate
XML file:

<subclass name="CreditCard"
 discriminator-value="CC">
 <join table="CREDITCARD" fetch="select">
 ...
 </join>
</subclass>

PATH: /model/src/main/resources/inheritance/mixed/FetchSelect.hbm.xml

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

131Inheritance of embeddable classes

H

So far, we’ve only been talking about entity inheritance. Although the JPA specifica-
tion is silent about inheritance and polymorphism of @Embeddable classes, Hibernate
offers a mapping strategy for component types.

6.6 Inheritance of embeddable classes
An embeddable class is a component of its owning entity; hence, the normal entity
inheritance rules presented in this chapter don’t apply. As a Hibernate extension, you
can map an embeddable class that inherits some persistent properties from a super-
class (or interface). Consider these two new attributes of an auction item: dimensions
and weight.

 An item’s dimensions are its width, height, and depth, expressed in a given unit
and its symbol: for example, inches (") or centimeters (cm). An item’s weight also car-
ries a unit of measurement: for example, pounds (lbs) or kilograms (kg). To capture
the common attributes (name and symbol) of measurement, you define a superclass
for Dimension and Weight called Measurement.

@MappedSuperclass
public abstract class Measurement {

 @NotNull
 protected String name;

 @NotNull
 protected String symbol;

 // ...
}

Use the @MappedSuperclass annotation on the superclass of the embeddable class
you’re mapping just like you would for an entity. Subclasses will inherit the properties
of this class as persistent properties.

 You define the Dimensions and Weight subclasses as @Embeddable. For Dimensions,
override all the superclass attributes and add a column-name prefix.

@Embeddable
@AttributeOverrides({
 @AttributeOverride(name = "name",
 column = @Column(name = "DIMENSIONS_NAME")),

Listing 6.12 Mapping the Measurement abstract embeddable superclass

PATH: /model/src/main/java/org/jpwh/model/inheritance/embeddable/
Measurement.java

Listing 6.13 Mapping the Dimensions class

PATH: /model/src/main/java/org/jpwh/model/inheritance/embeddable/
Dimensions.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

132 CHAPTER 6 Mapping inheritance
 @AttributeOverride(name = "symbol",
 column = @Column(name = "DIMENSIONS_SYMBOL"))
})
public class Dimensions extends Measurement {

 @NotNull
 protected BigDecimal depth;

 @NotNull
 protected BigDecimal height;

 @NotNull
 protected BigDecimal width;

 // ...
}

Without this override, an Item embedding both Dimension and Weight would map to
a table with conflicting column names. Following is the Weight class; its mapping also
overrides the column names with a prefix (for uniformity, we avoid the conflict with
the previous override).

@Embeddable
@AttributeOverrides({
 @AttributeOverride(name = "name",
 column = @Column(name = "WEIGHT_NAME")),
 @AttributeOverride(name = "symbol",
 column = @Column(name = "WEIGHT_SYMBOL"))
})
public class Weight extends Measurement {

 @NotNull
 @Column(name = "WEIGHT")
 protected BigDecimal value;

 // ...
}

The owning entity Item defines two regular persistent embedded properties.

@Entity
public class Item {

 protected Dimensions dimensions;

 protected Weight weight;

 // ...
}

Listing 6.14 Mapping the Weight class

PATH: /model/src/main/java/org/jpwh/model/inheritance/embeddable/Weight.java

Listing 6.15 Mapping the Item class

PATH: /model/src/main/java/org/jpwh/model/inheritance/embeddable/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

133Choosing a strategy
Figure 6.5 illustrates this mapping. Alternatively, you could override the conflicting
Measurement column names of the embedded properties in the Item class, as shown
in section 5.2. Instead, we prefer to override them once, in the @Embeddable classes, so
any consumers of these classes don’t have to resolve the conflict.

 A pitfall to watch out for is embedding a property of abstract superclass type (like
Measurement) in an entity (like Item). This can never work; the JPA provider doesn’t
know how to store and load Measurement instances polymorphically. It doesn’t have the
information necessary to decide whether the values in the database are Dimension or
Weight instances, because there is no discriminator. This means although you can have
an @Embeddable class inherit some persistent properties from a @MappedSuperclass,
the reference to an instance isn’t polymorphic—it always names a concrete class.

 Compare this with the alternative inheritance strategy for embeddable classes
shown in the section “Converting properties of components,” in chapter 5, which sup-
ported polymorphism but required some custom type-discrimination code.

 Next, we give you more tips about how to choose an appropriate combination of
mapping strategies for your application’s class hierarchies.

6.7 Choosing a strategy
Picking the right inheritance-mapping strategy depends on usage of the superclasses
of your entity hierarchy. You have to consider how frequently you query for instances
of the superclasses and whether you have associations targeting the superclasses.
Another important aspect is the attributes of super- and subtypes: whether subtypes
have many additional attributes or only different behavior than their supertypes. Here
are some rules of thumb:

 If you don’t require polymorphic associations or queries, lean toward table-per-
concrete class—in other words, if you never or rarely select bd from Billing-
Details bd and you have no class that has an association to BillingDetails.
An explicit UNION-based mapping with InheritanceType.TABLE_PER_CLASS
should be preferred, because (optimized) polymorphic queries and associa-
tions will then be possible later.

ID << PK >>
NAME
...
DIMENSIONS_NAME
DIMENSIONS_SYMBOL
DEPTH
HEIGHT
WIDTH
WEIGHT_NAME
WEIGHT_SYMBOL
WEIGHT

<< Table >>
ITEM

name : String
symbol : String

Measurement

depth : BigDecimal
height : BigDecimal
width : BigDecimal

Dimensions
value : BigDecimal

Weight

name : String
...

Item

Figure 6.5 Mapping concrete embeddable classes with their inherited properties
Licensed to Thomas Snead <n.ordickan@gmail.com>

134 CHAPTER 6 Mapping inheritance
 If you do require polymorphic associations (an association to a superclass,
hence to all classes in the hierarchy with dynamic resolution of the concrete
class at runtime) or queries, and subclasses declare relatively few properties
(particularly if the main difference between subclasses is in their behavior),
lean toward InheritanceType.SINGLE_TABLE. Your goal is to minimize the
number of nullable columns and to convince yourself (and your DBA) that a
denormalized schema won’t create problems in the long run.

 If you do require polymorphic associations or queries, and subclasses declare
many (non-optional) properties (subclasses differ mainly by the data they
hold), lean toward InheritanceType.JOINED. Alternatively, depending on the
width and depth of your inheritance hierarchy and the possible cost of joins
versus unions, use InheritanceType.TABLE_PER_CLASS. This decision might
require evaluation of SQL execution plans with real data.

By default, choose InheritanceType.SINGLE_TABLE only for simple problems. Other-
wise, for complex cases, or when a data modeler insisting on the importance of NOT
NULL constraints and normalization overrules you, you should consider the
InheritanceType.JOINED strategy. At that point, ask yourself whether it may not be
better to remodel inheritance as delegation in the class model. Complex inheritance
is often best avoided for all sorts of reasons unrelated to persistence or ORM. Hiber-
nate acts as a buffer between the domain and relational models, but that doesn’t
mean you can ignore persistence concerns completely when designing your classes.

 When you start thinking about mixing inheritance strategies, remember that
implicit polymorphism in Hibernate is smart enough to handle exotic cases. Also,
consider that you can’t put inheritance annotations on interfaces; this isn’t standard-
ized in JPA.

 For example, consider an additional interface in the example application:
ElectronicPaymentOption. This is a business interface that doesn’t have a persistence
aspect—except that in the application, a persistent class such as CreditCard will likely
implement this interface. No matter how you map the BillingDetails hierarchy,
Hibernate can answer the query select o from ElectronicPaymentOption o correctly.
This even works if other classes, which aren’t part of the BillingDetails hierarchy,
are mapped as persistent and implement this interface. Hibernate always knows what
tables to query, which instances to construct, and how to return a polymorphic result.

 You can apply all mapping strategies to abstract classes. Hibernate won’t try to
instantiate an abstract class, even if you query or load it.

 We mentioned the relationship between User and BillingDetails several times
and how it influences the selection of an inheritance-mapping strategy. In the follow-
ing and last section of this chapter, we explore this more advanced topic in detail:
polymorphic associations. If you don’t have such a relationship in your model right
now, you may want to read this material later, when you encounter the issue in your
application.
Licensed to Thomas Snead <n.ordickan@gmail.com>

135Polymorphic associations
6.8 Polymorphic associations
Polymorphism is a defining feature of object-oriented languages like Java. Support for
polymorphic associations and polymorphic queries is a fundamental feature of an
ORM solution like Hibernate. Surprisingly, we’ve managed to get this far without
needing to talk much about polymorphism. Refreshingly, there isn’t much to say on
the topic—polymorphism is so easy to use in Hibernate that we don’t need to expend
a lot of effort explaining it.

 To provide an overview, we first consider a many-to-one association to a class that
may have subclasses, and then a one-to-many relationship. For both examples, the
classes of the domain model are the same; see figure 6.6.

6.8.1 Polymorphic many-to-one associations

First, consider the defaultBilling property of User. It references one particular
BillingDetails instance, which at runtime can be any concrete instance of that class.

 You map this unidirectional association to the abstract class BillingDetails as
follows:

@Entity
@Table(name = "USERS")
public class User {

 @ManyToOne(fetch = FetchType.LAZY)
 protected BillingDetails defaultBilling;

 // ...
}

The USERS table now has the join/foreign key column DEFAULTBILLING_ID represent-
ing this relationship. It’s a nullable column because a User might not have a default
billing method assigned. Because BillingDetails is abstract, the association must
refer to an instance of one of its subclasses—CreditCard or BankAccount—at runtime.

 You don’t have to do anything special to enable polymorphic associations in Hiber-
nate; if the target class of an association is mapped with @Entity and @Inheritance,
the association is naturally polymorphic.

PATH: /model/src/main/java/org/jpwh/model/inheritance/associations/manytoone/
User.java

username : String

lastname : String

User
default

0..*

owner : String
BillingDetails

cardNumber : String
expMonth: String
expYear : String

CreditCard
account : String
bankname : String
swift : String

BankAccount

firstname : String

Figure 6.6 A user has either a
credit card or a bank account as
the default billing details.
Licensed to Thomas Snead <n.ordickan@gmail.com>

136 CHAPTER 6 Mapping inheritance
 The following code demonstrates the creation of an association to an instance of
the CreditCard subclass:

CreditCard cc = new CreditCard(
 "John Doe", "1234123412341234", "06", "2015"
);
User johndoe = new User("johndoe");
johndoe.setDefaultBilling(cc);

em.persist(cc);
em.persist(johndoe);

Now, when you navigate the association in a second unit of work, Hibernate automati-
cally retrieves the CreditCard instance:

User user = em.find(User.class, USER_ID);

user.getDefaultBilling().pay(123);

There’s just one thing to watch out for: because the defaultBilling property is
mapped with FetchType.LAZY, Hibernate will proxy the association target. In this
case, you wouldn’t be able to perform a typecast to the concrete class CreditCard at
runtime, and even the instanceof operator would behave strangely:

User user = em.find(User.class, USER_ID);

BillingDetails bd = user.getDefaultBilling();

assertFalse(bd instanceof CreditCard);

// CreditCard creditCard = (CreditCard) bd;

The bd reference isn’t a CreditCard instance in this case; it’s a runtime-generated spe-
cial subclass of BillingDetails, a Hibernate proxy. When you invoke a method on
the proxy, Hibernate delegates the call to an instance of CreditCard that it fetches
lazily. Until this initialization occurs, Hibernate doesn’t know what the subtype of the
given instance is—this would require a database hit, which you try to avoid with lazy
loading in the first place. To perform a proxy-safe typecast, use em.getReference():

PATH: /examples/src/test/java/org/jpwh/test/inheritance/
PolymorphicManyToOne.java

PATH: /examples/src/test/java/org/jpwh/test/inheritance/
PolymorphicManyToOne.java

PATH: /examples/src/test/java/org/jpwh/test/inheritance/
PolymorphicManyToOne.java

Invokes pay() method on
concrete subclass of BillingDetails

Don’t do this—
ClassCastException!
Licensed to Thomas Snead <n.ordickan@gmail.com>

137Polymorphic associations

User user = em.find(User.class, USER_ID);

BillingDetails bd = user.getDefaultBilling();

CreditCard creditCard =
 em.getReference(CreditCard.class, bd.getId());

assertTrue(bd != creditCard);

After the getReference() call, bd and creditCard refer to two different proxy
instances, both of which delegate to the same underlying CreditCard instance. The sec-
ond proxy has a different interface, though, and you can call methods like creditCard
.getExpMonth() that apply only to this interface. (Note that bd.getId() will trigger a
SELECT if you map the id property with field access.)

 You can avoid these issues by avoiding lazy fetching, as in the following code, using
an eager fetch query:

User user = (User) em.createQuery(
 "select u from User u " +
 "left join fetch u.defaultBilling " +
 "where u.id = :id")
 .setParameter("id", USER_ID)
 .getSingleResult();

CreditCard creditCard = (CreditCard) user.getDefaultBilling();

Truly object-oriented code shouldn’t use instanceof or numerous typecasts. If you
find yourself running into problems with proxies, you should question your design,
asking whether there is a more polymorphic approach. Hibernate also offers bytecode
instrumentation as an alternative to lazy loading through proxies; we’ll get back to
fetching strategies in chapter 12.

 You can handle one-to-one associations the same way. What about plural associa-
tions, like the collection of billingDetails for each User? Let’s look at that next.

6.8.2 Polymorphic collections

A User may have references to many BillingDetails, not only a single default (one
of the many is the default; let’s ignore that for now). You can map this with a bidirec-
tional one-to-many association:

PATH: /examples/src/test/java/org/jpwh/test/inheritance/
PolymorphicManyToOne.java

PATH: /examples/src/test/java/org/jpwh/test/inheritance/
PolymorphicManyToOne.java

No SELECT

Careful!

No proxy has been used:
BillingDetails instance

fetched eagerly
Licensed to Thomas Snead <n.ordickan@gmail.com>

138 CHAPTER 6 Mapping inheritance

@Entity
@Table(name = "USERS")
public class User {

 @OneToMany(mappedBy = "user")
 protected Set<BillingDetails> billingDetails = new HashSet<>();

 // ...
}

Next, here’s the owning side of the relationship (declared with mappedBy in the previ-
ous mapping):

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class BillingDetails {

 @ManyToOne(fetch = FetchType.LAZY)
 protected User user;

 // ...
}

So far, there is nothing special about this association mapping. The BillingDetails
class hierarchy can be mapped with TABLE_PER_CLASS, SINGLE_TABLE, or a JOINED
inheritance type. Hibernate is smart enough to use the right SQL queries, with either
JOIN or UNION operators, when loading the collection elements.

 There is one limitation, however: the BillingDetails class can’t be a @Mapped-
Superclass, as shown in section 6.1. It has to be mapped with @Entity and
@Inheritance.

PATH: /model/src/main/java/org/jpwh/model/inheritance/associations/onetomany/
User.java

PATH: /model/src/main/java/org/jpwh/model/inheritance/associations/onetomany/
BillingDetails.java

Associations with implicit polymorphism
Hibernate offers a "last resort" technique, if you really have to map an association
to a class hierarchy without mapping the class hierarchy explicitly with @Inheri-
tance. This is possible with Hibernate native XML mappings and the <any/> ele-
ment. We recommend that you look this one up in the Hibernate documentation or a
previous edition of this book if needed, but try to avoid it whenever possible because
it results in ugly schemas.
Licensed to Thomas Snead <n.ordickan@gmail.com>

139Summary
6.9 Summary
 Table per concrete class with implicit polymorphism is the simplest strategy to

map inheritance hierarchies of entities, but it doesn’t support polymorphic
associations very well. In addition, different columns from different tables share
exactly the same semantics, making schema evolution more complex. We rec-
ommend this approach for the top level of your class hierarchy only, where
polymorphism isn’t usually required and when modification of the superclass in
the future is unlikely.

 The table-per-concrete-class-with-unions strategy is optional, and JPA implemen-
tations may not support it, but it does handles polymorphic associations.

 The table-per-class-hierarchy strategy is a winner in terms of both performance
and simplicity; ad hoc reporting is possible without complex joins or unions,
and schema evolution is straightforward. The one major problem is data integ-
rity, because you must declare some columns as nullable. Another issue is nor-
malization: this strategy creates functional dependencies between non-key
columns, violating the third normal form.

 The table-per-subclass-with-joins strategy’s primary advantage is that it normal-
izes the SQL schema, making schema evolution and integrity constraint defini-
tion straightforward. The disadvantages are that it’s more difficult to
implement by hand, and performance can be unacceptable for complex class
hierarchies.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Mapping collections
and entity associations
From our experience with the Hibernate user community, the first thing many
developers try to do when they begin using Hibernate is to map a parent/children
relationship. This is usually the first time they encounter collections. It’s also the first
time they have to think about the differences between entities and value types, or
get lost in the complexity of ORM.

 Managing the associations between classes and the relationships between tables
is at the heart of ORM. Most of the difficult problems involved in implementing an
ORM solution relate to collections and entity association management. Feel free to
come back to this chapter to grok this topic fully. We start this chapter with basic
collection-mapping concepts and simple examples. After that, you’ll be prepared
for the first collection in an entity association—although we’ll come back to more
complicated entity association mappings in the next chapter. To get the full pic-
ture, we recommend you read both this chapter and the next.

In this chapter
 Mapping persistent collections

 Collections of basic and embeddable type

 Simple many-to-one and one-to-many entity
associations
140

Licensed to Thomas Snead <n.ordickan@gmail.com>

141Sets, bags, lists, and maps of value types
7.1 Sets, bags, lists, and maps of value types
Java has a rich collection API, from which you can choose the interface and implemen-
tation that best fits your domain model design. Let’s walk through the most common
collection mappings, repeating the same Image and Item example with minor varia-
tions. We’ll start by looking at the database schema and creating and mapping a col-
lection property in general. Then we’ll proceed to how to select a specific collection
interface and map various collection types: a set, identifier bag, list, map, and finally
sorted and ordered collections.

7.1.1 The database schema

Let’s extend CaveatEmptor and support attaching images to auction items. Ignore the
Java code for now, and take a step back to consider only the database schema.

 You need an IMAGE table in the database to hold the images, or maybe just the file-
names of images. This table also has a foreign key column, say ITEM_ID, referencing
the ITEM table. Look at the schema shown in figure 7.1.

That’s all there is to the schema—no collections or composition life cycle. (You could
have an ON DELETE CASCADE option on the ITEM_ID foreign key column. When the
application deletes an ITEM row, the database automatically deletes IMAGE rows refer-
encing this ITEM in the database. Let’s assume for now that this isn’t the case.)

7.1.2 Creating and mapping a collection property

How would you map this IMAGE table with what you know so far? You’d probably map
it as an @Entity class named Image. Later in this chapter, you’ll map a foreign key col-
umn with an @ManyToOne property. You’d also need a composite primary key mapping
for the entity class, as shown in section 9.2.2.

 There are no mapped collections; they aren’t necessary. When you need an item’s
images, you write and execute a query in the JPA query language: select img from
Image img where img.item = :itemParameter. Persistent collections are always
optional—a feature. Why would you map a collection?

Major new features in JPA 2
 Support for collections and maps of basic and embeddable types.
 Support for persistent lists where the index of each element is stored in an

additional database column.
 One-to-many associations now have an orphan-removal option.

ID << PK >>
NAME
...

<< Table >>
ITEM

ITEM_ID << PK >> << FK>>
FILENAME << PK >>

<< Table >>
IMAGE Figure 7.1 The IMAGE table holds

image filenames, each referencing an
ITEM_ID.
Licensed to Thomas Snead <n.ordickan@gmail.com>

142 CHAPTER 7 Mapping collections and entity associations
 The collection you could create is Item#images, referencing all images for a partic-
ular item. You create and map this collection property to do the following:

 Execute the SQL query SELECT * from IMAGE where ITEM_ID = ? automatically
when you call someItem.getImages(). As long as your domain model instances
are in a managed state (more later), you can read from the database on-demand
while navigating the associations between your classes. You don’t have to manu-
ally write and execute a query with the EntityManager to load data. On the
other hand, the collection query when you start iterating the collection is always
“all images for this item,” never “only images that match criteria XYZ.”

 Avoid saving each Image with entityManager.persist(). If you have a mapped
collection, adding the Image to the collection with someItem.getImages()
.add() will make it persistent automatically when the Item is saved. This cascad-
ing persistence is convenient because you can save instances without calling
EntityManager.

 Have a dependent life cycle of Images. When you delete an Item, Hibernate
deletes all attached Images with an extra SQL DELETE. You don’t have to worry
about the life cycle of images and cleaning up orphans (assuming your database
foreign key constraint doesn’t ON DELETE CASCADE). The JPA provider handles
the composition life cycle.

It’s important to realize that although these benefits sound great, the price you pay is
additional mapping complexity. We’ve seen many JPA beginners struggle with collec-
tion mappings, and frequently the answer to “Why are you doing this?” has been “I
thought this collection was required.”

 Analyzing the scenario with images for auction items, you’d benefit from a collec-
tion mapping. The images have a dependent life cycle; when you delete an item, all
the attached images should be deleted. When an item is stored, all attached images
should be stored. And when you display an item, you often also display all images, so
someItem.getImages() is convenient in UI code. You don’t have to call the persis-
tence service again to get the images; they’re just there.

 Now, on to choosing the collection interface and implementation that best fits
your domain model design. Let’s walk through the most common collection map-
pings, repeating the same Image and Item example with minor variations.

7.1.3 Selecting a collection interface

The idiom for a collection property in the Java domain model is

<<Interface>> images = new <<Implementation>>();

// Getter and setter methods
// ...

Use an interface to declare the type of the property, not an implementation. Pick a
matching implementation, and initialize the collection right away; doing so avoids
Licensed to Thomas Snead <n.ordickan@gmail.com>

143Sets, bags, lists, and maps of value types
uninitialized collections. We don’t recommend initializing collections late, in con-
structors or setter methods.

 Using generics, here’s a typical Set:

Set<String> images = new HashSet<String>();

Out of the box, Hibernate supports the most important JDK collection interfaces and
preserves the semantics of JDK collections, maps, and arrays in a persistent fashion.
Each JDK interface has a matching implementation supported by Hibernate, and it’s
important that you use the right combination. Hibernate wraps the collection you’ve
already initialized on declaration of the field, or sometimes replaces it, if it’s not the
right one. It does that to enable, among other things, lazy loading and dirty checking
of collection elements.

 Without extending Hibernate, you can choose from the following collections:

 A java.util.Set property, initialized with a java.util.HashSet. The order of
elements isn’t preserved, and duplicate elements aren’t allowed. All JPA provid-
ers support this type.

 A java.util.SortedSet property, initialized with a java.util.TreeSet. This
collection supports stable order of elements: sorting occurs in-memory, after
Hibernate loads the data. This is a Hibernate-only extension; other JPA provid-
ers may ignore the “sorted” aspect of the set.

 A java.util.List property, initialized with a java.util.ArrayList. Hiber-
nate preserves the position of each element with an additional index column in
the database table. All JPA providers support this type.

 A java.util.Collection property, initialized with a java.util.ArrayList.
This collection has bag semantics; duplicates are possible, but the order of ele-
ments isn’t preserved. All JPA providers support this type.

 A java.util.Map property, initialized with a java.util.HashMap. The key and
value pairs of a map can be preserved in the database. All JPA providers support
this type.

 A java.util.SortedMap property, initialized with a java.util.TreeMap. It sup-
ports stable order of elements: sorting occurs in-memory, after Hibernate loads

Raw collections without generics
If you don’t specify the type of collection elements with generics, or the key/value
types of a map, you need to tell Hibernate the type(s). For example, instead of a
Set<String>, you map a raw Set with @ElementCollection(targetClass=
String.class). This also applies to type parameters of a Map. Specify the key type
of a Map with @MapKeyClass. All the examples in this book use generic collections
and maps, and so should you.
Licensed to Thomas Snead <n.ordickan@gmail.com>

144 CHAPTER 7 Mapping collections and entity associations

H

the data. This is a Hibernate-only extension; other JPA providers may ignore the
“sorted” aspect of the map.

 Hibernate supports persistent arrays, but JPA doesn’t. They’re rarely used, and
we won’t show them in this book: Hibernate can’t wrap array properties, so
many benefits of collections, such as on-demand lazy loading, won’t work. Only
use persistent arrays in your domain model if you’re sure you won’t need lazy
loading. (You can load arrays on-demand, but this requires interception with
bytecode enhancement, as explained in section 12.1.3.)

If you want to map collection interfaces and implementations not directly supported
by Hibernate, you need to tell Hibernate about the semantics of your custom collec-
tions. The extension point in Hibernate is the PersistentCollection interface in the
org.hibernate.collection.spi package, where you usually extend one of the exist-
ing PersistentSet, PersistentBag, and PersistentList classes. Custom persistent
collections aren’t easy to write, and we don’t recommend doing this if you aren’t an
experienced Hibernate user. You can find an example in the source code for the
Hibernate test suite.

 For the auction item and images example, assume that the image is stored some-
where on the file system and that you keep just the filename in the database.

Let’s map a collection of image filenames of an Item.

ibernate Feature

Transactional file systems
If you only keep the filenames of images in your SQL database, you have to store the
binary data of each picture—the files—somewhere. You could store the image data
in your SQL database, in BLOB columns (see the section “Binary and large value
types” in chapter 5). If you decide not to store the images in the database, but as
regular files, you should be aware that the standard Java file system APIs,
java.io.File and java.nio.file.Files, aren’t transactional. File system opera-
tions aren’t enlisted in a (JTA) system transaction; a transaction might successfully
complete, with Hibernate writing the filename into your SQL database, but then stor-
ing or deleting the file in the file system might fail. You won’t be able to roll back these
operations as one atomic unit, and you won’t get proper isolation of operations.

Fortunately, open source transactional file system implementations for Java are avail-
able, such as XADisk (see https://xadisk.java.net). You can easily integrate XADisk
with a system transaction manager such as Bitronix, used by the examples of this
book. File operations are then enlisted, committed, and rolled back together with
Hibernate’s SQL operations in the same UserTransaction.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://xadisk.java.net

145Sets, bags, lists, and maps of value types
7.1.4 Mapping a set

The simplest implementation is a Set of String image filenames. Add a collection
property to the Item class, as shown in the following listing.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(
 name = "IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID"))
 @Column(name = "FILENAME")
 protected Set<String> images = new
 HashSet<String>();

 // ...
}

The @ElementCollection JPA annotation is required for a collection of value-typed
elements. Without the @CollectionTable and @Column annotations, Hibernate would
use default schema names. Look at the schema in figure 7.2: the primary key columns
are underlined.

The IMAGE table has a composite primary key of both the ITEM_ID and FILENAME col-
umns. That means you can’t have duplicate rows: each image file can only be attached
once to one item. The order of images isn’t stored. This fits the domain model and
Set collection.

 It doesn’t seem likely that you’d allow the user to attach the same image more than
once to the same item, but let’s suppose you did. What kind of mapping would be
appropriate in that case?

Listing 7.1 Images mapped as a simple set of strings

PATH: /model/src/main/java/org/jpwh/model/collections/setofstrings/Item.java

Defaults to ITEM_IMAGES

Default

Defaults to IMAGES

Initialize the field here.

ITEM

ID

1

NAME

Foo
2
3

B
C

IMAGE

ITEM_ID

1

FILENAME

foo.jpg
1 bar.jpg

2 b.jpg
1 baz.jpg Figure 7.2 Table structure and

example data for a set of strings
Licensed to Thomas Snead <n.ordickan@gmail.com>

146 CHAPTER 7 Mapping collections and entity associations

H

7.1.5 Mapping an identifier bag

A bag is an unordered collection that allows duplicate elements, like the
java.util.Collection interface. Curiously, the Java Collections framework doesn’t
include a bag implementation. You initialize the property with an ArrayList, and
Hibernate ignores the index of elements when storing and loading elements.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @Column(name = "FILENAME")
 @org.hibernate.annotations.CollectionId(
 columns = @Column(name = "IMAGE_ID"),
 type = @org.hibernate.annotations.Type(type = "long"),
 generator = Constants.ID_GENERATOR)
 protected Collection<String> images = new ArrayList<String>();

 // ...
}

This looks much more complex: you can’t continue with the same schema as before.
The IMAGE collection table needs a different primary key to allow duplicate FILENAME
values for each ITEM_ID. You introduce a surrogate primary key column named
IMAGE_ID B, and you use a Hibernate-only annotation C to configure how the pri-
mary key is generated D. If you don’t remember key generators, read section 4.2.4.
The modified schema is shown in figure 7.3.

 Here’s an interesting question: if all you see is this schema, can you tell how the
tables are mapped in Java? The ITEM and IMAGE tables look the same: each has a surro-
gate primary key column and some other normalized columns. Each table could be
mapped with an @Entity class. We decided to use a JPA feature and map a collection
to IMAGE, however, even with a composition life cycle. This is, effectively, a decision

Listing 7.2 Bag of strings, allowing duplicate elements

PATH: /model/src/main/java/org/jpwh/model/collections/bagofstrings/Item.java

ibernate Feature

Surrogate primary key
allows duplicates

B

Configures primary key

Hibernate-
only
annotationC

D

No
BagImpl

in JDK

Surrogate primary
key column

IMAGE

ITEM_ID

1

FILENAME

1
1

IMAGE_ID

1
2
3

ITEM

ID

1

NAME

Foo
2
3

B
C

foo.jpg
bar.jpg
baz.jpg

b.jpg
4
5

1 baz.jpg
2

Figure 7.3 Surrogate primary
key column for a bag of strings
Licensed to Thomas Snead <n.ordickan@gmail.com>

147Sets, bags, lists, and maps of value types
that some predefined query and manipulation rules are all you need for this table,
instead of the more generic @Entity mapping. When you make such a decision, be
sure you know the reasons and consequences.

 The next mapping technique preserves the order of images with a list.

7.1.6 Mapping a list

When you haven’t used ORM software before, a persistent list seems to be a very pow-
erful concept; imagine how much work storing and loading a java.util.List
<String> is with plain JDBC and SQL. If you add an element to the middle of the list,
depending on the list implementation, the list shifts all subsequent elements to the
right or rearranges pointers. If you remove an element from the middle of the list,
something else happens, and so on. If the ORM software can do all of this automatically
for database records, this makes a persistent list look more appealing than it actually is.

 As we noted in section 3.2.4, the first reaction is often to preserve the order of data
elements as users enter them. You often have to show them later in the same order.
But if another criterion can be used for sorting the data, like an entry timestamp, you
should sort the data when querying and not store the display order. What if the display
order changes? The order the data is displayed in is most likely not an integral part of
the data, but an orthogonal concern. Think twice before you map a persistent List;
Hibernate isn’t as smart as you might think, as you’ll see in the next example.

 First, let’s change the Item entity and its collection property.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @OrderColumn
 @Column(name = "FILENAME")
 protected List<String> images = new ArrayList<String>();

 // ...
}

There is a new annotation in this example: @OrderColumn. This column stores an
index in the persistent list, starting at zero. Note that Hibernate stores and expects the
index to be contiguous in the database. If there are gaps, Hibernate will add null ele-
ments when loading and constructing the List. Look at the schema in figure 7.4.

 The primary key of the IMAGE table is a composite of ITEM_ID and IMAGES_ORDER.
This allows duplicate FILENAME values, which is consistent with the semantics of a
List.

 We said earlier that Hibernate isn’t as smart as you might think. Consider modifica-
tions to the list: say the list has the three elements A, B, and C, in that order. What
happens if you remove A from the list? Hibernate executes one SQL DELETE for that

Listing 7.3 Persistent list, preserving the order of elements in the database

PATH: /model/src/main/java/org/jpwh/model/collections/listofstrings/Item.java

Enables persistent
order; defaults to
IMAGES_ORDER
Licensed to Thomas Snead <n.ordickan@gmail.com>

148 CHAPTER 7 Mapping collections and entity associations
row. Then it executes two UPDATEs, for B and C, shifting their position to the left to
close the gap in the index. For each element to the right of the deleted element,
Hibernate executes an UPDATE. If you write SQL for this by hand, you can do it with
one UPDATE. The same is true for insertions in the middle of the list. Hibernate shifts
all existing elements to the right one by one. At least Hibernate is smart enough to
execute a single DELETE when you clear() the list.

 Now, suppose the images for an item have user-supplied names in addition to the
filename. One way to model this in Java is with a map, using key/value pairs.

7.1.7 Mapping a map

Again, make a small change to the Java class to use a Map property.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @MapKeyColumn(name = "FILENAME")
 @Column(name = "IMAGENAME")
 protected Map<String, String> images = new HashMap<String, String>();

 // ...
}

Each map entry is a key/value pair. Here you map the key with @MapKeyColumn to
FILENAME B and the value to the IMAGENAME column C. This means the user can only
use a file once, because a Map doesn’t allow duplicate keys.

 As you can see from the schema in figure 7.5, the primary key of the collection
table is a composite of ITEM_ID and FILENAME. The example uses a String as the key
for the map; but Hibernate supports any basic type, such as BigDecimal and Integer.
If the key is a Java enum, you must use @MapKeyEnumerated. With any temporal types
such as java.util.Date, use @MapKeyTemporal. We discussed these options, albeit not
for collections, in sections 5.1.6 and 5.1.7.

 The map in the previous example was unordered. What should you do to always
sort map entries by filename?

Listing 7.4 Persistent map storing its key and value pairs

PATH: /model/src/main/java/org/jpwh/model/collections/mapofstrings/Item.java

IMAGE

IMAGES_ORDER

0

FILENAME

1
2

ITEM_ID

1
1
1

2
2

0
1

b1jpg
b2.jpg

31

ITEM

ID

1

NAME

Foo
2
3

B
C

foo.jpg
bar.jpg
baz.jpg
baz.jpg

Figure 7.4 The collection
table preserves the position of
each list element.

Maps keyB
Maps valueC
Licensed to Thomas Snead <n.ordickan@gmail.com>

149Sets, bags, lists, and maps of value types

H

7.1.8 Sorted and ordered collections

In a startling abuse of the English language, the words sorted and ordered mean differ-
ent things when it comes to persistent collections in Hibernate. You sort a collection in
memory using a Java comparator. You order a collection when it’s loaded from the
database, using an SQL query with an ORDER BY clause.

 Let’s make the map of images a sorted map. You need to change the Java property
and the mapping.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @MapKeyColumn(name = "FILENAME")
 @Column(name = "IMAGENAME")
 @org.hibernate.annotations.SortComparator(ReverseStringComparator.class)
 protected SortedMap<String, String> images =
 new TreeMap<String, String>();

 // ...
}

Sorted collections are a Hibernate feature; hence the org.hibernate.annotations
.SortComparator annotation with an implementation of java.util.Comparator. We
won’t show you this trivial class here; it sorts strings in reverse order.

 The database schema doesn’t change, which is also the case for all following exam-
ples. Look at the illustrations in the previous sections if you need a reminder.

 You map a java.util.SortedSet as shown next.

Listing 7.5 Sorting map entries in memory, using a comparator

PATH: /model/src/main/java/org/jpwh/model/collections/sortedmapofstrings/
Item.java

IMAGE

IMAGENAME

Foo

FILENAME

Bar

Baz

ITEM_ID

1
1
1
2 B1

ITEM

ID

1

NAME

Foo
2
3

B
C

b1.jpg

b2.jpg

foo.jpg
bar.jpg
baz.jpg

2 B2

Figure 7.5 Tables for a map,
using strings as indexes and
elements

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

150 CHAPTER 7 Mapping collections and entity associations

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @Column(name = "FILENAME")
 @org.hibernate.annotations.SortNatural
 protected SortedSet<String> images = new TreeSet<String>();

 // ...
}

Here natural sorting is used, falling back on the String#compareTo() method.
 Unfortunately, you can’t sort a bag; there is no TreeBag. The indexes of list ele-

ments predefine their order.
 Alternatively, instead of switching to Sorted* interfaces, you may want to retrieve

the elements of a collection in the right order from the database, and not sort in
memory. Instead of a java.util.SortedSet, a java.util.LinkedHashSet is used in
the following example.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @Column(name = "FILENAME")
 // @javax.persistence.OrderBy
 @org.hibernate.annotations.OrderBy(clause = "FILENAME desc")
 protected Set<String> images = new LinkedHashSet<String>();

 // ...
}

The LinkedHashSet class has a stable iteration order over its elements, and Hibernate
will fill it in the right order when loading a collection. To do this, Hibernate applies an
ORDER BY clause to the SQL statement that loads the collection. You must declare this
SQL clause with the proprietary @org.hibernate.annotations.OrderBy annotation.
You could even call an SQL function, like @OrderBy("substring(FILENAME, 0, 3)
desc"), which would sort by the first three letters of the filename. Be careful to check
that the DBMS supports the SQL function you’re calling. Furthermore, you can use the
SQL:2003 syntax ORDER BY ... NULLS FIRST|LAST, and Hibernate will automatically
transform it into the dialect supported by your DBMS.

Listing 7.6 Sorting set elements in memory with String#compareTo()

PATH: /model/src/main/java/org/jpwh/model/collections/sortedsetof-
strings/Item.java

Listing 7.7 LinkedHashSet offers insertion order for iteration

PATH: /model/src/main/java/org/jpwh/model/collections/setofstringsorderby/
Item.java

Only one possible
order: "FILENAME asc"
Licensed to Thomas Snead <n.ordickan@gmail.com>

151Sets, bags, lists, and maps of value types

The next example shows the same ordering at load time with a bag mapping.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @Column(name = "FILENAME")
 @org.hibernate.annotations.CollectionId(
 columns = @Column(name = "IMAGE_ID"),
 type = @org.hibernate.annotations.Type(type = "long"),
 generator = Constants.ID_GENERATOR)
 @org.hibernate.annotations.OrderBy(clause = "FILENAME desc")
 protected Collection<String> images = new ArrayList<String>();

 // ...
}

Finally, you can load ordered key/value pairs with a LinkedHashMap.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @MapKeyColumn(name = "FILENAME")
 @Column(name = "IMAGENAME")
 @org.hibernate.annotations.OrderBy(clause = "FILENAME desc")
 protected Map<String, String> images = new LinkedHashMap<String, String>();

 // ...
}

Listing 7.8 ArrayList provides stable iteration order

PATH: /model/src/main/java/org/jpwh/model/collections/bagofstringsorderby/
Item.java

Listing 7.9 LinkedHashMap keeps key/value pairs in order

PATH: /model/src/main/java/org/jpwh/model/collections/mapofstringsorderby/
Item.java

Hibernate @OrderBy vs. JPA @OrderBy
You can apply the annotation @org.hibernate.annotations.OrderBy to any col-
lection; its parameter is a plain SQL fragment that Hibernate attaches to the SQL
statement loading the collection. Java Persistence has a similar annotation,
@javax.persistence.OrderBy. Its (only) parameter is not SQL but someProperty
DESC|ASC. A String or Integer element value has no properties. Hence, when you
apply JPA’s @OrderBy annotation on a collection of basic type, as in the previous
example with a Set<String>, the specification says, “the ordering will be by value
of the basic objects.” This means you can’t change the order: in the previous exam-
ple, the order will always be by FILENAME asc in the generated SQL query. We use
the JPA annotation later when the element value class has persistent properties and
isn’t of basic/scalar type, in section 7.2.2.

Surrogate primary
key allows duplicates
Licensed to Thomas Snead <n.ordickan@gmail.com>

152 CHAPTER 7 Mapping collections and entity associations
Keep in mind that the elements of ordered collections are only in the desired order
when they’re loaded. As soon as you add and remove elements, the iteration order of
the collections might be different than “by filename”; they behave like regular linked
sets, maps, or lists.

 In a real system, it’s likely that you’ll need to keep more than just the image name
and filename. You’ll probably need to create an Image class for this extra information.
This is the perfect use case for a collection of components.

7.2 Collections of components
You mapped an embeddable component ear-
lier: the address of a User in section 5.2. The
current situation is different because an Item
has many references to an Image, as shown in
figure 7.6. The association in the UML diagram
is a composition (the black diamond); hence,
the referenced Images are bound to the life
cycle of the owning Item.

 The code in the next listing shows the new Image embeddable class, capturing all
the properties of an image that interest you.

@Embeddable
public class Image {

 @Column(nullable = false)
 protected String title;

 @Column(nullable = false)
 protected String filename;

 protected int width;

 protected int height;

 // ...
}

First, note that all properties are non-optional, NOT NULL. The size properties are non-
nullable because their values are primitives. Second, you have to consider equality and
how the database and Java tier compare two images.

7.2.1 Equality of component instances

Let’s say you keep several Image instances in a HashSet. You know that sets don’t allow
duplicate elements. How do sets detect duplicates? The HashSet calls the equals()
method on each Image you put in the Set. (It also calls the hashCode() method to get
a hash, obviously.) How many images are in the following collection?

Listing 7.10 Encapsulating all properties of an image

PATH: /model/src/main/java/org/jpwh/model/collections/setofembeddables/
Image.java

title : String

width : int
height : int

Image
0..*

Item filename : String

Figure 7.6 Collection of Image
components in Item
Licensed to Thomas Snead <n.ordickan@gmail.com>

153Collections of components
someItem.getImages().add(new Image(
 "Foo", "foo.jpg", 640, 480
));
someItem.getImages().add(new Image(
 "Bar", "bar.jpg", 800, 600
));
someItem.getImages().add(new Image(
 "Baz", "baz.jpg", 1024, 768
));
someItem.getImages().add(new Image(
 "Baz", "baz.jpg", 1024, 768
));
assertEquals(someItem.getImages().size(), 3);

Did you expect four images instead of three? You’re right: the regular Java equality
check relies on identity. The java.lang.Object#equals() method compares instances
with a==b. Using this procedure, you’d have four instances of Image in the collection.
Clearly, three is the “correct” answer for this use case.

 For the Image class, you don’t rely on Java identity—you override the equals() and
hashCode() methods.

@Embeddable
public class Image {

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 Image other = (Image) o;

 if (!title.equals(other.title)) return false;
 if (!filename.equals(other.filename)) return false;
 if (width != other.width) return false;
 if (height != other.height) return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = title.hashCode();
 result = 31 * result + filename.hashCode();
 result = 31 * result + width;
 result = 31 * result + height;
 return result;
 }

 // ...
}

Listing 7.11 Implementing custom equality with equals() and hashCode()

PATH: /model/src/main/java/org/jpwh/model/collections/setofembeddables/
Image.java

Equality checkB

Must be
symmetric

C

Licensed to Thomas Snead <n.ordickan@gmail.com>

154 CHAPTER 7 Mapping collections and entity associations
This custom equality check in equals() B compares all values of one Image to the
values of another Image. If all values are the same, then the images must be the same.
The hashCode() C method has to be symmetric; if two instances are equal, they must
have the same hash code.

 Why didn’t you override equality before, when you mapped the Address of a User,
in section 5.2? Well, the truth is, you probably should have done that. Our only excuse
is that you won’t have any problems with the regular identity equality unless you put
embeddable components into a Set or use them as keys in a Map. Then you should
redefine equality based on values, not identity. It’s best if you override these methods
on every @Embeddable class; all value types should be compared “by value.”

 Now consider the database primary key: Hibernate will generate a schema that
includes all non-nullable columns of the IMAGE collection table in a composite pri-
mary key. The columns have to be non-nullable because you can’t identify what you
don’t know. This reflects the equality implementation in the Java class. You’ll see the
schema in the next section, with more details about the primary key.

NOTE We have to mention a minor issue with Hibernate’s schema generator:
if you annotate an embeddable’s property with @NotNull instead of
@Column(nullable=false), Hibernate won’t generate a NOT NULL constraint
for the collection table’s column. A Bean Validation check of an instance
works as expected, only the database schema is missing the integrity rule. Use
@Column(nullable=false) if your embeddable class is mapped in a collec-
tion, and the property should be part of the primary key.

The component class is now ready, and you can use it in collection mappings.

7.2.2 Set of components

You map a Set of components as shown next.

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @AttributeOverride(
 name = "filename",
 column = @Column(name = "FNAME", nullable = false)
)
 protected Set<Image> images = new HashSet<Image>();

 // ...
}

As before, the @ElementCollection annotation B is required. Hibernate automatically
knows that the target of the collection is an @Embeddable type, from your declaration of

Listing 7.12 Set of embeddable components with an override

PATH: /model/src/main/java/org/jpwh/model/collections/setofembeddables/
Item.java

RequiredB

Overrides collection table nameC
Licensed to Thomas Snead <n.ordickan@gmail.com>

155Collections of components
a generic collection. The @CollectionTable annotation C overrides the default name
for the collection table, which would have been ITEM_IMAGES.

 The Image mapping defines the columns of the collection table. Just as for a single
embedded value, you can use @AttributeOverride to customize the mapping without
modifying the target embeddable class. Look at the database schema in figure 7.7.

You’re mapping a set, so the primary key of the collection table is a composite of the
foreign key column ITEM_ID and all “embedded” non-nullable columns: TITLE, FNAME,
WIDTH, and HEIGHT.

 The ITEM_ID value wasn’t included in the overridden equals() and hashCode()
methods of Image, as discussed in the previous section. Therefore, if you mix images
of different items in one set, you’ll run into equality problems in the Java tier. In the
database table, you obviously can distinguish images of different items, because the
item’s identifier is included in primary key equality checks.

 If you want to include the Item in the equality routine of the Image, to be symmet-
ric with the database primary key, you need an Image#item property. This is a simple
back-pointer, provided by Hibernate when Image instances are loaded:

@Embeddable
public class Image {

 @org.hibernate.annotations.Parent
 protected Item item;

 // ...
}

You can now get the parent Item value in the equals() and hashCode() implementa-
tions and write, for example, a comparison with this.getItem().getId().equals
(other.getItem().getId()). Be careful if the Item isn’t persistent and has no identi-
fier value; we’ll explore this problem in more depth in section 10.3.2.

 If you need load-time ordering of elements and a stable iteration order with a
LinkedHashSet, use the JPA @OrderBy annotation:

PATH: /model/src/main/java/org/jpwh/model/collections/setofembeddables/
Image.java

ITEM

ID

1

NAME

Foo
2
3

B
C

IMAGE

TITLE

Foo

FNAME

foo.jpg
Bar

Baz

bar.jpg
baz.jpg

ITEM_ID

1
1

1

WIDTH HEIGHT

640 480

800 600

1024 768
2 B b.jpg 640 480

Figure 7.7 Example data
tables for a collection of
components
Licensed to Thomas Snead <n.ordickan@gmail.com>

156 CHAPTER 7 Mapping collections and entity associations

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @OrderBy("filename, width DESC")
 protected Set<Image> images = new LinkedHashSet<Image>();

 // ...
}

The arguments of the @OrderBy annotation are properties of the Image class, fol-
lowed by either ASC for ascending or DESC for descending order. The default is
ascending, so this example sorts ascending by image filename and then descending
by the width of each image. Note that this is different from the proprietary
@org.hibernate.annotations.OrderBy annotation, which takes a plain SQL clause,
as discussed in section 7.1.8.

 Declaring all properties of Image as @NotNull may not be something you want. If any
of the properties are optional, you need a different primary key for the collection table.

7.2.3 Bag of components

You used the @org.hibernate.annotations.CollectionId annotation before to add
a surrogate key column to the collection table. The collection type however, was not a
Set but a Collection, a bag. This is consistent with the udpated schema: If you have a
surrogate primary key column, duplicate “element values” are allowed. Let’s walk
through this with an example.

 First, the Image class may now have nullable properties:

@Embeddable
public class Image {

 @Column(nullable = true)
 protected String title;

 @Column(nullable = false)
 protected String filename;

 protected int width;

 protected int height;

 // ...
}

Remember to account for the optional title of the Image in your overridden
equals() and hashCode() methods, when you compare instances “by value”.

PATH: /model/src/main/java/org/jpwh/model/collections/setofembeddablesor-
derby/Item.java

PATH: /model/src/main/java/org/jpwh/model/collections/bagofembeddables/
Image.java

Can be null if you have a
surrogate primary key
Licensed to Thomas Snead <n.ordickan@gmail.com>

157Collections of components

H

 Next, the mapping of the bag collection in Item:

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 @org.hibernate.annotations.CollectionId(
 columns = @Column(name = "IMAGE_ID"),
 type = @org.hibernate.annotations.Type(type = "long"),
 generator = Constants.ID_GENERATOR)
 protected Collection<Image> images = new ArrayList<Image>();

 // ...
}

As before, in section 7.1.5, you declare an additional surrogate primary key column
IMAGE_ID with the proprietary @org.hibernate.annotations.CollectionId annota-
tion. Figure 7.8 shows the database schema.

The title of the Image with identifier 2 is null.

Next, we look at another way to change the primary key of the collection table with a Map.

7.2.4 Map of component values

If the Images are stored in a Map, the filename can be the map key:

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")

PATH: /model/src/main/java/org/jpwh/model/collections/bagofembeddables/
Item.java

Path: /model/src/main/java/org/jpwh/model/collections/
mapofstringsembeddables/Item.java

ibernate Feature

ITEM

ID

1

NAME

Foo
2
3

B
C

IMAGE

TITLE

Foo

FILENAME

foo.jpg

Baz

bar.jpg
baz.jpg

ITEM_ID

1
1

1

WIDTH HEIGHT

640 480

800 600

1024 768

2 B b.jpg 640 480

IMAGE_ID

1

2
3

5
Baz baz.jpg1 1024 7684

Figure 7.8 Collection of components table with a surrogate primary key column
Licensed to Thomas Snead <n.ordickan@gmail.com>

158 CHAPTER 7 Mapping collections and entity associations
 @MapKeyColumn(name = "FILENAME")
 protected Map<String, Image> images = new HashMap<String, Image>();

 // ...
}

The primary key of the collection table, as shown in figure 7.9, is now the foreign key
column ITEM_ID and the key column of the map, FILENAME.

The embeddable Image class maps all other columns, which may be nullable:

@Embeddable
public class Image {

 @Column(nullable = true)
 protected String title;

 protected int width;

 protected int height;

 // ...
}

In the previous example, the values in the map were instances of an embeddable com-
ponent class and the keys of the map a basic string. Next, you use embeddable types
for both key and value.

7.2.5 Components as map keys

Our final example is a mapping a Map, with
both keys and values of embeddable type, as
you can see in figure 7.10.

 Instead of a string representation, you
can represent a filename with a custom type,
as shown next.

PATH: /model/src/main/java/org/jpwh/model/collections/
mapofstringsembeddables/Image.java

Optional; defaults to IMAGES_KEY

ITEM

ID

1

NAME

Foo
2
3

B
C

IMAGE

FILENAME

foo.jpg
bar.jpg
baz.jpg

ITEM_ID

1
1

1

WIDTH HEIGHT

640 480

800 600

1024 768

2 b.jpg 640 480

TITLE

Foo

Baz

B
Figure 7.9 Database tables
for a map of components

Can be null; not part
of the primary key

title : String
width : int
height : int

Image
0..*

Item

name : String
extension : String

Filename

<<Map Key>>

Figure 7.10 The Item has a Map keyed
by Filename.
Licensed to Thomas Snead <n.ordickan@gmail.com>

159Collections of components

@Embeddable
public class Filename {

 @Column(nullable = false)
 protected String name;

 @Column(nullable = false)
 protected String extension;

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 Filename filename = (Filename) o;

 if (!extension.equals(filename.extension)) return false;
 if (!name.equals(filename.name)) return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = name.hashCode();
 result = 31 * result + extension.hashCode();
 return result;
 }

 // ...
}

If you want to use this class for the keys of a map, the mapped database columns can’t
be nullable, because they’re all part of a composite primary key. You also have to over-
ride the equals() and hashCode() methods, because the keys of a map are a set, and
each Filename must be unique within a given key set.

 You don’t need any special annotations to map the collection:

@Entity
public class Item {

 @ElementCollection
 @CollectionTable(name = "IMAGE")
 protected Map<Filename, Image> images = new HashMap<Filename, Image>();

 // ...
}

Listing 7.13 Representing a filename with a custom type

PATH: /model/src/main/java/org/jpwh/model/collections/mapofembeddables/
Filename.java

PATH: /model/src/main/java/org/jpwh/model/collections/mapofembeddables/
Item.java

Must be NOT NULL: part
of the primary key
Licensed to Thomas Snead <n.ordickan@gmail.com>

160 CHAPTER 7 Mapping collections and entity associations
In fact, you can’t apply @MapKeyColumn and @AttributeOverrides; they have no effect
when the map’s key is an @Embeddable class. The composite primary key of the IMAGE
table includes the ITEM_ID, NAME, and EXTENSION columns, as you can see in figure 7.11.

 A composite embeddable class like Image isn’t limited to simple properties of basic
type. You’ve already seen how you can nest other components, such as City in
Address. You could extract and encapsulate the width and height properties of Image
in a new Dimensions class.

 An embeddable class can also own collections.

7.2.6 Collection in an embeddable component

Suppose that for each Address, you want to store a list of contacts. This is a simple
Set<String> in the embeddable class:

@Embeddable
public class Address {

 @NotNull
 @Column(nullable = false)
 protected String street;

 @NotNull
 @Column(nullable = false, length = 5)
 protected String zipcode;

 @NotNull
 @Column(nullable = false)
 protected String city;

 @ElementCollection
 @CollectionTable(
 name = "CONTACT",
 joinColumns = @JoinColumn(name = "USER_ID"))
 @Column(name = "NAME", nullable = false)
 protected Set<String> contacts = new HashSet<String>();
 // ...
}

Path: /model/src/main/java/org/jpwh/model/collections/embeddablesetofstrings/
Address.java

ITEM

ID

1

NAME

Foo
2
3

B
C

IMAGE

NAME

foo
bar
baz

ITEM_ID

1
1

1

WIDTH HEIGHT

640 480

800 600

1024 768

2 b 640 480

TITLE

Foo

Baz

B

EXTENSION

jpg
jpg
jpg

jpg

Figure 7.11 Database tables for a Map of Images keyed on Filenames

Defaults to USER_CONTACTS

Default

Defaults to CONTACTS
Licensed to Thomas Snead <n.ordickan@gmail.com>

161Mapping entity associations
The @ElementCollection is the only required annotation; the table and column
names have default values. Look at the schema in figure 7.12: the USER_ID column has
a foreign key constraint referencing the owning entity’s table, USERS. The primary key
of the collection table is a composite of the USER_ID and NAME columns, preventing
duplicate elements appropriate for a Set.

 Instead of a Set, you could map a list, bag, or map of basic types. Hibernate also sup-
ports collections of embeddable types, so instead of a simple contact string, you could
write an embeddable Contact class and have Address hold a collection of Contacts.

 Although Hibernate gives you a lot of flexibility with component mappings and
fine-grained models, be aware that code is read more often than written. Think about
the next developer who has to maintain this in a few years.

 Switching focus, we turn our attention to entity associations: in particular, simple
many-to-one and one-to-many associations.

7.3 Mapping entity associations
At the beginning of this chapter, we promised to talk about parent/children relation-
ships. So far, you’ve mapped an entity, Item. Let’s say this is the parent. It has a collec-
tion of children: the collection of Image instances. The term parent/child implies some
kind of life cycle dependency, so a collection of strings or embeddable components is
appropriate. The children are fully dependent on the parent; they will be saved,
updated, and removed always with the parent, never alone. You already mapped a
parent/child relationship! The parent was an entity, and the many children were of
value type.

 Now you want to map a relationship of a different kind: an association between two
entity classes. Their instances don’t have a dependent life cycle. An instance can be
saved, updated, and removed without affecting any other. Naturally, sometimes you have
dependencies even between entity instances. You need more fine-grained control of
how the relationship between two classes affects instance state, not completely depen-
dent (embedded) types. Are we still talking about a parent/child relationship? It
turns out that parent/child is vague, and everyone has their own definition. We’ll try
not to use that term from now on and will instead rely on more-precise or at least well-
defined vocabulary.

 The relationship we’ll explore in the follow-
ing sections is always the same, between the Item
and Bid entity classes, as shown in figure 7.13.
The association from Bid to Item is a many-to-one

ID << PK >>

STREET
ZIPCODE
CITY

<< Table >>
USERS

USER_ID << PK >> << FK >>
NAME << PK >>

<< Table >>
CONTACT

Figure 7.12 USER_ID has a foreign key
constraint referencing USERS.

Item Bid

Figure 7.13 Relationship between
Item and Bid
Licensed to Thomas Snead <n.ordickan@gmail.com>

162 CHAPTER 7 Mapping collections and entity associations
association. Later you’ll make this association bidirectional, so the inverse association
from Item to Bid will be one-to-many.

 The many-to-one association is the simplest, so we’ll talk about it first. The other
associations, many-to-many and one-to-one, are more complex and we’ll discuss them in
the next chapter.

 Let’s start with the many-to-one association.

7.3.1 The simplest possible association

We call the mapping of the Bid#item prop-
erty a unidirectional many-to-one association.
Before we discuss this mapping, look at the
database schema in figure 7.14.

@Entity
public class Bid {

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "ITEM_ID", nullable = false)
 protected Item item;

 // ...
}

The @ManyToOne annotation marks a property as an entity association, and it’s
required. Unfortunately, its fetch parameter defaults to EAGER: this means the associ-
ated Item is loaded whenever the Bid is loaded. We usually prefer lazy loading as a
default strategy, and we’ll talk more about it later in section 12.1.1.

 A many-to-one entity association maps naturally to a foreign key column: ITEM_ID in
the BID table. In JPA, this is called the join column. You don’t need anything but the
@ManyToOne annotation on the property. The default name for the join column is
ITEM_ID: Hibernate automatically uses a combination of the target entity name and its
identifier property, separated with an underscore.

 You can override the foreign key column with the @JoinColumn annotation. We
used it here for a different reason: to make the foreign key column NOT NULL when
Hibernate generates the SQL schema. A bid always has to have a reference to an item;
it can’t survive on its own. (Note that this already indicates some kind of life cycle
dependency you have to keep in mind.) Alternatively, you could mark this association
as non-optional with either @ManyToOne(optional = false) or, as usual, Bean Valida-
tion’s @NotNull.

 This was easy. It’s critically important to realize that you can write a complete and
complex application without using anything else.

Listing 7.14 Bid has a single reference to an Item

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
bidirectional/Bid.java

Defaults to EAGER

ID << PK >>
NAME
...

<< Table >>
ITEM ID << PK >>

ITEM_ID << FK >>
AMOUNT
...

<< Table >>
BID

Figure 7.14 A many-to-one relationship in
the SQL schema
Licensed to Thomas Snead <n.ordickan@gmail.com>

163Mapping entity associations
 You don’t need to map the other side of this relationship; you can ignore the one-to-
many association from Item to Bid. There is only a foreign key column in the database
schema, and you’ve already mapped it. We are serious about this: when you see a for-
eign key column and two entity classes involved, you should probably map it with
@ManyToOne and nothing else. You can now get the Item of each Bid by calling someBid
.getItem(). The JPA provider will dereference the foreign key and load the Item for
you; it also takes care of managing the foreign key values. How do you get all of an
item’s bids? Well, you write a query and execute it with EntityManager, in whatever
query language Hibernate supports. For example, in JPQL, you’d use select b from
Bid b where b.item = :itemParameter. One of the reasons you use a full ORM tool like
Hibernate is, of course, that you don’t want to write and execute that query yourself.

7.3.2 Making it bidirectional

At the beginning of this chapter, we had a list of reasons a mapping of the collection
Item#images was a good idea. Let’s do the same for the collection Item#bids. This
collection would implement the one-to-many association between Item and Bid entity
classes. If you create and map this collection property, you get the following:

 Hibernate executes the SQL query SELECT * from BID where ITEM_ID = ? auto-
matically when you call someItem.getBids() and start iterating through the
collection elements.

 You can cascade state changes from an Item to all referenced Bids in the collec-
tion. You can select what life cycle events should be transitive: for example, you
could declare that all referenced Bid instances should be saved when the
Item is saved, so you don’t have to call EntityManager#persist() repeatedly
for all bids.

Well, that isn’t a very long list. The primary benefit of a one-to-many mapping is naviga-
tional access to data. It’s one of the core promises of ORM, enabling you to access data
by calling only methods of your Java domain model. The ORM engine is supposed
to take care of loading the required data in a smart way while you work with a high-
level interface of your own design: someItem.getBids().iterator().next().get-
Amount(), and so on.

 The fact that you can optionally cascade some state changes to related instances is
a nice bonus. Consider, though, that some dependencies indicate value types at the
Java level, not entities. Ask yourself if any table in the schema will have a BID_ID for-
eign key column. If not, map the Bid class as @Embeddable, not @Entity, using the
same tables as before but with a different mapping with fixed rules for transitive state
changes. If any other table has a foreign key reference on any BID row, you need a
shared Bid entity; it can’t be mapped embedded with an Item.

 So, should you map the Item#bids collection at all? You get navigational data
access, but the price you pay is additional Java code and significantly more complexity.
This is frequently a difficult decision. How often will you call someItem.getBids() in
your application and then access/display all bids in a predefined order? If you only
want to display a subset of bids, or if you need to retrieve them in a different order
Licensed to Thomas Snead <n.ordickan@gmail.com>

164 CHAPTER 7 Mapping collections and entity associations
every time, then you need to write and execute queries manually anyway. The one-to-
many mapping and its collection would only be maintenance baggage. In our experi-
ence, this is a frequent source of problems and bugs, especially for ORM beginners.

 In CaveatEmptor’s case, the answer is yes, you frequently call someItem.getBids()
and then show a list to the user who wants to partic-
ipate in an auction. Figure 7.15 shows the updated
UML diagram with this bidirectional association.

 The mapping of the collection and the one-to-
many side is as follows.

@Entity
public class Item {

 @OneToMany(mappedBy = "item",
 fetch = FetchType.LAZY)
 protected Set<Bid> bids = new HashSet<>();
 // ...
}

The @OneToMany annotation is required. In this case, you also have to set the mappedBy
parameter. The argument is the name of the property on the “other side.”

 Look again at the other side: the many-to-one mapping in listing 7.15. The property
name in the Bid class is item. The bid side is responsible for the foreign key column,
ITEM_ID, which you mapped with @ManyToOne. mappedBy tells Hibernate to “load this
collection using the foreign key column already mapped by the given property”—in
this case, Bid#item. The mappedBy parameter is always required when the one-to-many
is bidirectional, when you already mapped the foreign key column. We’ll talk about
that again in the next chapter.

 The default for the fetch parameter of a collection mapping is always Fetch-
Type.LAZY. You won’t need this option in the future. It’s a good default setting; the
opposite would be the rarely needed EAGER. You don’t want all the bids eagerly loaded
every time you load an Item. They should be loaded when accessed, on demand.

 The second reason for mapping the Item#bids collection is the ability to cascade
state changes.

7.3.3 Cascading state

If an entity state change can be cascaded across an association to another entity, you
need fewer lines of code to manage relationships. The following code creates a new
Item and a new Bid and then links them:

Item someItem = new Item("Some Item");

Bid someBid = new Bid(new BigDecimal("123.00"), someItem);
someItem.getBids().add(someBid);

Listing 7.15 Item has a collection of Bid references

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
bidirectional/Item.java

Required for
bidirectional
association

Default

Don’t forget!

Item Bid0..*

Figure 7.15 Bidirectional
association between Item and Bid
Licensed to Thomas Snead <n.ordickan@gmail.com>

165Mapping entity associations
You have to consider both sides of this relationship: the Bid constructor accepts an
item, used to populate Bid#item. To maintain integrity of the instances in memory,
you need to add the bid to Item#bids. Now the link is complete from the perspective
of your Java code; all references are set. If you aren’t sure why you need this code,
please see section 3.2.4.

 Let’s save the item and its bids in the database, first without and then with transi-
tive persistence.

ENABLING TRANSITIVE PERSISTENCE

With the current mapping of @ManyToOne and @OneToMany, you need the following
code to save a new Item and several Bid instances.

Item someItem = new Item("Some Item");
em.persist(someItem);

Bid someBid = new Bid(new BigDecimal("123.00"), someItem);
someItem.getBids().add(someBid);
em.persist(someBid);

Bid secondBid = new Bid(new BigDecimal("456.00"), someItem);
someItem.getBids().add(secondBid);
em.persist(secondBid);

tx.commit();

When you create several bids, calling persist() on each seems redundant. New
instances are transient and have to be made persistent. The relationship between Bid
and Item doesn’t influence their life cycle. If Bid were to be a value type, the state of a
Bid would be automatically the same as the owning Item. In this case, however, Bid
has its own completely independent state.

 We said earlier that fine-grained control is sometimes necessary to express the
dependencies between associated entity classes; this is such a case. The mechanism for
this in JPA is the cascade option. For example, to save all bids when the item is saved,
map the collection as shown next.

@Entity
public class Item {

 @OneToMany(mappedBy = "item", cascade = CascadeType.PERSIST)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

Listing 7.16 Managing independent entity instances separately

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToManyBidirectional.java

Listing 7.17 Cascading persistent state from Item to all bids

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
cascadepersist/Item.java

Don’t forget!

Dirty checking; SQL execution
Licensed to Thomas Snead <n.ordickan@gmail.com>

166 CHAPTER 7 Mapping collections and entity associations
Cascading options are per operation you’d like to be transitive, so you use Cascade-
Type.PERSIST for the EntityManager#persist() operation. You can now simplify the
code that links items and bids and then saves them.

Item someItem = new Item("Some Item");
em.persist(someItem);

Bid someBid = new Bid(new BigDecimal("123.00"), someItem);
someItem.getBids().add(someBid);

Bid secondBid = new Bid(new BigDecimal("456.00"), someItem);
someItem.getBids().add(secondBid);

tx.commit();

At commit time, Hibernate examines the managed/persistent Item instance and
looks into the bids collection. It then calls persist() internally on each of the refer-
enced Bid instances, saving them as well. The value stored in the column BID#ITEM_ID
is taken from each Bid by inspecting the Bid#item property. The foreign key column
is “mapped by” with @ManyToOne on that property.

 The @ManyToOne annotation also has the cascade option. You won’t use this often.
For example, we can’t really say “when the bid is saved, also save the item”. The item
has to exist beforehand; otherwise, the bid won’t be valid in the database. Think about
another possible @ManyToOne: the Item#seller property. The User has to exist before
they can sell an Item.

 Transitive persistence is a simple concept, frequently useful with @OneToMany or
@ManyToMany mappings. On the other hand, you have to apply transitive deletion
carefully.

CASCADING DELETION

It seems reasonable that deletion of an item implies deletion of all the bids for the
item, because they’re no longer relevant alone. This is what the composition (the
filled-out diamond) in the UML diagram means. With the current cascading options,
you have to write the following code to delete an item:

Item item = em.find(Item.class, ITEM_ID);

for (Bid bid : item.getBids()) {
 em.remove(bid);
}

em.remove(item);

Listing 7.18 All referenced bids are automatically made persistent

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToManyCascadePersist.java

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToManyCascadePersist.java

Saves the bids automatically
(later, at flush time)

Dirty checking;
SQL execution

Removes bidsB

Removes ownerC
Licensed to Thomas Snead <n.ordickan@gmail.com>

167Mapping entity associations
First you remove the bids B, and then you remove the owner: the Item C. The deletion
order is important. If you remove the Item first, you’ll get a foreign key–constraint vio-
lation, because SQL operations are queued in the order of your remove() calls. First the
row(s) in the BID table have to be deleted, and then the row in the ITEM table.

 JPA offers a cascading option to help with this. The persistence engine can remove
an associated entity instance automatically.

@Entity
public class Item {

 @OneToMany(mappedBy = "item",
 cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

Just as before with PERSIST, Hibernate now cascades the remove() operation on this
association. If you call EntityManager#remove() on an Item, Hibernate loads the
bids collection elements and internally calls remove() on each instance:

Item item = em.find(Item.class, ITEM_ID);
em.remove(item);

The collection must be loaded because each Bid is an independent entity instance
and has to go through the regular life cycle. If there is an @PreRemove callback
method present on the Bid class, Hibernate has to execute it. You’ll see more on
object states and callbacks in chapter 13.

 This deletion process is inefficient: Hibernate must always load the collection and
delete each Bid individually. A single SQL statement would have the same effect on
the database: delete from BID where ITEM_ID = ?.

 You know this because nobody in the database has a foreign key reference on the
BID table. Hibernate doesn’t know this and can’t search the whole database for any
row that might have a BID_ID.

 If Item#bids was instead a collection of embeddable components, someItem
.getBids().clear() would execute a single SQL DELETE. With a collection of value
types, Hibernate assumes that nobody can possibly hold a reference to the bids, and
removing only the reference from the collection makes it orphan removable data.

Listing 7.19 Cascading removal from Item to all bids

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
cascaderemove/Item.java

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToManyCascadeRemove.java

Deletes bids one by
one after loading them
Licensed to Thomas Snead <n.ordickan@gmail.com>

168 CHAPTER 7 Mapping collections and entity associations
ENABLING ORPHAN REMOVAL

JPA offers a (questionable) flag that enables the same behavior for @OneToMany (and
only @OneToMany) entity associations.

@Entity
public class Item {

 @OneToMany(mappedBy = "item",
 cascade = CascadeType.PERSIST,
 orphanRemoval = true)
 protected Set<Bid> bids = new HashSet<>();
 // ...
}

The orphanRemoval=true argument tells Hibernate that you want to permanently
remove a Bid when it’s removed from the collection. Here is an example of deleting a
single Bid:

Item item = em.find(Item.class, ITEM_ID);
Bid firstBid = item.getBids().iterator().next();
item.getBids().remove(firstBid);

Hibernate monitors the collection and on transaction commit will notice that you
removed an element from the collection. Hibernate now considers the Bid to be
orphaned. You guarantee that nobody else had a reference to it; the only reference
was the one you just removed from the collection. Hibernate automatically executes
an SQL DELETE to remove the Bid instance in the database.

 You still won’t get the clear() one-shot DELETE as with a collection of components.
Hibernate respects the regular entity-state transitions, and the bids are all loaded and
removed individually.

 Why is orphan removal questionable? Well, it’s fine in this example case. There is so
far no other table in the database with a foreign key reference on BID. There are no con-
sequences to deleting a row from the BID table; the only in-memory references to bids
are in Item#bids. As long as all of this is true, there is no problem with enabling orphan
removal. It’s a convenient option, for example, when your presentation layer can
remove an element from a collection to delete something; you only work with domain
model instances, and you don’t need to call a service to perform this operation.

 Consider what happens when you create a User#bids collection mapping—another
@OneToMany, as shown in figure 7.16. This is a good time to test your knowledge of
Hibernate: what will the tables and schema look like after this change? (Answer: The
BID table has a BIDDER_ID foreign key column, referencing USERS.)

Listing 7.20 Enabling orphan removal on a @OneToMany collection

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
orphanremoval/Item.java

Path: /examples/src/test/java/org/jpwh/test/associations/
OneToManyOrphanRemoval.java

Includes
CascadeType.REMOVE

One bid removed
Licensed to Thomas Snead <n.ordickan@gmail.com>

169Mapping entity associations

H

The test shown in the following listing won’t pass.

User user = em.find(User.class, USER_ID);
assertEquals(user.getBids().size(), 2);

Item item = em.find(Item.class, ITEM_ID);
Bid firstBid = item.getBids().iterator().next();
item.getBids().remove(firstBid);

// FAILURE!
// assertEquals(user.getBids().size(), 1);
assertEquals(user.getBids().size(), 2);

Hibernate thinks the removed Bid is orphaned and deletable; it will be deleted auto-
matically in the database, but you still hold a reference to it in the other collection,
User#bids. The database state is fine when this transaction commits; the deleted row
of the BID table contained both foreign keys, ITEM_ID and BIDDER_ID. You have an
inconsistency in memory, because saying, “Remove the entity instance when the refer-
ence is removed from the collection” naturally conflicts with shared references.

 Instead of orphan removal, or even CascadeType.REMOVE, always consider a sim-
pler mapping. Here, Item#bids would be fine as a collection of components, mapped
with @ElementCollection. The Bid would be @Embeddable and have an @ManyToOne
bidder property, referencing a User. (Embeddable components can own unidirec-
tional associations to entities.)

 This would provide the life cycle you’re looking for: a full dependency on the own-
ing entity. You have to avoid shared references; the UML diagram (figure 7.16) makes
the association from Bid to User unidirectional. Drop the User#bids collection; you
don’t need this @OneToMany. If you need all the bids made by a user, write a query:
select b from Bid b where b.bidder = :userParameter. (In the next chapter,
you’ll complete this mapping with an @ManyToOne in an embeddable component.)

ENABLING ON DELETE CASCADE ON THE FOREIGN KEY

All the removal operations we’ve shown are inefficient; bids have to be loaded into
memory, and many SQL DELETEs are necessary. SQL databases support a more efficient
foreign key feature: the ON DELETE option. In DDL, it looks like this: foreign key
(ITEM_ID) references ITEM on delete cascade for the BID table.

Listing 7.21 Hibernate doesn’t clean up in-memory references after database removal

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToManyOrphanRemoval.java

Item Bid0..* User0..*
Figure 7.16 Bidirectional
associations between Item, Bid,
and User

User made two bids

One bid removed

Still two!

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

170 CHAPTER 7 Mapping collections and entity associations
 This option tells the database to maintain referential integrity of composites trans-
parently for all applications accessing the database. Whenever you delete a row in the
ITEM table, the database will automatically delete any row in the BID table with the
same ITEM_ID key value. You only need one DELETE statement to remove all depen-
dent data recursively, and nothing has to be loaded into application (server) memory.

 You should check whether your schema already has this option enabled on foreign
keys. If you want this option added to the Hibernate-generated schema, use the Hiber-
nate @OnDelete annotation.

@Entity
public class Item {

 @OneToMany(mappedBy = "item", cascade = CascadeType.PERSIST)
 @org.hibernate.annotations.OnDelete(
 action = org.hibernate.annotations.OnDeleteAction.CASCADE
)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

One of the Hibernate quirks is visible here: the @OnDelete annotation affects only
schema generation by Hibernate. Settings that affect schema generation are usually
on the “other” mappedBy side, where the foreign key/join column is mapped. The
@OnDelete annotation is usually next to the @ManyToOne in Bid. When the associa-
tion is mapped bidirectional, however, Hibernate will only recognize it on the @One-
ToMany side.

 Enabling foreign key cascade deletion in the database doesn’t influence Hibernate’s
runtime behavior. You can still run into the same problem as shown in listing 7.21. Data
in memory may no longer accurately reflect the state in the database. If all related rows
in the BID table are automatically removed when a row in the ITEM table is deleted, your
application code is responsible for cleaning up references and catching up with data-
base state. If you aren’t careful, you may even end up saving something that you or
someone else previously deleted.

 The Bid instances don’t go through the regular life cycle, and callbacks such as
@PreRemove have no effect. Additionally, Hibernate doesn’t automatically clear the
optional second-level global cache, which potentially contains stale data. Fundamen-
tally, the kinds of problems you may encounter with database-level foreign key cascad-
ing are the same as when another application besides yours is accessing the same
database or any other database trigger makes changes. Hibernate can be a very effec-
tive utility in such a scenario, but there are other moving parts to consider. We’ll talk
more about concurrency and caching later in this book.

Listing 7.22 Generating foreign key ON DELETE CASCADE in the schema

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
ondeletecascade/Item.java

Hibernate quirk: schema options
are usually on the mappedBy side.
Licensed to Thomas Snead <n.ordickan@gmail.com>

171Summary
 If you work on a new schema, the easiest approach is to not enable database-level
cascading and map a composition relationship in your domain model as embed-
ded/embeddable, not as an entity association. Hibernate can then execute efficient
SQL DELETE operations to remove the entire composite. We made this recommenda-
tion in the previous section: if you can avoid shared references, map the Bid as an
@ElementCollection in Item, not as a standalone entity with @ManyToOne and @OneTo-
Many associations. Alternatively, of course, you might not map any collections at all
and use only the simplest mapping: a foreign key column with @ManyToOne, unidirec-
tional between @Entity classes.

7.4 Summary
 Using simple collection mappings, such as a Set<String>, you worked through

a rich set of interfaces and implementations.
 You know how sorted collections work as well as Hibernate’s options for letting

the database return the collection elements in the desired order.
 We discussed complex collections of user-defined embeddable types and sets,

bags, and maps of components.
 You saw how to use components as both keys and values in maps, and a collec-

tion in an embeddable component.
 Mapping the first foreign key column to an entity many-to-one association

makes it bidirectional as a one-to-many. You also learned about several cascad-
ing options.

 We covered key concepts of object/relational mapping. Once you’ve mapped
your first @ManyToOne and maybe a simple collection of strings, the worst will be
behind you.

 Be sure you try the code (and watch the SQL log)!
Licensed to Thomas Snead <n.ordickan@gmail.com>

Advanced entity
association mappings
In the previous chapter, we demonstrated a unidirectional many-to-one association,
made it bidirectional, and finally enabled transitive state changes with cascading
options. One reason we discuss more advanced entity mappings in a separate chap-
ter is that we consider quite a few of them rare, or at least optional. It’s possible to
only use component mappings and many-to-one (occasionally one-to-one) entity asso-
ciations. You can write a sophisticated application without ever mapping a collec-
tion! We’ve shown the particular benefits you gain from collection mappings in the
previous chapter; the rules for when a collection mapping is appropriate also apply
to all examples in this chapter. Always make sure you actually need a collection
before you attempt a complex collection mapping.

 Let’s start with mappings that don’t involve collections: one-to-one entity
associations.

In this chapter
 Mapping one-to-one entity associations

 One-to-many mapping options

 Many-to-many and ternary entity relationships
172

Licensed to Thomas Snead <n.ordickan@gmail.com>

173One-to-one associations
8.1 One-to-one associations
We argued in section 5.2 that the relationships between User and Address (the user
has a billingAddress, homeAddress, and shippingAddress) are best represented
with an @Embeddable component mapping. This is usually the simplest way to repre-
sent one-to-one relationships, because the life cycle is typically dependent in such a case.
It’s either an aggregation or a composition in UML.

 What about using a dedicated ADDRESS table and mapping both User and Address
as entities? One benefit of this model is the possibility for shared references—another
entity class (let’s say Shipment) can also have a reference to a particular Address
instance. If a User also has a reference to this instance, as their shippingAddress, the
Address instance has to support shared references and needs its own identity.

 In this case, User and Address classes have a true one-to-one association. Look at the
revised class diagram in figure 8.1.

There are several possible mappings for one-to-one associations. The first strategy we
consider is a shared primary key value.

8.1.1 Sharing a primary key

Rows in two tables related by a primary key association share the same primary key val-
ues. The User has the same primary key value as their (shipping-) Address. The main
difficulty with this approach is ensuring that associated instances are assigned the
same primary key value when the instances are saved. Before we look at this issue, let’s
create the basic mapping. The Address class is now a standalone entity; it’s no longer
a component.

Major new features in JPA 2
 Many-to-one and one-to-one associations may now be mapped with an inter-

mediate join/link table.
 Embeddable component classes may have unidirectional associations to enti-

ties, even many-valued with collections.

street : String
zipcode : String
city : String

Address
shipping

createdOn : Date
state : ShipmentState

Shipmentdeliveryusername : String

lastname : String

User

firstname : String

Figure 8.1 Address as an entity with two associations, supporting shared references
Licensed to Thomas Snead <n.ordickan@gmail.com>

174 CHAPTER 8 Advanced entity association mappings

D
to

@Entity
public class Address {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull
 protected String street;

 @NotNull
 protected String zipcode;

 @NotNull
 protected String city;

 // ...
}

The User class is also an entity, with the shippingAddress association property.

@Entity
@Table(name = "USERS")
public class User {

 @Id
 protected Long id;

 @OneToOne(
 fetch = FetchType.LAZY,
 optional = false
)
 @PrimaryKeyJoinColumn
 protected Address shippingAddress;

 protected User() {
 }

 public User(Long id, String username) {
 this.id = id;
 this.username = username;
 }
 // ...
}

Listing 8.1 Address class as a standalone entity

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/
sharedprimarykey/Address.java

Listing 8.2 User entity and shippingAddress association

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/
sharedprimarykey/User.java

Uses application-assigned
identifier value

B

Marks entity-valued property as a
one-to-one association

C

efaults
EAGER D Required for lazy loading with proxiesE

Selects shared primary
key strategyF

Identifier
requiredG
Licensed to Thomas Snead <n.ordickan@gmail.com>

175One-to-one associations
For the User, you don’t declare an identifier generator B. As mentioned in section
4.2.4, this is one of the rare cases when you use an application-assigned identifier value.
You can see that the constructor design (weakly) enforces this G: the public API of
the class requires an identifier value to create an instance.

 Two new annotations are present in the example. @OneToOne C does what you’d
expect: it’s required to mark an entity-valued property as a one-to-one association. As
usual, you should prefer the lazy-loading strategy, so you override the default Fetch-
Type.EAGER with LAZY D. The second new annotation is @PrimaryKeyJoinColumn F,
selecting the shared primary key strategy you’d like to map. This is now a unidirec-
tional shared primary key one-to-one association mapping, from User to Address.

 The optional=false switch E defines that a User must have a shippingAddress.
The Hibernate-generated database schema reflects this with a foreign key constraint.
The primary key of the USERS table also has a foreign key constraint referencing the
primary key of the ADDRESS table. See the tables in figure 8.2.

The JPA specification doesn’t include a standardized method to deal with the problem
of shared primary key generation. This means you’re responsible for setting the iden-
tifier value of a User instance correctly before you save it, to the identifier value of the
linked Address instance:

Address someAddress =
 new Address("Some Street 123", "12345", "Some City");

em.persist(someAddress);

User someUser =
 new User(
 someAddress.getId(),
 "johndoe"
);

em.persist(someUser);

someUser.setShippingAddress(someAddress);

After persisting the Address, you take its generated identifier value and set it on the
User before saving it, too. The last line of this example is optional: your code now
expects a value when calling someUser.getShippingAddress(), so you should set it.
Hibernate won’t give you an error if you forget this last step.

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToOneSharedPrimaryKey.java

ID << PK >>
STREET
ZIPCODE
CITY

<< Table >>
ADDRESS

ID << PK >> << FK >>
USERNAME
FIRSTNAME
LASTNAME

<< Table >>
USERS

Figure 8.2 The USERS table has a foreign
key constraint on its primary key.

Generates
identifier value

Assigns the same
identifier value

Optional
Licensed to Thomas Snead <n.ordickan@gmail.com>

176 CHAPTER 8 Advanced entity association mappings
 There are three problems with the mapping and code:

 You have to remember that the Address must be saved first and then get its
identifier value after the call to persist(). This is only possible if the Address
entity has an identifier generator that produces values on persist() before the
INSERT, as we discussed in section 4.2.5. Otherwise, someAddress.getId()
returns null, and you can’t manually set the identifier value of the User.

 Lazy loading with proxies only works if the association is non-optional. This is
often a surprise for developers new to JPA. The default for @OneToOne is Fetch-
Type.EAGER: when Hibernate loads a User, it loads the shippingAddress right
away. Conceptually, lazy loading with proxies only makes sense if Hibernate knows
that there is a linked shippingAddress. If the property were nullable, Hibernate
would have to check in the database whether the property value is NULL, by que-
rying the ADDRESS table. If you have to check the database, you might as well load
the value right away, because there would be no benefit in using a proxy.

 The one-to-one association is unidirectional; sometimes you need bidirectional
navigation.

The first issue has no other solution, and it’s one of the reasons you should always pre-
fer identifier generators capable of producing values before any SQL INSERT.

 An @OneToOne(optional=true) association doesn’t support lazy loading with prox-
ies. This is consistent with the JPA specification. FetchType.LAZY is a hint for the per-
sistence provider, not a requirement. You could get lazy loading of nullable @OneToOne
with bytecode instrumentation, as we’ll show in section 12.1.3.

 As for the last problem, if you make the association bidirectional, you can also use
a special Hibernate-only identifier generator to help with assigning key values.

8.1.2 The foreign primary key generator

A bidirectional mapping always requires a mappedBy side. Here, pick the User side
(this is a matter of taste and perhaps other, secondary requirements):

@Entity
@Table(name = "USERS")
public class User {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @OneToOne(
 mappedBy = "user",
 cascade = CascadeType.PERSIST
)
 protected Address shippingAddress;
 // ...
}

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/
foreigngenerator/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

177One-to-one associations

cons
of
Compare this with the previous mapping: you add the mappedBy option, telling Hiber-
nate that the lower-level details are now mapped by the “property on the other side,”
named user. As a convenience, you enable CascadeType.PERSIST; transitive persis-
tence will make it easier to save the instances in the right order. When you make the
User persistent, Hibernate makes the shippingAddress persistent and generates the
identifier for the primary key automatically.

 Next, let’s look at the “other side”: the Address.

@Entity
public class Address {

 @Id
 @GeneratedValue(generator = "addressKeyGenerator")
 @org.hibernate.annotations.GenericGenerator(
 name = "addressKeyGenerator",
 strategy = "foreign",
 parameters =
 @org.hibernate.annotations.Parameter(
 name = "property", value = "user"
)
)
 protected Long id;

 @OneToOne(optional = false)
 @PrimaryKeyJoinColumn
 protected User user;

 protected Address() {
 }

 public Address(User user) {
 this.user = user;
 }

 public Address(User user, String street, String zipcode, String city) {
 this.user = user;
 this.street = street;
 this.zipcode = zipcode;
 this.city = city;
 }
 // ...
}

That’s quite a bit of new code. Let’s start with the identifier property and then the one-
to-one association.

Listing 8.3 Address has the special foreign key generator

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/
foreigngenerator/Address.java

Defines a primary
key value generator

B

Creates foreign
key constraint

C

Address must have a
reference to a UserD

Public
tructors
Address

E

Licensed to Thomas Snead <n.ordickan@gmail.com>

178 CHAPTER 8 Advanced entity association mappings

H

 The @GenericGenerator on the identifier property B defines a special-purpose
primary key value generator with the Hibernate-only foreign strategy. We didn’t men-
tion this generator in the overview in section 4.2.5; the shared primary key one-to-one
association is its only use case. When you persist an instance of Address, this special
generator grabs the value of the user property and takes the identifier value of the
referenced entity instance, the User.

 Let’s continue with the @OneToOne mapping C. The user property is marked as a
shared primary key entity association with the @PrimaryKeyJoinColumn annotation
D. It’s set to optional=false, so an Address must have a reference to a User. The
public constructors of Address E now require a User instance. The foreign key con-
straint reflecting optional=false is now on the primary key column of the ADDRESS
table, as you can see in the schema in figure 8.3.

You no longer have to call someAddress.getId() or someUser.getId()in your unit of
work. Storing data is simplified:

User someUser = new User("johndoe");

Address someAddress =
 new Address(
 someUser,
 "Some Street 123", "12345", "Some City"
);

someUser.setShippingAddress(someAddress);

em.persist(someUser);

Don’t forget that you must link both sides of a bidirectional entity association. Note
that with this mapping, you won’t get lazy loading of User#shippingAddress (it’s
optional/nullable), but you can load Address#user on demand with proxies (it’s non-
optional).

 Shared primary key one-to-one associations are relatively rare. Instead, you’ll often
map a “to-one” association with a foreign key column and a unique constraint.

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToOneForeignGenerator.java

ibernate Feature

ID << PK >> << FK >>
STREET
ZIPCODE
CITY

<< Table >>
ADDRESS

ID << PK >>
USERNAME
FIRSTNAME
LASTNAME

<< Table >>
USERS

Figure 8.3 The ADDRESS table has a
foreign key constraint on its primary key.

Link

Transitive persistence of shippingAddress
Licensed to Thomas Snead <n.ordickan@gmail.com>

179One-to-one associations
8.1.3 Using a foreign key join column

Instead of sharing a primary key, two rows can have a relationship based on a simple
additional foreign key column. One table has a foreign key column that references
the primary key of the associated table. (The source and target of this foreign key con-
straint can even be the same table: we call this a self-referencing relationship.)

 Let’s change the mapping for User#shippingAddress. Instead of the shared pri-
mary key, you now add a SHIPPINGADDRESS_ID column in the USERS table. Addition-
ally, the column has a UNIQUE constraint, so no two users can reference the same
shipping address. Look at the schema in figure 8.4.

The Address is a regular entity class, like the first one we showed in this chapter in list-
ing 8.1. The User entity class has the shippingAddress property, implementing this
unidirectional association:

@Entity
@Table(name = "USERS")
public class User {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @OneToOne(
 fetch = FetchType.LAZY,
 optional = false,
 cascade = CascadeType.PERSIST
)
 @JoinColumn(unique = true)
 protected Address shippingAddress;

 // ...
}

You don’t need any special identifier generators or primary key assignment; instead of
@PrimaryKeyJoinColumn, you apply the regular @JoinColumn. If you’re more familiar
with SQL than JPA, it helps to think “foreign key column” every time you see @Join-
Column in a mapping.

 You should enable lazy loading for this association. Unlike for shared primary keys,
you don’t have a problem with lazy loading here: When a row of the USERS table has
been loaded, it contains the value of the SHIPPINGADDRESS_ID column. Hibernate

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/foreignkey/
User.java

ID << PK >>
STREET
ZIPCODE
CITY

<< Table >>
ADDRESSID << PK >>

SHIPPINGADDRESS_ID << FK >> << UNIQUE >>
USERNAME
FIRSTNAME
LASTNAME

<< Table >>
USERS

Figure 8.4 A one-to-one
join column association
between the USERS and
ADDRESS tables

NOT NULL

Defaults to SHIPPINGADDRESS_ID
Licensed to Thomas Snead <n.ordickan@gmail.com>

180 CHAPTER 8 Advanced entity association mappings
therefore knows whether an ADDRESS row is present, and a proxy can be used to load
the Address instance on demand.

 In the mapping, though, you set optional=false, so the user must have a shipping
address. This won’t affect loading behavior but is a logical consequence of the
unique=true setting on the @JoinColumn. This setting adds the unique constraint to
the generated SQL schema. If the values of the SHIPPINGADDRESS_ID column must be
unique for all users, only one user could possibly have “no shipping address.” Hence,
nullable unique columns typically aren’t meaningful.

 Creating, linking, and storing instances is straightforward:

User someUser =
 new User("johndoe");

Address someAddress =
 new Address("Some Street 123", "12345", "Some City");

someUser.setShippingAddress(someAddress);

em.persist(someUser);

You’ve now completed two basic one-to-one association mappings: the first with a shared
primary key, the second with a foreign key reference and a unique column constraint.
The last option we want to discuss is a bit more exotic: mapping a one-to-one association
with the help of an additional table.

8.1.4 Using a join table

You’ve probably noticed that nullable columns can be problematic. Sometimes a bet-
ter solution for optional values is an intermediate table, which contains a row if a link
is present, or doesn’t if not.

 Let’s consider the Shipment entity in CaveatEmptor and discuss its purpose. Sellers
and buyers interact in CaveatEmptor by starting and bidding on auctions. Shipping
goods seems outside the scope of the application; the seller and the buyer agree on a
method of shipment and payment after the auction ends. They can do this offline,
outside of CaveatEmptor.

 On the other hand, you could offer an escrow service in CaveatEmptor. Sellers
would use this service to create a trackable shipment once the auction ends. The
buyer would pay the price of the auction item to a trustee (you), and you’d inform the
seller that the money was available. Once the shipment arrived and the buyer
accepted it, you’d transfer the money to the seller.

 If you’ve ever participated in an online auction of significant value, you’ve proba-
bly used such an escrow service. But you want more in CaveatEmptor: not only will you
provide trust services for completed auctions, but you also allow users to create a
trackable and trusted shipment for any deal they make outside an auction, outside
CaveatEmptor.

PATH: /examples/src/test/java/org/jpwh/test/associations/
OneToOneForeignKey.java

Link

Transitive persistence of shippingAddress
Licensed to Thomas Snead <n.ordickan@gmail.com>

181One-to-one associations

 This scenario calls for a Shipment entity with an
optional one-to-one association to Item. Look at the
class diagram for this domain model in figure 8.5.

NOTE We briefly considered abandoning the CaveatEmptor example for this
section, because we couldn’t find a natural scenario that requires optional
one-to-one associations. If this escrow example seems contrived, consider the
equivalent problem of assigning employees to workstations. This is also an
optional one-to-one relationship.

In the database schema, you add an intermediate link table called ITEM_SHIPMENT. A
row in this table represents a Shipment made in the context of an auction. Figure 8.6
shows the tables.

Note how the schema enforces uniqueness and the one-to-one relationship: the primary
key of ITEM_SHIPMENT is the SHIPMENT_ID column, and the ITEM_ID column is unique.
An item can therefore be in only one shipment. Of course, that also means a ship-
ment can contain only one item.

 You map this model with an @OneToOne annotation in the Shipment entity class:

@Entity
public class Shipment {

 @OneToOne(fetch = FetchType.LAZY)
 @JoinTable(
 name = "ITEM_SHIPMENT",
 joinColumns =
 @JoinColumn(name = "SHIPMENT_ID"),
 inverseJoinColumns =
 @JoinColumn(name = "ITEM_ID",
 nullable = false,
 unique = true)
)
 protected Item auction;

 public Shipment() {
 }

 public Shipment(Item auction) {
 this.auction = auction;
 }

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/associations/onetoone/jointable/
Shipment.java

ID << PK >>
...

<< Table >>
SHIPMENT

ID << PK >>
...

<< Table >>
ITEM

SHIPMENT_ID << PK >> << FK >
ITEM_ID << FK >> << UNIQUE >>>

<< Table >>
ITEM_SHIPMENT Figure 8.6 The

intermediate table links
items and shipments.

Required!

Defaults to ID

Defaults to AUCTION_ID

Item 0..1 Shipment

Figure 8.5 A Shipment has an
optional link with an auction Item .
Licensed to Thomas Snead <n.ordickan@gmail.com>

182 CHAPTER 8 Advanced entity association mappings
Lazy loading has been enabled, with a twist: when Hibernate loads a Shipment, it que-
ries both the SHIPMENT and the ITEM_SHIPMENT join table. Hibernate has to know if
there is a link to an Item present before it can use a proxy. It does that in one outer
join SQL query, so you won’t see any extra SQL statements. If there is a row in
ITEM_SHIPMENT, Hibernate uses an Item placeholder.

 The @JoinTable annotation is new; you always have to specify the name of the
intermediate table. This mapping effectively hides the join table; there is no corre-
sponding Java class. The annotation defines the column names of the ITEM_SHIPMENT
table, and Hibernate generates in the schema the UNIQUE constraint on the ITEM_ID
column. Hibernate also generates the appropriate foreign key constraints on the col-
umns of the join table.

 Here you store a Shipment without Items and another linked to a single Item:

Shipment someShipment = new Shipment();
em.persist(someShipment);

Item someItem = new Item("Some Item");
em.persist(someItem);

Shipment auctionShipment = new Shipment(someItem);
em.persist(auctionShipment);

This completes our discussion of one-to-one association mappings. To summarize, use a
shared primary key association if one of the two entities is always stored before the
other and can act as the primary key source. Use a foreign key association in all other
cases, and a hidden intermediate join table when your one-to-one association is
optional.

 We now focus on plural, or many-valued entity associations, beginning by exploring
some advanced options for one-to-many.

8.2 One-to-many associations
A plural entity association is by definition a collection of entity references. You mapped
one of these, a one-to-many association, in the previous chapter, section 7.3.2. One-to-
many associations are the most important kind of entity association that involves a col-
lection. We go so far as to discourage the use of more complex association styles when
a simple bidirectional many-to-one/one-to-many will do the job.

 Also, remember that you don’t have to map any collection of entities if you don’t
want to; you can always write an explicit query instead of direct access through itera-
tion. If you decide to map collections of entity references, you have a few options, and
we discussed some more complex situations now.

PATH: /examples/src/test/java/org/jpwh/test/associations/OneToOneJoinTable.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

183One-to-many associations
8.2.1 Considering one-to-many bags

So far, you have only seen a @OneToMany on a Set, but it’s possible to use a bag map-
ping instead for a bidirectional one-to-many association. Why would you do this?

 Bags have the most efficient performance characteristics of all the collections you
can use for a bidirectional one-to-many entity association. By default, collections in
Hibernate are loaded when they’re accessed for the first time in the application.
Because a bag doesn’t have to maintain the index of its elements (like a list) or check
for duplicate elements (like a set), you can add new elements to the bag without trig-
gering the loading. This is an important feature if you’re going to map a possibly large
collection of entity references.

 On the other hand, you can’t eager-fetch two collections of bag type simultane-
ously: for example, if bids and images of an Item were one-to-many bags. This is no big
loss, because fetching two collections simultaneously always results in a Cartesian
product; you want to avoid this kind of operation whether the collections are bags,
sets, or lists. We’ll come back to fetching strategies in chapter 12. In general, we’d say
that a bag is the best inverse collection for a one-to-many association, if mapped as a
@OneToMany(mappedBy = "...").

 To map a bidirectional one-to-many association as a bag, you have to replace the
type of the bids collection in the Item entity with a Collection and an ArrayList
implementation. The mapping for the association between Item and Bid remains
essentially unchanged:

@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 public Collection<Bid> bids = new ArrayList<>();

 // ...
}

The Bid side with its @ManyToOne (which is the “mapped by” side), and even the tables,
are the same as in section 7.3.1.

 A bag also allows duplicate elements, which the set you mapped earlier didn’t:

Item someItem = new Item("Some Item");
em.persist(someItem);

Bid someBid = new Bid(new BigDecimal("123.00"), someItem);
someItem.getBids().add(someBid);
someItem.getBids().add(someBid);
em.persist(someBid);

assertEquals(someItem.getBids().size(), 2);

PATH: /model/src/main/java/org/jpwh/model/associations/oneto-
many/bag/Item.java

PATH: /examples/src/test/java/org/jpwh/test/associations/OneToManyBag.java

No persistent effect!
Licensed to Thomas Snead <n.ordickan@gmail.com>

184 CHAPTER 8 Advanced entity association mappings
It turns out this isn’t relevant in this case, because duplicate means you’ve added a par-
ticular reference to the same Bid instance several times. You wouldn’t do this in your
application code. Even if you add the same reference several times to this collection,
though, Hibernate ignores it. The side relevant for updates of the database is the
@ManyToOne, and the relationship is already “mapped by” that side. When you load the
Item, the collection doesn’t contain the duplicate:

Item item = em.find(Item.class, ITEM_ID);
assertEquals(item.getBids().size(), 1);

As mentioned, the advantage of bags is that the collection doesn’t have to be initial-
ized when you add a new element:

Item item = em.find(Item.class, ITEM_ID);

Bid bid = new Bid(new BigDecimal("456.00"), item);
item.getBids().add(bid);
em.persist(bid);

This code example triggers one SQL SELECT to load the Item. If you use em.get-
Reference() instead of em.find(), Hibernate still initializes and returns an Item
proxy with a SELECT as soon as you call item.getBids(). But as long as you don’t iter-
ate the Collection, no more queries are necessary, and an INSERT for the new Bid
will be made without loading all the bids. If the collection is a Set or a List, Hiber-
nate loads all the elements when you add another element.

 Let’s change the collection to a persistent List.

8.2.2 Unidirectional and bidirectional list mappings

If you need a real list to hold the position of the elements in a collection, you have to
store that position in an additional column. For the one-to-many mapping, this also
means you should change the Item#bids property to List and initialize the variable
with an ArrayList:

@Entity
public class Item {

 @OneToMany
 @JoinColumn(
 name = "ITEM_ID",
 nullable = false
)
 @OrderColumn(

PATH: /examples/src/test/java/org/jpwh/test/associations/OneToManyBag.java

PATH: /examples/src/test/java/org/jpwh/test/associations/OneToManyBag.java

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
list/Item.java

No SELECT!
Licensed to Thomas Snead <n.ordickan@gmail.com>

185One-to-many associations
 name = "BID_POSITION",
 nullable = false
)
 public List<Bid> bids = new ArrayList<>();

 // ...
}

This is a unidirectional mapping: there
is no other “mapped by” side. The Bid
doesn’t have a @ManyToOne property. The
new annotation @OrderColumn is
required for persistent list indexes,
where, as usual, you should make the
column NOT NULL. The database view of
the BID table, with the join and order
columns, is shown in figure 8.7.

 The stored index of each collection
starts at zero and is contiguous (there are no gaps). Hibernate will execute potentially
many SQL statements when you add, remove, and shift elements of the List. We talked
about this performance issue in section 7.1.6.

 Let’s make this mapping bidirectional, with a @ManyToOne property on the Bid
entity:

@Entity
public class Bid {

 @ManyToOne
 @JoinColumn(
 name = "ITEM_ID",
 updatable = false, insertable = false
)
 @NotNull
 protected Item item;

 // ...
}

You probably expected different code—maybe @ManyToOne(mappedBy="bids") and
no additional @JoinColumn annotation. But @ManyToOne doesn’t have a mappedBy attri-
bute: it’s always the “owning” side of the relationship. You’d have to make the other
side, @OneToMany, the mappedBy side. Here you run into a conceptual problem and
some Hibernate quirks.

 The Item#bids collection is no longer read-only, because Hibernate now has to
store the index of each element. If the Bid#item side was the owner of the relation-
ship, Hibernate would ignore the collection when storing data and not write the ele-
ment indexes. You have to map the @JoinColumn twice and then disable writing on the

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/list/Bid.java

Defaults to BIDS_ORDER

Disable writing!

For schema generation

ID AMOUNT

1 99.00

2

3

4

ITEM_ID

1

1

1

2

100.00

101.00

4.99

BID

BID_POSITION

0

1

2

0

Figure 8.7 The BID table
Licensed to Thomas Snead <n.ordickan@gmail.com>

186 CHAPTER 8 Advanced entity association mappings
@ManyToOne side with updatable=false and insertable=false. Hibernate now con-
siders the collection side when storing data, including the index of each element. The
@ManyToOne is effectively read-only, as it would be if it had a mappedBy attribute.

Finally, the Hibernate schema generator always relies on the @JoinColumn of the
@ManyToOne side. Hence, if you want the correct schema produced, you should add
the @NotNull on this side or declare @JoinColumn(nullable=false). The generator
ignores the @OneToMany side and its join column if there is a @ManyToOne.
In a real application, you wouldn’t map the association with a List. Preserving the
order of elements in the database seems like a common use case but on second
thought isn’t very useful: sometimes you want to show a list with the highest or newest
bid first, or only bids made by a certain user, or bids made within a certain time range.
None of these operations requires a persistent list index. As mentioned in section
3.2.4, avoid storing a display order in the database; keep it flexible with queries
instead of hardcoded mappings. Furthermore, maintaining the index when the appli-
cation removes, adds, or shifts elements in the list can be expensive and may trigger
many SQL statements. Map the foreign key join column with @ManyToOne, and drop
the collection.

 Next is one more scenario with a one-to-many relationship: an association mapped
to an intermediate join table.

8.2.3 Optional one-to-many with a join table

A useful addition to the Item class is a buyer property. You can then call
someItem.getBuyer() to access the User who made the winning bid. If made bidirec-
tional, this association will also help to render a screen that shows all auctions a partic-
ular user has won: you call someUser.getBoughtItems() instead of writing a query.

 From the point of view of the User class, the association is one-to-many. Figure 8.8
shows the classes and their relationship.

 Why is this association different from the one between Item and Bid? The multi-
plicity 0..* in UML indicates that the reference is optional. This doesn’t influence the
Java domain model much, but it has consequences for the underlying tables. You
expect a BUYER_ID foreign key column in the ITEM
table. The column has to be nullable, because a user
may not have bought a particular Item (as long as
the auction is still running).

Bidirectional list with mappedBy
Several existing bug reports related to this issue are open on Hibernate; a future ver-
sion might allow the JPA-compliant usage of the @OneToMany(mappedBy) and
@OrderColumn on a collection. At the time of writing, the shown mapping is the only
working variation for a bidirectional one-to-many with a persistent List.

Item Userbought0..*

Figure 8.8 The User-Item “bought”
relationship
Licensed to Thomas Snead <n.ordickan@gmail.com>

187One-to-many associations
 You could accept that the foreign key column can be NULL and apply additional
constraints: “Allowed to be NULL only if the auction end time hasn’t been reached or if
no bid has been made.” We always try to avoid nullable columns in a relational data-
base schema. Unknown information degrades the quality of the data you store. Tuples
represent propositions that are true; you can’t assert something you don’t know.
Moreover, in practice, many developers and DBAs don’t create the right constraint
and rely on often buggy application code to provide data integrity.

 An optional entity association, be it one-to-one or one-to-many, is best represented in
an SQL database with a join table. Figure 8.9 shows an example schema.

You added a join table earlier in this chapter, for a one-to-one association. To guarantee
the multiplicity of one-to-one, you applied a unique constraint on a foreign key column
of the join table. In the current case, you have a one-to-many multiplicity, so only the
ITEM_ID primary key column has to be unique: only one User can buy any given Item,
once. The BUYER_ID column isn’t unique because a User can buy many Items.

 The mapping of the User#boughtItems collection is simple:

@Entity
@Table(name = "USERS")
public class User {

 @OneToMany(mappedBy = "buyer")
 protected Set<Item> boughtItems = new HashSet<Item>();

 // ...
}

This is the usual read-only side of a bidirectional association, with the actual mapping
to the schema on the “mapped by” side, the Item#buyer:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinTable(
 name = "ITEM_BUYER",
 joinColumns =
 @JoinColumn(name = "ITEM_ID"),
 inverseJoinColumns =
 @JoinColumn(nullable = false)

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/jointable/
User.java

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/jointable/
Item.java

ID << PK >>
...

<< Table >>
USERS

ID << PK >>
...

<< Table >>
ITEM

ITEM_ID << PK >> << FK >>
BUYER_ID << FK >>

<< Table >>
ITEM_BUYER Figure 8.9 An

intermediate table links
users and items.

Defaults to ID

Defaults to BUYER_ID
Licensed to Thomas Snead <n.ordickan@gmail.com>

188 CHAPTER 8 Advanced entity association mappings
)
 protected User buyer;

 // ...
}

This is now a clean, optional one-to-many/many-to-one relationship. If an Item hasn’t
been bought, there is no corresponding row in the join table ITEM_BUYER. You don’t
have any problematic nullable columns in your schema. Still, you should write a pro-
cedural constraint and a trigger that runs on INSERT, for the ITEM_BUYER table: “Only
allow insertion of a buyer if the auction end time for the given item has been reached
and the user made the winning bid.”

 The next example is our last with one-to-many associations. So far, you’ve seen one-to-
many associations from an entity to another entity. An embeddable component class
may also have a one-to-many association to an entity.

8.2.4 One-to-many association in an embeddable class

Consider again the embeddable component mapping you’ve been repeating for a few
chapters: the Address of a User. You now extend this example by adding a one-to-many
association from Address to Shipment: a collection called deliveries. Figure 8.10
shows the UML class diagram for this model.

The Address is an @Embeddable class, not an entity. It can own a unidirectional associ-
ation to an entity; here it’s one-to-many multiplicity to Shipment. (You see an embed-
dable class having a many-to-one association with an entity in the next section.)

 The Address class has a Set<Shipment> representing this association:

@Embeddable
public class Address {

 @NotNull
 @Column(nullable = false)
 protected String street;

 @NotNull
 @Column(nullable = false, length = 5)
 protected String zipcode;

 @NotNull
 @Column(nullable = false)

PATH: /model/src/main/java/org/jpwh/model/associations/onetomany/
embeddable/Address.java

street : String
zipcode : String
city : String

Address
shipping

createdOn : Date
Shipmentdeliveriesusername : String

lastname : String

User 0..*

firstname : String

Figure 8.10 The one-to-may relationship from Address to Shipment
Licensed to Thomas Snead <n.ordickan@gmail.com>

189One-to-many associations
 protected String city;

 @OneToMany
 @JoinColumn(
 name = "DELIVERY_ADDRESS_USER_ID",
 nullable = false
)
 protected Set<Shipment> deliveries = new HashSet<Shipment>();
 // ...
}

The first mapping strategy for this association is with an @JoinColumn named
DELIVERY_ADDRESS_USER_ID. This foreign key-constrained column is in the SHIPMENT
table, as you can see in figure 8.11.

Embeddable components don’t have their own identifier, so the value in the foreign
key column is the value of a User’s identifier, which embeds the Address. Here you
also declare the join column nullable = false, so a Shipment must have an associated
delivery address. Of course, bidirectional navigation isn’t possible: the Shipment can’t
have a reference to the Address, because embedded components can’t have shared
references.

If the association is optional and you don’t want a nullable column, you can map the
association to an intermediate join/link table, as shown in figure 8.12. The mapping
of the collection in Address now uses an @JoinTable instead of an @JoinColumn:

@Embeddable
public class Address {

 @NotNull
 @Column(nullable = false)
 protected String street;

Path: /model/src/main/java/org/jpwh/model/associations/onetomany/
embeddablejointable/Address.java

Defaults to DELIVERIES_ID

ID << PK >>
CREATEDON
DELIVERY_ADDRESS_USER_ID << FK >>

<< Table >>
SHIPMENTID << PK >>

STREET
ZIPCODE
CITY

<< Table >>
USERS

Figure 8.11 A primary key in
the USERS table links the
USERS and SHIPMENT tables

ID << PK >>
CREATEDON

<< Table >>
SHIPMENTID << PK >>

STREET
ZIPCODE
CITY

<< Table >>
USERS

USER_ID << PK >> << FK >>
SHIPMENT_ID << PK >> << FK >>

<< Table >>
DELIVERIES

Figure 8.12 Using an intermediate table between USERS and SHIPMENT to
represent an optional association
Licensed to Thomas Snead <n.ordickan@gmail.com>

190 CHAPTER 8 Advanced entity association mappings
 @NotNull
 @Column(nullable = false, length = 5)
 protected String zipcode;

 @NotNull
 @Column(nullable = false)
 protected String city;

 @OneToMany
 @JoinTable(
 name = "DELIVERIES",
 joinColumns =
 @JoinColumn(name = "USER_ID"),
 inverseJoinColumns =
 @JoinColumn(name = "SHIPMENT_ID")
)
 protected Set<Shipment> deliveries = new HashSet<Shipment>();
 // ...
}

Note that if you declare neither @JoinTable nor @JoinColumn, the @OneToMany in an
embeddable class defaults to a join table strategy.

 From within the owning entity class, you can override property mappings of an
embedded class with @AttributeOverride, as shown in section 5.2.3. If you want to
override the join table or column mapping of an entity association in an embeddable
class, use @AssociationOverride in the owning entity class instead. You can’t, how-
ever, switch the mapping strategy; the mapping in the embeddable component class
decides whether a join table or join column is used.

 A join table mapping is of course also applicable in true many-to-many mappings.

8.3 Many-to-many and ternary associations
The association between Category and Item is a many-to-many association, as you can
see in figure 8.13. In a real system, you may not have a many-to-many association. Our
experience is that there is almost always other information that must be attached to
each link between associated instances. Some examples are the timestamp when an
Item was added to a Category and the User responsible for creating the link. We
expand the example later in this section to cover such a case. You should start with a
regular and simpler many-to-many association.

8.3.1 Unidirectional and bidirectional many-to-many associations

A join table in the database represents a regular many-to-many association, which some
developers also call the link table, or association table. Figure 8.14 shows a many-to-many
relationship with a link table.

Defaults to USERS_SHIPMENT

Defaults to USERS_ID

Defaults to SHIPMENTS_ID

Category ItemaddedBy : String
addedOn : Date

CategorizedItem0..* 0..*
Figure 8.13 A many-to-many
association between Category
and Item
Licensed to Thomas Snead <n.ordickan@gmail.com>

191Many-to-many and ternary associations

 The link table CATEGORY_ITEM has two col-

umns, both with a foreign key constraint refer-
encing the CATEGORY and ITEM tables,
respectively. Its primary key is a composite key
of both columns. You can only link a particu-
lar Category and Item once, but you can link
the same item to several categories.

 In JPA, you map many-to-many associations
with @ManyToMany on a collection:

@Entity
public class Category {

 @ManyToMany(cascade = CascadeType.PERSIST)
 @JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = @JoinColumn(name = "CATEGORY_ID"),
 inverseJoinColumns = @JoinColumn(name = "ITEM_ID")
)
 protected Set<Item> items = new HashSet<Item>();

 // ...
}

As usual, you can enable CascadeType.PERSIST to make it easier to save data. When
you reference a new Item from the collection, Hibernate makes it persistent. Let’s
make this association bidirectional (you don’t have to, if you don’t need it):

@Entity
public class Item {

 @ManyToMany(mappedBy = "items")
 protected Set<Category> categories = new HashSet<Category>();

 // ...
}

As for any bidirectional mapping, one side is “mapped by” the other side. The
Item#categories collection is effectively read-only; Hibernate will analyze the con-
tent of the Category#items side when storing data. Next you create two categories
and two items and link them with many-to-many multiplicity:

PATH: /model/src/main/java/org/jpwh/model/associations/
manytomany/bidirectional/Category.java

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/
bidirectional/Item.java

ID << PK >>
...

<< Table >>
ITEM

ID << PK >>
...

<< Table >>
CATEGORY

CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>

<< Table >>
CATEGORY_ITEM

Figure 8.14 A many-to-many
relationship with a link table
Licensed to Thomas Snead <n.ordickan@gmail.com>

192 CHAPTER 8 Advanced entity association mappings

Category someCategory = new Category("Some Category");
Category otherCategory = new Category("Other Category");

Item someItem = new Item("Some Item");
Item otherItem = new Item("Other Item");

someCategory.getItems().add(someItem);
someItem.getCategories().add(someCategory);

someCategory.getItems().add(otherItem);
otherItem.getCategories().add(someCategory);

otherCategory.getItems().add(someItem);
someItem.getCategories().add(otherCategory);

em.persist(someCategory);
em.persist(otherCategory);

Because you enabled transitive persistence, saving the categories makes the entire net-
work of instances persistent. On the other hand, the cascading options ALL, REMOVE,
and orphan deletion (see section 7.3.3) aren’t meaningful for many-to-many associa-
tions. This is a good point to test whether you understand entities and value types. Try
to come up with reasonable answers as to why these cascading types don’t make sense
for a many-to-many association.

 Can you use a List instead of a Set, or even a bag? The Set matches the database
schema perfectly, because there can be no duplicate links between Category and Item.

 A bag implies duplicate elements, so you need a different primary key for the join
table. The proprietary @CollectionId annotation of Hibernate can provide this, as
shown in section 7.1.5. One of the alternative many-to-many strategies we discuss in a
moment is a better choice if you need to support duplicate links.

 You can map indexed collections such as a List with the regular @ManyToMany, but
only on one side. Remember that in a bidirectional relationship one side has to be
“mapped by” the other side, meaning its value is ignored when Hibernate synchro-
nizes with the database. If both sides are lists, you can only make persistent the index
of one side.

 A regular @ManyToMany mapping hides the link table; there is no corresponding
Java class, only some collection properties. So whenever someone says, “My link table
has more columns with information about the link”—and, in our experience, some-
one always says this sooner rather than later—you need to map this information to a
Java class.

8.3.2 Many-to-many with an intermediate entity

You may always represent a many-to-many association as two many-to-one associations to
an intervening class. You don’t hide the link table but represent it with a Java class.
This model is usually more easily extensible, so we tend not to use regular many-to-

PATH: /examples/src/test/java/org/jpwh/test/associations/
ManyToManyBidirectional.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

193Many-to-many and ternary associations
many associations in applications. It’s a lot of
work to change code later, when inevitably
more columns are added to a link table; so
before you map an @ManyToMany as shown in
the previous section, consider the alternative
shown in figure 8.15.

 Imagine that you need to record some information each time you add an Item to a
Category. The CategorizedItem captures the timestamp and user who created the
link. This domain model requires additional columns on the join table, as you can see
in figure 8.16.

The new CategorizedItem entity maps to the link table, as shown next.

@Entity
@Table(name = "CATEGORY_ITEM")
@org.hibernate.annotations.Immutable
public class CategorizedItem {

 @Embeddable
 public static class Id implements Serializable {

 @Column(name = "CATEGORY_ID")
 protected Long categoryId;

 @Column(name = "ITEM_ID")
 protected Long itemId;

 public Id() {
 }

 public Id(Long categoryId, Long itemId) {
 this.categoryId = categoryId;
 this.itemId = itemId;
 }

Listing 8.4 Mapping a many-to-many relationship with CategorizedItem

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/linkentity/
CategorizedItem.java

ID << PK >>
...

<< Table >>
ITEM

ID << PK >>
...

<< Table >>
CATEGORY

CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>

<< Table >>
CATEGORY_ITEM

ADDEDON
ADDEDBY Figure 8.16 Additional columns on the

join table in a many-to-many relationship

Declares class immutableB

Encapsulates
composite keyC

Category Item0..*1..*

Figure 8.15 CategorizedItem is the
link between Category and Item.
Licensed to Thomas Snead <n.ordickan@gmail.com>

194 CHAPTER 8 Advanced entity association mappings
 public boolean equals(Object o) {
 if (o != null && o instanceof Id) {
 Id that = (Id) o;
 return this.categoryId.equals(that.categoryId)
 && this.itemId.equals(that.itemId);
 }
 return false;
 }

 public int hashCode() {
 return categoryId.hashCode() + itemId.hashCode();
 }
 }

 @EmbeddedId
 protected Id id = new Id();

 @Column(updatable = false)
 @NotNull
 protected String addedBy;

 @Column(updatable = false)
 @NotNull
 protected Date addedOn = new Date();

 @ManyToOne
 @JoinColumn(
 name = "CATEGORY_ID",
 insertable = false, updatable = false)
 protected Category category;

 @ManyToOne
 @JoinColumn(
 name = "ITEM_ID",
 insertable = false, updatable = false)
 protected Item item;

 public CategorizedItem(
 String addedByUsername,
 Category category,
 Item item) {

 this.addedBy = addedByUsername;
 this.category = category;
 this.item = item;

 this.id.categoryId = category.getId();
 this.id.itemId = item.getId();

 category.getCategorizedItems().add(this);
 item.getCategorizedItems().add(this);
 }

 // ...
}

Maps identifier property
and composite key
columns

D

Maps usernameE

Maps timestampF

Maps categoryG

Maps itemH

Constructs
CategorizedItemI

Sets fields

Sets identifier values

Guarantees referential
integrity if made
bidirectional
Licensed to Thomas Snead <n.ordickan@gmail.com>

195Many-to-many and ternary associations
This is a large chunk of code with some new annotations. First, it’s an immutable
entity class, so you’ll never update properties after creation. Hibernate can do some
optimizations, such avoiding dirty checking during flushing of the persistence con-
text, if you declare the class immutable B.

 An entity class needs an identifier property. The primary key of the link table is the
composite of CATEGORY_ID and ITEM_ID. Hence, the entity class also has a composite
key, which you encapsulate in a static nested embeddable component class C for con-
venience. You can externalize this class into its own file, of course. The new @EmbeddedId
annotation D maps the identifier property and its composite key columns to the
entity’s table.

 Next are two basic properties mapping the addedBy username E and the addedOn
timestamp F to columns of the join table. This is the “additional information about
the link” that interests you.

 Then two @ManyToOne properties, category G and item H, map columns that are
already mapped in the identifier. The trick here is to make them read-only, with the
updatable=false, insertable=false setting. This means Hibernate writes the values
of these columns by taking the identifier value of CategorizedItem. At the same time,
you can read and browse the associated instances through categorizedItem.get-
Item() and getCategory(), respectively. (If you map the same column twice without
making one mapping read-only, Hibernate will complain on startup about a duplicate
column mapping.)

 You can also see that constructing a CategorizedItem I involves setting the values
of the identifier—the application always assigns composite key values; Hibernate
doesn’t generate them. Pay extra attention to the constructor and how it sets the field
values and guarantees referential integrity by managing collections on both sides of
the association. You map these collections next, to enable bidirectional navigation.

 This is a unidirectional mapping and enough to support the many-to-many
relationship between Category and Item. To create a link, you instantiate and persist
a CategorizedItem. If you want to break a link, you remove the CategorizedItem.
The constructor of CategorizedItem requires that you provide already persistent
Category and Item instances.

 If bidirectional navigation is required, map an @OneToMany collection in Category
and/or Item:

@Entity
public class Category {

 @OneToMany(mappedBy = "category")
 protected Set<CategorizedItem> categorizedItems = new HashSet<>();

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/linkentity/
Category.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

196 CHAPTER 8 Advanced entity association mappings
@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 protected Set<CategorizedItem> categorizedItems = new HashSet<>();

 // ...
}

Both sides are “mapped by” the annotations in CategorizedItem, so Hibernate
already knows what to do when you iterate through the collection returned by either
getCategorizedItems() method.

 This is how you create and store links:

Category someCategory = new Category("Some Category");
Category otherCategory = new Category("Other Category");
em.persist(someCategory);
em.persist(otherCategory);

Item someItem = new Item("Some Item");
Item otherItem = new Item("Other Item");
em.persist(someItem);
em.persist(otherItem);

CategorizedItem linkOne = new CategorizedItem(
 "johndoe", someCategory, someItem
);

CategorizedItem linkTwo = new CategorizedItem(
 "johndoe", someCategory, otherItem
);

CategorizedItem linkThree = new CategorizedItem(
 "johndoe", otherCategory, someItem
);

em.persist(linkOne);
em.persist(linkTwo);
em.persist(linkThree);

The primary advantage of this strategy is the possibility for bidirectional navigation:
you can get all items in a category by calling someCategory.getCategorizedItems()
and then also navigate from the opposite direction with someItem.getCategorized-
Items(). A disadvantage is the more complex code needed to manage the
CategorizedItem entity instances to create and remove links, which you have to save
and delete independently. You also need some infrastructure in the CategorizedItem
class, such as the composite identifier. One small improvement would be to enable

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/
linkentity/Item.java

PATH: /examples/src/test/java/org/jpwh/test/associations/
ManyToManyLinkEntity.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

197Many-to-many and ternary associations
CascadeType.PERSIST on some of the associations, reducing the number of calls to
persist().

 In the previous example, you stored the user who created the link between
Category and Item as a simple name string. If the join table instead had a foreign key
column called USER_ID, you’d have a ternary relationship. The CategorizedItem
would have a @ManyToOne for Category, Item, and User.

 In the following section, you see another many-to-many strategy. To make it a bit
more interesting, we make it a ternary association.

8.3.3 Ternary associations with components

In the previous section, you represented a many-to-many relationship with an entity
class mapped to the link table. A potentially simpler alternative is a mapping to an
embeddable component class:

@Embeddable
public class CategorizedItem {

 @ManyToOne
 @JoinColumn(
 name = "ITEM_ID",
 nullable = false, updatable = false
)
 protected Item item;

 @ManyToOne
 @JoinColumn(
 name = "USER_ID",
 updatable = false
)
 @NotNull
 protected User addedBy;

 @Temporal(TemporalType.TIMESTAMP)
 @Column(updatable = false)
 @NotNull
 protected Date addedOn = new Date();

 protected CategorizedItem() {
 }

 public CategorizedItem(User addedBy,
 Item item) {
 this.addedBy = addedBy;
 this.item = item;
 }

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/ternary/
CategorizedItem.java

Doesn’t generate an
SQL constraint, so
not part of the
primary key
Licensed to Thomas Snead <n.ordickan@gmail.com>

198 CHAPTER 8 Advanced entity association mappings
The new mappings here are @ManyToOne associations in an @Embeddable, and the
additional foreign key join column USER_ID, making this a ternary relationship. Look
at the database schema in figure 8.17.

 The owner of the embeddable component collection is the Category entity:

@Entity
public class Category {

 @ElementCollection
 @CollectionTable(
 name = "CATEGORY_ITEM",
 joinColumns = @JoinColumn(name = "CATEGORY_ID")
)
 protected Set<CategorizedItem> categorizedItems = new HashSet<>();

 // ...
}

Unfortunately, this mapping isn’t perfect: when you map an @ElementCollection of
embeddable type, all properties of the target type that are nullable=false become
part of the (composite) primary key. You want all columns in CATEGORY_ITEM to be NOT
NULL. Only CATEGORY_ID and ITEM_ID columns should be part of the primary key,
though. The trick is to use the Bean Validation @NotNull annotation on properties
that shouldn’t be part of the primary key. In that case (because it’s an embeddable
class), Hibernate ignores the Bean Validation annotation for primary key realization
and SQL schema generation. The downside is that the generated schema won’t have
the appropriate NOT NULL constraints on the USER_ID and ADDEDON columns, which
you should fix manually.

 The advantage of this strategy is the implicit life cycle of the link components. To
create an association between a Category and an Item, add a new CategorizedItem
instance to the collection. To break the link, remove the element from the collection.
No extra cascading settings are required, and the Java code is simplified (albeit spread
over more lines):

PATH: /model/src/main/java/org/jpwh/model/associations/manytomany/ternary/
Category.java

ID << PK >>
...

<< Table >>
ITEM

ID << PK >>
...

<< Table >>
CATEGORY

CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>
USER_ID << FK >>
ADDEDON

<< Table >>
CATEGORY_ITEM

ID << PK >>
...

<< Table >>
USERS

Figure 8.17 A link table with
three foreign key columns
Licensed to Thomas Snead <n.ordickan@gmail.com>

199Many-to-many and ternary associations

Category someCategory = new Category("Some Category");
Category otherCategory = new Category("Other Category");
em.persist(someCategory);
em.persist(otherCategory);

Item someItem = new Item("Some Item");
Item otherItem = new Item("Other Item");
em.persist(someItem);
em.persist(otherItem);

User someUser = new User("johndoe");
em.persist(someUser);

CategorizedItem linkOne = new CategorizedItem(
 someUser, someItem
);
someCategory.getCategorizedItems().add(linkOne);

CategorizedItem linkTwo = new CategorizedItem(
 someUser, otherItem
);
someCategory.getCategorizedItems().add(linkTwo);

CategorizedItem linkThree = new CategorizedItem(
 someUser, someItem
);
otherCategory.getCategorizedItems().add(linkThree);

There is no way to enable bidirectional navigation: an embeddable component, such
as CategorizedItem by definition, can’t have shared references. You can’t navigate
from Item to CategorizedItem, and there is no mapping of this link in Item. Instead,
you can write a query to retrieve the categories given an Item:

Item item = em.find(Item.class, ITEM_ID);

List<Category> categoriesOfItem =
 em.createQuery(
 "select c from Category c " +
 "join c.categorizedItems ci " +
 "where ci.item = :itemParameter")
 .setParameter("itemParameter", item)
 .getResultList();

assertEquals(categoriesOfItem.size(), 2);

You’ve now completed your first ternary association mapping. In the previous chap-
ters, you saw ORM examples with maps; the keys and values of the shown maps were
always of basic or embeddable type. In the following section, you see more complex
key/value pair types and their mappings.

PATH: /examples/src/test/java/org/jpwh/test/associations/
ManyToManyTernary.java

PATH: /examples/src/test/java/org/jpwh/test/associations/
ManyToManyTernary.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

200 CHAPTER 8 Advanced entity association mappings
8.4 Entity associations with Maps
Map keys and values can be references to other entities, providing another strategy for
mapping many-to-many and ternary relationships. First, let’s assume that only the value
of each map entry is a reference to another entity.

8.4.1 One-to-many with a property key

If the value of each map entry is a reference to another entity, you have a one-to-many
entity relationship. The key of the map is of a basic type: for example, a Long value.

 An example of this structure would be the Item entity with a map of Bid instances,
where each map entry is a pair of Bid identifier and reference to a Bid instance. When
you iterate through someItem.getBids(), you iterate through map entries that look
like (1, <reference to Bid with PK 1>), (2, <reference to Bid with PK 2>), and so on:

Item item = em.find(Item.class, ITEM_ID);
assertEquals(item.getBids().size(), 2);

for (Map.Entry<Long, Bid> entry : item.getBids().entrySet()) {
 assertEquals(entry.getKey(),

entry.getValue().getId());
}

The underlying tables for this mapping are nothing special; you have an ITEM and a
BID table, with an ITEM_ID foreign key column in the BID table. This is the same
schema as shown in figure 7.14 for a one-to-many/many-to-one mapping with a regular
collection instead of a Map. Your motivation here is a slightly different representation
of the data in the application.

 In the Item class, include a Map property named bids:

@Entity
public class Item {

 @MapKey(name = "id")
 @OneToMany(mappedBy = "item")
 protected Map<Long, Bid> bids = new HashMap<>();

 // ...
}

New here is the @MapKey annotation. It maps a property of the target entity, in this
case the Bid entity, as the key of the map. The default if you omit the name attribute is
the identifier property of the target entity, so the name option here is redundant.
Because the keys of a map form a set, you should expect values to be unique for a par-
ticular map. This is the case for Bid primary keys but likely not for any other property

PATH: /examples/src/test/java/org/jpwh/test/associations/MapsMapKey.java

PATH: /model/src/main/java/org/jpwh/model/associations/maps/mapkey/
Item.java

Key is the identifier of each Bid
Licensed to Thomas Snead <n.ordickan@gmail.com>

201Entity associations with Maps
of Bid. It’s up to you to ensure that the selected property has unique values—Hiber-
nate won’t check.

 The primary, and rare, use case for this mapping technique is the desire to iterate
map entries with some property of the entry entity value as the entry key, maybe
because it’s convenient for how you’d like to render the data. A more common situa-
tion is a map in the middle of a ternary association.

8.4.2 Key/Value ternary relationship

You may be a little bored by now, but we promise this is the last time we show another
way to map the association between Category and Item. Previously, in section 8.3.3,
you used an embeddable CategorizedItem component to represent the link. Here we
show a representation of the relationship with a Map, instead of an additional Java
class. The key of each map entry is an Item, and the related value is the User
who added the Item to the Category, as shown in figure 8.18.

 The link/join table in the schema, as you can see in figure 8.19, has three columns:
CATEGORY_ID, ITEM_ID, and USER_ID. The Map is owned by the Category entity:

@Entity
public class Category {

 @ManyToMany(cascade = CascadeType.PERSIST)
 @MapKeyJoinColumn(name = "ITEM_ID")
 @JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = @JoinColumn(name = "CATEGORY_ID"),
 inverseJoinColumns = @JoinColumn(name = "USER_ID")
)
 protected Map<Item, User> itemAddedBy = new HashMap<>();

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/associations/maps/ternary/
Category.java

ID << PK >>
...

<< Table >>
ITEM

ID << PK >>
...

<< Table >>
CATEGORY

CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>
USER_ID << FK >>

<< Table >>
CATEGORY_ITEM

ID << PK >>
...

<< Table >>
USERS

Figure 8.19 The link table represents the Map key/value pairs.

User
0..*

Category

Item

<<Map Key>>

Figure 8.18 A Map with entity
associations as key/value pairs

Defaults to
ITEMADDEDBY_KEY
Licensed to Thomas Snead <n.ordickan@gmail.com>

202 CHAPTER 8 Advanced entity association mappings
The @MapKeyJoinColumn is optional; Hibernate would default to the column name
ITEMADDEDBY_KEY for the join/foreign key column referencing the ITEM table.

 To create a link between all three entities, all instances must already be in persis-
tent state and then put into the map:

someCategory.getItemAddedBy().put(someItem, someUser);
someCategory.getItemAddedBy().put(otherItem, someUser);
otherCategory.getItemAddedBy().put(someItem, someUser);

To remove the link, remove the entry from the map. This is a convenient Java API for
managing a complex relationship, hiding a database link table with three columns.
But remember that in practice, link tables often grow additional columns, and chang-
ing all the Java application code later is expensive if you depend on a Map API. Earlier
we had an ADDEDON column with a timestamp when the link was created, but we had to
drop it for this mapping.

8.5 Summary
 You learned how to map complex entity associations using one-to-one associa-

tions, one-to-many associations, many-to-many associations, ternary associations,
and entity associations with maps.

 Simplify the relationships between your classes, and you’ll rarely need many of
the techniques we’ve shown. In particular, you can often best represent many-to-
many entity associations as two many-to-one associations from an intermediate
entity class, or with a collection of components.

 Before you attempt a complex collection mapping, always make sure you actu-
ally need a collection. Ask yourself whether you frequently iterate through its
elements.

 The Java structures shown in this chapter may make data access easier some-
times, but typically they complicate data storage, updates, and deletion.

PATH: /examples/src/test/java/org/jpwh/test/associations/MapsTernary.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

Complex and legacy schemas
In this chapter, we focus on the most important part of your system: the database
schema, where your collection of integrity rules resides—the model of the real
world that you’ve created. If your application can auction an item only once in the
real world, your database schema should guarantee that. If an auction always has a
starting price, your database model should include an appropriate constraint. If
data satisfies all integrity rules, the data is consistent, a term you’ll meet again in sec-
tion 11.1.

 We also assume that consistent data is correct: everything the database states, either
explicitly or implicitly, is true; everything else is false. If you want to know more about
the theory behind this approach, look up the closed-world assumption (CWA).

In this chapter
 Improving the SQL schema with custom DDL

 Integrating with a legacy database

 Mapping composite keys
203

Licensed to Thomas Snead <n.ordickan@gmail.com>

204 CHAPTER 9 Complex and legacy schemas

Sometimes you can start a project top-down. There is no existing database schema and
maybe not even any data—your application is completely new. Many developers like to
let Hibernate automatically generate the scripts for a database schema. You’ll proba-
bly also let Hibernate deploy the schema on the test database on your development
machine or your continuous build systems for integration testing. Later, a DBA will
take the generated scripts and write an improved and final schema for production
deployment. The first part of this chapter shows you how to improve the schema from
within JPA and Hibernate, to make your DBA happy.

 At the other end of the spectrum are systems with existing, possibly complex sche-
mas, with years’ worth of data. Your new application is just a small gear in a big
machine, and your DBA won’t allow any (sometimes even non-disruptive) changes to
the database. You need a flexible object/relational mapping so you don’t have to twist
and bend the Java classes too much when things don’t fit right away. This will be the
subject of the second half of this chapter, including a discussion of composite primary
and foreign keys.

 Let’s start with a clean-room implementation and Hibernate-generated schemas.

9.1 Improving the database schema
Hibernate reads your Java domain model classes and mapping metadata and gener-
ates schema DDL statements. You can export them into a text file or execute them
directly on your database whenever you run integration tests. Because schema lan-
guages are mostly vendor-specific, every option you put in your mapping metadata has
the potential to bind the metadata to a particular database product—keep this in
mind when using schema features.

 Hibernate creates the basic schema for your tables and constraints automatically; it
even creates sequences, depending on the identifier generator you select. But there
are some schema artifacts Hibernate can’t and won’t create automatically. These
include all kinds of highly vendor-specific performance options and any other arti-
facts that are relevant only for the physical storage of data (tablespaces, for example).
Besides these physical concerns, your DBA will often supply custom additional schema
statements to improve the generated schema. DBAs should get involved early and ver-
ify the automatically generated schema from Hibernate. Never go into production
with an unchecked automatically generated schema.

Major new features in JPA 2
 Schema generation and execution of custom SQL scripts during bootstrap is

now standardized and can be configured on a persistence unit.
 You can map and customize schema artifacts such as indexes and foreign

key names with standard annotations.
 You can map foreign keys/many-to-one associations in composite primary

keys with @MapsId as “derived identity.”
Licensed to Thomas Snead <n.ordickan@gmail.com>

205Improving the database schema
 If your development process allows, changes made by the DBA can flow back into
your Java systems, for you to add to mapping metadata. In many projects, the mapping
metadata can contain all the necessary schema changes from a DBA. Then Hibernate
can generate the final production schema during the regular build by including all
comments, constraints, indexes, and so on.

 In the following sections, we show you how to customize the generated schema and
how to add auxiliary database schema artifacts (we call them objects sometimes; we
don’t mean Java objects here). We discuss custom data types, additional integrity
rules, indexes, and how you can replace some of the (sometimes ugly) auto-generated
artifact names produced by Hibernate.

First, let’s look at how you can add custom SQL statements to Hibernate’s automatic
schema-generation process.

9.1.1 Adding auxiliary database objects

You can hook the following three types of custom SQL scripts into Hibernate’s
schema-generation process:

 The create script executes when the schema is generated. A custom create script
can run before, after, or instead of Hibernate’s automatically generated scripts.
In other words, you can write an SQL script that runs before or after Hibernate
generates tables, constraints, and so on from your mapping metadata.

 The drop script executes when Hibernate removes schema artifacts. Just like the
create script, a drop script can run before, after, or instead of Hibernate’s auto-
matically generated statements.

 The load script always executes after Hibernate generates the schema, as the last
step after creation. Its main purpose is importing test or master data, before
your application or unit test runs. It can contain any kind of SQL statement,
including DDL statements such as ALTER, if you want to further customize the
schema.

This customization of the schema-generation process is actually standardized; you
configure it with JPA properties in persistence.xml for a persistence unit.

Exporting the schema script to a file
Hibernate bundles the class org.hibernate.tool.hbm2ddl.SchemaExport with a
main() method you can run from the command line. This utility can either talk to your
DBMS directly and create the schema or write a text file with the DDL script for further
customization by your DBA.
Licensed to Thomas Snead <n.ordickan@gmail.com>

206 CHAPTER 9 Complex and legacy schemas

<property name="hibernate.0hbm2ddl.import_files_sql_extractor"
 value="org.hibernate.tool.hbm2ddl.

 ➥MultipleLinesSqlCommandExtractor"/>

<property name="javax.persistence.schema-generation.create-source"
 value="script-then-metadata"/>
<property name="javax.persistence.schema-generation.drop-source"
 value="metadata-then-script"/>

<property name="javax.persistence.schema-generation.create-script-source"
 value="complexschemas/CreateScript.sql.txt"/>

<property name="javax.persistence.schema-generation.drop-script-source"
 value="complexschemas/DropScript.sql.txt"/>

<property name="javax.persistence.sql-load-script-source"
 value="complexschemas/LoadScript.sql.txt"/>

B By default, Hibernate expects one SQL statement per line in scripts. This switches to the
more convenient multiline extractor. SQL statements in scripts are terminated with
semicolon. You can write your own org.hibernate.tool.hbm2ddl.ImportSqlCommand-
Extractor implementation if you want to handle the SQL script in a different way.

C This property defines when the create and drop scripts should be executed. Your cus-
tom SQL scripts will contain CREATE DOMAIN statements, which must be executed before
the tables using these domains are created. With these settings, the schema generator
runs the create script first before reading your ORM metadata (annotations, XML files)
and creating the tables. The drop script executes after Hibernate drops the tables, giv-
ing you a chance to clean up anything you created. Other options are metadata (ignore
custom script sources) and script (only use a custom script source; ignore ORM meta-
data in annotations and XML files).

D This is the location of the custom SQL script for creation of the schema. The path is (a)
the location of the script resource on the classpath; (b) the location of the script as a
file:// URL; or, if neither (a) nor (b) matches, (c) the absolute or relative file path on
the local file system. This example uses (a).

E This is the custom SQL script for dropping the schema.

F This load script runs after the tables have been created.

We’ve mentioned that DDL is usually highly vendor-specific. If your application has to
support several database dialects, you may need several sets of create/drop/load

Listing 9.1 Custom schema-generation properties in persistence.xml

Path: /model/src/main/resources/META-INF/persistence.xml

Defines when scripts
should be executed

Switches to multiline
extractor CB

E
Custom SQL script
to create schema

Load script

Custom SQL
script to drop

schemaD
F

Licensed to Thomas Snead <n.ordickan@gmail.com>

207Improving the database schema

H

scripts to customize the schema for each database dialect. You can solve this with sev-
eral persistence unit configurations in the persistence.xml file.

 Alternatively, Hibernate has its own proprietary configuration for schema customi-
zation in an hbm.xml mapping file.

<hibernate-mapping xmlns="http://www.hibernate.org/xsd/orm/hbm">

 <database-object>
 <create>
 CREATE ...
 </create>
 <drop>
 DROP ...
 </drop>
 <dialect-scope name="org.hibernate.dialect.H2Dialect"/>
 <dialect-scope name="org.hibernate.dialect.PostgreSQL82Dialect"/>
 </database-object>

</hibernate-mapping>

Place your custom SQL fragments into the <create> and <drop> elements. Hibernate
executes these statements after creating the schema for your domain model classes,
which is after creating your tables and before dropping the automatically generated
part of the schema. This behavior can’t be changed, so the standard JPA schema-
generation script settings offer more flexibility.

 The <dialect-scope> elements restrict your SQL statements to a particular set of
configured database dialects. Without any <dialect-scope> elements, the SQL state-
ments are always applied.

 Hibernate also supports a load script: if Hibernate finds a file called import.sql in
the root of your classpath, it executes that file after the schema has been created.
Alternatively, if you have several import files, you can name them as a comma-
separated list with the hibernate.hbm2ddl.import_files property in your persis-
tence unit configuration.

 Finally, if you need more programmatic control over the generated schema, imple-
ment the org.hibernate.mapping.AuxiliaryDatabaseObject interface. Hibernate
comes bundled with a convenience implementation that you can subclass and over-
ride selectively.

package org.jpwh.model.complexschemas;

import org.hibernate.dialect.Dialect;
import org.hibernate.boot.model.relational.AbstractAuxiliaryDatabaseObject;

public class CustomSchema

Listing 9.2 Custom schema generation with a Hibernate proprietary configuration

Listing 9.3 Controlling the generated schema programmatically

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

208 CHAPTER 9 Complex and legacy schemas
 extends AbstractAuxiliaryDatabaseObject {

 public CustomSchema() {
 addDialectScope("org.hibernate.dialect.Oracle9Dialect");
 }

 @Override
 public String[] sqlCreateStrings(Dialect dialect) {
 return new String[]{"[CREATE statement]"};
 }

 @Override
 public String[] sqlDropStrings(Dialect dialect) {
 return new String[]{"[DROP statement]"};
 }
}

You can add dialect scopes programmatically and even access some mapping informa-
tion in the sqlCreateString() and sqlDropString() methods. You have to enable
this custom class in an hbm.xml file:

<hibernate-mapping xmlns="http://www.hibernate.org/xsd/orm/hbm">

 <database-object>
 <definition class="org.jpwh.model.complexschemas.CustomSchema"/>
 <dialect-scope name="org.hibernate.dialect.H2Dialect"/>
 <dialect-scope name="org.hibernate.dialect.PostgreSQL82Dialect"/>
 </database-object>

</hibernate-mapping>

Additional dialect scopes are cumulative; the previous example applies to three
dialects.

 Let’s write some custom create/drop/load scripts and implement additional
schema integrity rules recommended by any good DBA. First, some background infor-
mation on integrity rules and SQL constraints.

9.1.2 SQL constraints

Systems that ensure data integrity only in application code are prone to data corrup-
tion and often degrade the quality of the database over time. If the data store doesn’t
enforce rules, a trivial undetected application bug can cause unrecoverable problems
such as incorrect or lost data.

 In contrast to ensuring data consistency in procedural (or object-oriented) appli-
cation code, database management systems allow you to implement integrity rules
with declarations, as a database schema. The advantages of declarative rules are fewer
possible errors in code and a chance for the DBMS to optimize data access.

 In SQL databases, we identify four kinds of rules:

 Domain constraints—A domain is (loosely speaking, and in the database world) a
data type in a database. Hence, a domain constraint defines the range of possi-
ble values a particular data type can handle. For example, an INTEGER data type
Licensed to Thomas Snead <n.ordickan@gmail.com>

209Improving the database schema
is usable for integer values. A CHAR data type can hold character strings: for
example, all characters defined in ASCII or some other encoding. Because we
mostly use data types built-in the DBMS, we rely on the domain constraints as
defined by the vendor. If supported by your SQL database, you can use the
(often limited) support for custom domains to add additional constraints for
particular existing data types, or create user-defined data types (UDT).

 Column constraints—Restricting a column to hold values of a particular domain
and type creates a column constraint. For example, you declare in the schema
that the EMAIL column holds values of VARCHAR type. Alternatively, you could
create a new domain called EMAIL_ADDRESS with further constraints and apply it
to a column instead of VARCHAR. A special column constraint in an SQL database
is NOT NULL.

 Table constraints—An integrity rule that applies to several columns or several
rows is a table constraint. A typical declarative table constraint is UNIQUE: all
rows are checked for duplicate values (for example, each user must have a dis-
tinct email address). A rule affecting only a single row but multiple columns is
“the auction end time has to be after the auction start time.”

 Database constraints—If a rule applies to more than one table, it has database
scope. You should already be familiar with the most common database con-
straint, the foreign key. This rule guarantees the integrity of references between
rows, usually in separate tables, but not always (self-referencing foreign key con-
straints aren’t uncommon). Other database constraints involving several tables
aren’t uncommon: for example, a bid can only be stored if the auction end time
of the referenced item hasn’t been reached.

Most (if not all) SQL database management systems support these kinds of constraints
and the most important options of each. In addition to simple keywords such as NOT
NULL and UNIQUE, you can usually also declare more complex rules with the CHECK con-
straint that applies an arbitrary SQL expression. Still, integrity constraints are one of
the weak areas in the SQL standard, and solutions from vendors can differ significantly.

 Furthermore, non-declarative and procedural constraints are possible with data-
base triggers that intercept data-modification operations. A trigger can then imple-
ment the constraint procedure directly or call an existing stored procedure.

 Integrity constraints can be checked immediately when a data-modification state-
ment is executed, or the check can be deferred until the end of a transaction. The vio-
lation response in SQL databases is usually rejection without any possibility of
customization. Foreign keys are special because you can typically decide what should
happen with ON DELETE or ON UPDATE for referenced rows.

 Hibernate passes on database constraint violations in error exceptions; check
whether the exception in your transaction has a cause, somewhere in the exception
chain, of type org.hibernate.exception.ConstraintViolationException. This
exception can provide more information about the error, such as the name of the
failed database constraint.
Licensed to Thomas Snead <n.ordickan@gmail.com>

210 CHAPTER 9 Complex and legacy schemas

Let’s take a closer look at the implementation of integrity constraints.

ADDING DOMAIN AND COLUMN CONSTRAINTS

The SQL standard includes domains, which unfortunately are rather limited and often
not supported by the DBMS. If your system supports SQL domains, you can use them
to add constraints to data types.

 In your custom SQL create script, define an EMAIL_ADDRESS domain based on the
VARCHAR data type:

create domain if not exists
 EMAIL_ADDRESS as varchar
 check (position('@', value) > 1);

The additional constraint is a check of the presence of an @ symbol in the string. The
(relatively minor) advantage of such domains in SQL is the abstraction of common
constraints into a single location. Domain constraints are always checked immediately
when data is inserted and modified.

 You can now use this domain in your mappings, like a built-in data type:

@Entity
public class User {

 @Column(
 nullable = false,
 unique = true,
 columnDefinition = "EMAIL_ADDRESS(255)"
)

PATH: /model/src/main/resources/complexschemas/CreateScript.sql.txt

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/User.java

Displaying validation error messages
It sounds almost too good to be true: The database layer will throw a Constraint-
ViolationException that includes all the details, so why not show this to the user?
The user can then change the invalid value on their screen and submit the form again
until the data passes validation. Unfortunately, this doesn’t work, and many who have
tried to implement this strategy have failed.

First, every DBMS has different error messages, and Hibernate doesn’t guarantee
correct parsing of the error. The details available on ConstraintViolation-
Exception are a best guess; they’re usually wrong and only good enough for devel-
oper log messages. Should SQL standardize this? Of course, but it doesn’t.

Second, an application shouldn’t pass invalid data to the database to see what
sticks and what doesn’t. The DBMS is the last line of defense, not the first validator.
Use Bean Validation in the Java application tier instead, and show your users nice
validation error messages in their own language.

Column constraint

Table multirow constraint

Applies domain constraint
Licensed to Thomas Snead <n.ordickan@gmail.com>

211Improving the database schema

H

 protected String email;

 // ...
}

Several constraints are present in this mapping. The NOT NULL constraint is common;
you’ve seen it many times before. The second is a UNIQUE column constraint; users
can’t have duplicate email addresses. At the time of writing, there was unfortunately no
way to customize the name of this single-column unique constraint in Hibernate; it will
get an ugly auto-generated name in your schema. Last, the columnDefinition refers to
the domain you’ve added with your custom create script. This definition is an SQL frag-
ment, exported into your schema directly, so be careful with database-specific SQL.

 If you don’t want to create domains first, apply the CHECK keyword directly as a
single-column constraint:

@Entity
public class User {

 @Column(columnDefinition =
 "varchar(15) not null unique" +

 " check (not substring(lower(USERNAME), 0, 5) = 'admin')"
)
 protected String username;

 // ...
}

This constraint restricts valid username values to a maximum length of 15 characters,
and the string can’t begin with admin to avoid confusion. You can call any SQL func-
tions supported by your DBMS; the columnDefinition is always passed through into
the exported schema.

 Note that you have a choice: creating and using a domain or adding a single-
column constraint has the same effect. Domains are usually easier to maintain and
avoid duplicating.

 At the time of writing, Hibernate doesn’t support its proprietary annotation
@org.hibernate.annotations.Check on individual properties; you use it for table-
level constraints.

TABLE-LEVEL CONSTRAINTS

An auction can’t end before it starts. So far you have no rule in your SQL schema, or
even in your Java domain model, that implements this restriction. You need a single-
row table constraint:

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/User.java

@org.hibernate.annotations.Check
currently isn’t supported on
properties

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

212 CHAPTER 9 Complex and legacy schemas

@Entity
@org.hibernate.annotations.Check(
 constraints = "AUCTIONSTART < AUCTIONEND"
)
public class Item {

 @NotNull
 protected Date auctionStart;

 @NotNull
 protected Date auctionEnd;

 // ...
}

Hibernate appends table constraints to the generated CREATE TABLE statement, which
can contain arbitrary SQL expressions.

 You can implement multirow table constraints with expressions that are more com-
plex. You may need a subselect in the expression to do this, which may not be
supported by your DBMS. But there are some common multirow table constraints,
like UNIQUE, that you can add directly in the mappings. You’ve already seen the
@Column(unique = true|false) option in the previous section.

 If your unique constraint spans multiple columns, use the uniqueConstraints
option of the @Table annotation:

@Entity
@Table(
 name = "USERS",
 uniqueConstraints =
 @UniqueConstraint(
 name = "UNQ_USERNAME_EMAIL",
 columnNames = { "USERNAME", "EMAIL" }
)
)
public class User {

 // ...
}

Now all pairs of USERNAME and EMAIL must be unique, for all rows in the USERS table. If
you don’t provide a name for the constraint—here, UNQ_USERNAME_EMAIL—an auto-
matically generated and probably ugly name is used.

 The last kinds of constraints we discuss are database-wide rules that span several
tables.

DATABASE CONSTRAINTS

A user can only make bids until an auction ends. Your database should guarantee that
invalid bids can’t be stored so that whenever a row is inserted into the BID table, the

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/Item.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

213Improving the database schema
CREATEDON timestamp of the bid is checked against the auction ending time. This kind
of constraint involves two tables: BID and ITEM.

 You can create a rule that spans several tables with a join in a subselect in any SQL
CHECK expression. Instead of referring only to the table on which the constraint is
declared, you may query (usually for the existence or nonexistence of a particular
piece of information) a different table. The problem is that you can’t use the
@org.hibernate.annotations.Check annotation on either the Bid or Item class. You
don’t know which table Hibernate will create first.

 Therefore, put your CHECK constraint into an ALTER TABLE statement that executes
after all the tables have been created. A good place is the load script, because it always
executes at that time:

alter table BID
 add constraint AUCTION_BID_TIME
 check(
 CREATEDON <= (
 select i.AUCTIONEND from ITEM i where i.ID = ITEM_ID
)
);

A row in the BID table is now valid if its CREATEDON value is less than or equal to the
auction end time of the referenced ITEM row.

 By far the most common rules that span several tables are referential integrity
rules. They’re widely known as foreign keys, which are a combination of two things: a
key value copy from a related row and a constraint that guarantees that the referenced
value exists. Hibernate creates foreign key constraints automatically for all foreign key
columns in association mappings. If you check the schema produced by Hibernate,
you’ll notice that these constraints also have automatically generated database identi-
fiers—names that aren’t easy to read and that make debugging more difficult. You see
this kind of statement in the generated schema:

alter table BID add constraint FKCFAEEDB471BF59FF
 foreign key (ITEM_ID) references ITEM

This statement declares the foreign key constraint for the ITEM_ID column in the BID
table, referencing the primary key column of the ITEM table. You can customize the
name of the constraint with the foreignKey option in an @JoinColumn mapping:

@Entity
public class Bid {

 @ManyToOne
 @JoinColumn(
 name = "ITEM_ID",
 nullable = false,

PATH: /model/src/main/resources/complexschemas/LoadScript.sql.txt

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/Bid.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

214 CHAPTER 9 Complex and legacy schemas
 foreignKey = @ForeignKey(name = "FK_ITEM_ID")
)
 protected Item item;

 // ...
}

A foreignKey attribute is also supported in @PrimaryKeyJoinColumn, @MapKeyJoin-
Column, @JoinTable, @CollectionTable, and @AssociationOverride mappings.

 The @ForeignKey annotation has some rarely needed options we haven’t shown:

 You can write your own foreignKeyDefinition, an SQL fragment such as
FOREIGN KEY ([column]) REFERENCES [table]([column]) ON UPDATE [action].
Hibernate will use this SQL fragment instead of the provider-generated frag-
ment, it can be in the SQL dialect supported by your DBMS.

 The ConstraintMode setting is useful if you want to disable foreign key genera-
tion completely, with the value NO_CONSTRAINT. You can then write the foreign
key constraint yourself with an ALTER TABLE statement, probably in a load script
as we’ve shown.

Naming constraints properly is not only good practice, but also helps significantly
when you have to read exception messages.

 This completes our discussion of database integrity rules. Next, we look at some
optimization you might want to include in your schema for performance reasons.

9.1.3 Creating indexes

Indexes are a key feature when optimizing the performance of a database application.
The query optimizer in a DBMS can use indexes to avoid excessive scans of the data
tables. Because they’re relevant only in the physical implementation of a database,
indexes aren’t part of the SQL standard, and the DDL and available indexing options
are product specific. You can, however, embed the most common schema artifacts for
typical indexes in mapping metadata.

 Many queries in CaveatEmptor will probably involve the username of a User entity.
You can speed up these queries by creating an index for the column of this property.
Another candidate for an index is the combination of USERNAME and EMAIL columns,
which you also use frequently in queries. You can declare single or multicolumn
indexes on the entity class with the @Table annotation and its indexes attribute:

@Entity
@Table(
 name = "USERS",
 indexes = {
 @Index(
 name = "IDX_USERNAME",
 columnList = "USERNAME"
),

PATH: /model/src/main/java/org/jpwh/model/complexschemas/custom/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

215Handling legacy keys
 @Index(
 name = "IDX_USERNAME_EMAIL",
 columnList = "USERNAME, EMAIL"
)
 }
)
public class User {

 // ...
}

If you don’t provide a name for the index, a generated name is used.
 We don’t recommend adding indexes to your schema ad hoc because it feels like

an index could help with a performance problem. Get the excellent book SQL Tuning
by Dan Tow (Tow, 2003) if you want to learn efficient database-optimization tech-
niques and especially how indexes can get you closer to the best-performing execu-
tion plan for your queries.

 Customizing the database schema is often possible only if you’re working on a new
system with no existing data. If you have to deal with an existing legacy schema, one of
the most common issues is working with natural and composite keys.

9.2 Handling legacy keys
We mentioned in section 4.2.3 that we think natural primary keys can be a bad idea.
Natural keys often make it difficult to change the data model when business require-
ments change. They may even, in extreme cases, impact performance. Unfortunately,
many legacy schemas use (natural) composite keys heavily; and for the reason we dis-
courage the use of composite keys, it may be difficult to change the legacy schema to
use non-composite natural or surrogate keys. Therefore, JPA supports natural and
composite primary and foreign keys.

9.2.1 Mapping a natural primary key

If you encounter a USERS table in a legacy schema, it’s likely that USERNAME is the pri-
mary key. In this case, you have no surrogate identifier that Hibernate generates auto-
matically. Instead, your application has to assign the identifier value when saving an
instance of the User class:

User user = new User("johndoe");
em.persist(user);

Here the user’s name is an argument of the only public constructor of the User class:

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
NaturalPrimaryKey.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

216 CHAPTER 9 Complex and legacy schemas

@Entity
@Table(name = "USERS")
public class User {

 @Id
 protected String username;

 protected User() {
 }

 public User(String username) {
 this.username = username;
 }

 // ...
}

Hibernate calls the protected no-argument constructor when it loads a User from the
database and then assigns the username field value directly. When you instantiate a
User, call the public constructor with a username. If you don’t declare an identifier
generator on the @Id property, Hibernate expects the application to take care of the
primary key value assignment.

 Composite (natural) primary keys require a bit more work.

9.2.2 Mapping a composite primary key

Suppose the primary key of the USERS table is a composite of the two columns USER-
NAME and DEPARTMENTNR. You write a separate composite identifier class that declares
just the key properties and call this class UserId:

@Embeddable
public class UserId implements Serializable {

 protected String username;

 protected String departmentNr;

 protected UserId() {
 }

 public UserId(String username, String departmentNr) {
 this.username = username;
 this.departmentNr = departmentNr;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;

PATH: /model/src/main/java/org/jpwh/model/complexschemas/naturalprimarykey/
User.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
embedded/UserId.java

@Embeddable, Serializable classB

Automatically NOT NULLC

Protected constructorD

Public
constructorE

Overrides equals()
and hashCode()

F

Licensed to Thomas Snead <n.ordickan@gmail.com>

217Handling legacy keys
 if (o == null || getClass() != o.getClass()) return false;
 UserId userId = (UserId) o;
 if (!departmentNr.equals(userId.departmentNr)) return false;
 if (!username.equals(userId.username)) return false;
 return true;
 }

 @Override
 public int hashCode() {
 int result = username.hashCode();
 result = 31 * result + departmentNr.hashCode();
 return result;
 }

 // ...
}

B This class has to be @Embeddable and Serializable—any type used as an identifier type
in JPA must be Serializable.

C You don’t have to mark the properties of the composite key as @NotNull; their database
columns are automatically NOT NULL when embedded as the primary key of an entity.

D The JPA specification requires a public no-argument constructor for an embeddable
identifier class. Hibernate accepts protected visibility.

E The only public constructor should have the key values as arguments.

F You have to override the equals() and hashCode() methods with the same semantics
the composite key has in your database. In this case, this is a straightforward comparison
of the username and departmentNr values.

These are the important parts of the UserId class. You probably will also have some
getter methods to access the property values.

 Now map the User entity with this identifier type as an @EmbeddedId:

@Entity
@Table(name = "USERS")
public class User {

 @EmbeddedId
 protected UserId id;

 public User(UserId id) {
 this.id = id;
 }

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
embedded/User.java

Overrides equals()
and hashCode()

F

Optional: @AttributeOverrides
Licensed to Thomas Snead <n.ordickan@gmail.com>

218 CHAPTER 9 Complex and legacy schemas
Just as for regular embedded components, you can over-
ride individual attributes and their mapped columns, as
you saw in section 5.2.3. Figure 9.1 shows the database
schema.

 Any public constructor of User should require an
instance of UserId, to force you to provide a value before
saving the User (an entity class must have another, no-
argument constructor, of course):

UserId id = new UserId("johndoe", "123");
User user = new User(id);
em.persist(user);

This is how you load an instance of User:

UserId id = new UserId("johndoe", "123");
User user = em.find(User.class, id);
assertEquals(user.getId().getDepartmentNr(), "123");

Next, suppose DEPARTMENTNR is a foreign key referencing a DEPARTMENT table, and
that you wish to represent this association in the Java domain model as a many-to-one
association.

9.2.3 Foreign keys in composite primary keys

Look at the schema in figure 9.2.

Your first mapping option is with a dedicated annotation @MapsId, designed for this
purpose. Start by renaming the departmentNr property to departmentId in the
UserId embedded identifier class introduced in the previous section:

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyEmbeddedId.java

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyEmbeddedId.java

USERNAME << PK >>
DEPARTMENTID << PK >> << FK >>
...

<< Table >>
USERS

ID << PK >>
NAME
...

<< Table >>
DEPARTMENT

Figure 9.2 Part of the USERS
composite primary key is also a
foreign key.

USERNAME << PK >>
DEPARTMENTNR << PK >>
...

<< Table >>
USERS

Figure 9.1 The USERS
table has a composite
primary key.
Licensed to Thomas Snead <n.ordickan@gmail.com>

219Handling legacy keys

@Embeddable
public class UserId implements Serializable {

 protected String username;

 protected Long departmentId;

 // ...
}

The type of the property is now Long, not String. Next, add the department associa-
tion with an @ManyToOne mapping to the User entity class:

@Entity
@Table(name = "USERS")
public class User {

 @EmbeddedId
 protected UserId id;

 @ManyToOne
 @MapsId("departmentId")
 protected Department department;

 public User(UserId id) {
 this.id = id;
 }

 // ...
}

The @MapsId annotation tells Hibernate to ignore the value of UserId#departmentId
when saving an instance of User. Hibernate uses the identifier of the Department
assigned to User#department when saving a row into the USERS table:

Department department = new Department("Sales");
em.persist(department);

UserId id = new UserId("johndoe", null);
User user = new User(id);
user.setDepartment(department);
em.persist(user);

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
mapsid/UserId.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
mapsid/User.java

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyMapsId.java

Null?

Required
Licensed to Thomas Snead <n.ordickan@gmail.com>

220 CHAPTER 9 Complex and legacy schemas
Hibernate ignores whatever value you set as the UserId#departmentId when saving;
here it’s even set to null. This means you always need a Department instance when
storing a User. JPA calls this a derived identifier mapping.

 When you load a User, only the identifier of a Department is necessary:

UserId id = new UserId("johndoe", DEPARTMENT_ID);
User user = em.find(User.class, id);
assertEquals(user.getDepartment().getName(), "Sales");

We don’t like this mapping strategy much. This is a better variation without @MapsId:

@Entity
@Table(name = "USERS")
public class User {

 @EmbeddedId
 protected UserId id;

 @ManyToOne
 @JoinColumn(
 name = "DEPARTMENTID",
 insertable = false, updatable = false
)
 protected Department department;

 public User(UserId id) {
 this.id = id;
 }

 // ...
}

With a simple insertable=false, updatable=false, you make the User#department
property read-only. That means you can only query data by calling someUser.get-
Department(), and you have no public setDepartment() method. The property
responsible for the database updates of the DEPARTMENTID column in the USERS table
is UserId#departmentId.

 Therefore, you now have to set the department’s identifier value when saving a
new User:

Department department = new Department("Sales");
em.persist(department);

UserId id = new UserId("johndoe", department.getId());

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyMapsId.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
readonly/User.java

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyReadOnly.java

Defaults to DEPARTMENT_ID

Make it read-only

Assigns primary key value

Required
Licensed to Thomas Snead <n.ordickan@gmail.com>

221Handling legacy keys
User user = new User(id);
em.persist(user);

assertNull(user.getDepartment());

Note that User#getDepartment() returns null because you didn’t set the value of this
property. Hibernate only populates it when you load a User:

UserId id = new UserId("johndoe", DEPARTMENT_ID);
User user = em.find(User.class, id);
assertEquals(user.getDepartment().getName(), "Sales");

Many developers prefer to encapsulate all these concerns in a constructor:

@Entity
@Table(name = "USERS")
public class User {

 public User(String username, Department department) {
 if (department.getId() == null)
 throw new IllegalStateException(
 "Department is transient: " + department
);
 this.id = new UserId(username, department.getId());
 this.department = department;
 }

 // ...
}

This defensive constructor enforces how a User has to be instantiated and correctly
sets all identifier and property values.

 If the USERS table has a composite primary key, a foreign key referencing the table
must also be a composite key.

9.2.4 Foreign keys to composite primary keys

For example, the association from Item to User, the seller, could require a mapping
of a composite foreign key. Look at the schema in figure 9.3.

PATH: /examples/src/test/java/org/jpwh/test/complexschemas/
CompositeKeyReadOnly.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
readonly/User.java

Careful!

USERNAME << PK >>
DEPARTMENTNR << PK >>
...

<< Table >>
USERSID << PK >>

SELLER_USERNAME << FK >>
SELLER_DEPARTMENTNR << FK >>
...

<< Table >>
ITEM Figure 9.3 The item’s seller

is represented with a
composite foreign key in the
ITEM table.
Licensed to Thomas Snead <n.ordickan@gmail.com>

222 CHAPTER 9 Complex and legacy schemas
Hibernate can hide this detail in the Java domain model. Here’s the mapping of the
Item#seller property:

@Entity
public class Item {

 @NotNull
 @ManyToOne
 @JoinColumns({
 @JoinColumn(name = "SELLER_USERNAME",
 referencedColumnName = "USERNAME"),
 @JoinColumn(name = "SELLER_DEPARTMENTNR",
 referencedColumnName = "DEPARTMENTNR")
 })
 protected User seller;

 // ...
}

You might not have seen the @JoinColumns annotation before; it’s a list of the com-
posite foreign key columns underlying this association. Make sure you provide the
referencedColumnName attribute, to link the source and target of the foreign key.
Hibernate unfortunately won’t complain if you forget, and you may end up with a
wrong column order in the generated schema.

 In legacy schemas, a foreign key sometimes doesn’t reference a primary key.

9.2.5 Foreign key referencing non-primary keys

A foreign key constraint on the SELLER column in the ITEM table ensures that the
seller of the item exists by requiring the same seller value to be present on some col-
umn in some row on some table. There are no other rules; the target column doesn’t
need a primary key constraint or even a unique constraint. The target table can be any
table. The value can be a numeric identifier of the seller or a customer number string;
only the type has to be the same for the foreign key reference source and target.

 Of course, a foreign key constraint usually references primary key column(s). Nev-
ertheless, legacy databases sometimes have foreign key constraints that don’t follow
this simple rule. Sometimes a foreign key constraint references a simple unique col-
umn—a natural non-primary key. Let’s assume that in CaveatEmptor, and as shown in
figure 9.4, you need to handle a legacy natural key column called CUSTOMERNR on the
USERS table:

PATH: /model/src/main/java/org/jpwh/model/complexschemas/compositekey/
manytoone/Item.java

ID << PK >>
CUSTOMERNR << UNIQUE >>
...

<< Table >>
USERS

ID << PK >>
SELLER_CUSTOMERNR << FK >>
...

<< Table >>
ITEM Figure 9.4 The item’s

seller foreign key
references a non-primary
column in USERS
Licensed to Thomas Snead <n.ordickan@gmail.com>

223Handling legacy keys

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 protected Long id;

 @NotNull
 @Column(unique = true)
 protected String customerNr;

 // ...
}

So far, this is nothing special; you’ve seen such a simple unique property mapping
before. The legacy aspect is the SELLER_CUSTOMERNR column in the ITEM table, with a
foreign key constraint referencing the user’s CUSTOMERNR instead of the user’s ID:

@Entity
public class Item {

 @NotNull
 @ManyToOne
 @JoinColumn(
 name = "SELLER_CUSTOMERNR",
 referencedColumnName = "CUSTOMERNR"
)
 protected User seller;

 // ...
}

You specify the referencedColumnName attribute of @JoinColumn to declare this rela-
tionship. Hibernate now knows that the referenced target column is a natural key, and
not the primary key, and manages the foreign key relationship accordingly.

 If the target natural key is a composite key, use @JoinColumns instead as in the pre-
vious section. Fortunately, it’s often straightforward to clean up such a schema by
refactoring foreign keys to reference primary keys—if you can make changes to the
database that don’t disturb other applications sharing the data.

 This completes our discussion of natural, composite, and foreign key–related
problems you may have to deal with when you try to map a legacy schema. Let’s move
on to another interesting special strategy: mapping basic or embedded properties of
an entity to a secondary table.

PATH: /model/src/main/java/org/jpwh/model/complexschemas/naturalforeignkey/
User.java

PATH: /model/src/main/java/org/jpwh/model/complexschemas/naturalforeignkey/
Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

224 CHAPTER 9 Complex and legacy schemas
9.3 Mapping properties to secondary tables
We’ve already shown the @SecondaryTable annotation in an inheritance mapping in
section 6.5. It helped to break out properties of a particular subclass into a separate
table. This generic functionality has more uses—but be aware that a properly
designed system should have, simplified, more classes than tables.

 Suppose that in a legacy schema, you aren’t keeping a user’s billing address infor-
mation with the other user details in the USERS main entity table, but in a separate
table. Figure 9.5 shows this schema. The user’s home address is stored in the columns
STREET, ZIPCODE, and CITY of the USERS table. The user’s billing address is stored in
the BILLING_ADDRESS table, which has the primary key column USER_ID, which is also
a foreign key constraint referencing the ID primary key of the USERS table.

To map this schema, declare the secondary table for the User entity and then how
Hibernate should join it with @SecondaryTable:

@Entity
@Table(name = "USERS")
@SecondaryTable(
 name = "BILLING_ADDRESS",
 pkJoinColumns = @PrimaryKeyJoinColumn(name = "USER_ID")
)
public class User {

 protected Address homeAddress;

 @AttributeOverrides({
 @AttributeOverride(name = "street",
 column = @Column(table = "BILLING_ADDRESS",
 nullable = false)),
 @AttributeOverride(name = "zipcode",
 column = @Column(table = "BILLING_ADDRESS",
 length = 5,
 nullable = false)),
 @AttributeOverride(name = "city",
 column = @Column(table = "BILLING_ADDRESS",
 nullable = false))
 })
 protected Address billingAddress;

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/complexschemas/secondarytable/
User.java

USER_ID << PK >> << FK >>
STREET
ZIPCODE
CITY

<< Table >>
BILLING_ADDRESSID << PK >>

STREET
ZIPCODE
CITY

<< Table >>
USERS

Figure 9.5 Breaking out the billing
address data into a secondary table
Licensed to Thomas Snead <n.ordickan@gmail.com>

225Summary
The User class has two properties of embedded type: homeAddress and billing-
Address. The first is a regular embedded mapping, and the Address class is
@Embeddable.

 Just as in section 5.2.3, you can use the @AttributeOverrides annotation to over-
ride the mapping of embedded properties. Then, @Column maps the individual prop-
erties to the BILLING_ADDRESS table, with its table option. Remember that an
@AttributeOverride replaces all mapping information for a property: any annota-
tions on the Address fields are ignored if you override. Therefore, you have to specify
nullability and length again in the @Column override.

 We’ve shown you a secondary table mapping example with an embeddable prop-
erty. Of course, you could also break out simple basic properties like the username
string in a secondary table. Keep in mind that reading and maintaining these map-
pings can be a problem, though; you should only map legacy unchangeable schemas
with secondary tables.

9.4 Summary
 Focus on the database schema.
 You can add additional integrity rules to a Hibernate-generated database

schema. You now know how to execute custom create, drop, and load SQL
scripts.

 We discussed using SQL constraints: domain, columns, table, and database
constraints.

 We also covered using custom SQL data types, as well as check, unique, and for-
eign key constraints.

 You saw some common issues you have to resolve when dealing with legacy sche-
mas, and specifically keys.

 You learned about several types of mapping: natural primary keys, composite
primary keys, foreign keys in composite primary keys, foreign keys to composite
primary keys, and foreign keys referencing non-primary keys.

 You saw how to move properties of an entity to a secondary table.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 3

Transactional data processing

In part 3, you’ll load and store data with Hibernate and Java Persistence.
You’ll introduce the programming interfaces, how to write transactional applica-
tions, and how Hibernate can load data from the database most efficiently.

 Starting with chapter 10, you’ll learn the most important strategies for inter-
acting with entity instances in a JPA application. You’ll see the life cycle of entity
instances: how they become persistent, detached, and removed. This chapter is
where you’ll get to know the most important interface in JPA: the EntityManager.
Next, chapter 11 defines database and system transaction essentials and how to
control concurrent access with Hibernate and JPA. You’ll also see nontransac-
tional data access. In chapter 12, we’ll go through lazy and eager loading, fetch
plans, strategies, and profiles, and wrap up with optimizing SQL execution.
Finally, chapter 13 covers cascading state transitions, listening to and intercept-
ing events, auditing and versioning with Hibernate Envers, and filtering data
dynamically.

 After reading this part, you’ll know how to work with Hibernate and Java Per-
sistence programming interfaces and how to load, modify, and store objects effi-
ciently. You’ll understand how transactions work and why conversational
processing can open up new approaches for application design. You’ll be ready
to optimize any object-modification scenario and apply the best fetching and
caching strategy to increase performance and scalability.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Managing data
You now understand how Hibernate and ORM solve the static aspects of the
object/relational mismatch. With what you know so far, you can create a mapping
between Java classes and an SQL schema, solving the structural mismatch problem.
For a reminder of the problems you’re solving, see section 1.2.

 An efficient application solution requires something more: you must investigate
strategies for runtime data management. These strategies are crucial to the perfor-
mance and correct behavior of your applications.

 In this chapter, we discuss the life cycle of entity instances—how an instance
becomes persistent, and how it stops being considered persistent—and the method
calls and management operations that trigger these transitions. The JPA Entity-
Manager is your primary interface for accessing data.

 Before we look at the API, let’s start with entity instances, their life cycle, and the
events that trigger a change of state. Although some of the material may be formal,
a solid understanding of the persistence life cycle is essential.

In this chapter
 The lifecycle and states of objects

 Working with the Java Persistence API

 Working with detached state
229

Licensed to Thomas Snead <n.ordickan@gmail.com>

230 CHAPTER 10 Managing data
10.1 The persistence life cycle
Because JPA is a transparent persistence mechanism—classes are unaware of their own
persistence capability—it’s possible to write application logic that’s unaware whether
the data it operates on represents persistent state or temporary state that exists only in
memory. The application shouldn’t necessarily need to care that an instance is persis-
tent when invoking its methods. You can, for example, invoke the Item#calculate-
TotalPrice() business method without having to consider persistence at all (for
example, in a unit test).

 Any application with persistent state must interact with the persistence service
whenever it needs to propagate state held in memory to the database (or vice versa).
In other words, you have to call the Java Persistence interfaces to store and load data.

 When interacting with the persistence mechanism that way, the application must
concern itself with the state and life cycle of an entity instance with respect to persis-
tence. We refer to this as the persistence life cycle : the states an entity instance goes
through during its life. We also use the term unit of work: a set of (possibly) state-
changing operations considered one (usually atomic) group. Another piece of the
puzzle is the persistence context provided by the persistence service. Think of the persis-
tence context as a service that remembers all the modifications and state changes you
made to data in a particular unit of work (this is somewhat simplified, but it’s a good
starting point).

 We now dissect all these terms: entity states, persistence contexts, and managed
scope. You’re probably more accustomed to thinking about what SQL statements you
have to manage to get stuff in and out of the database; but one of the key factors of
your success with Java Persistence is your understanding of state management, so stick
with us through this section.

Major new features in JPA 2
 You can get a vendor-specific variation of the persistence manager API

with EntityManager#unwrap(): for example, the org.hibernate.Session
API. Use EntityManagerFactory#unwrap() to obtain the org.hibernate
.SessionFactory.

 The new detach() operation provides fine-grained management of the persis-
tence context, evicting individual entity instances.

 From an existing EntityManager, you can obtain the EntityManager-
Factory used to create the persistence context with getEntityManager-
Factory().

 The new static Persistence(Unit)Util helper methods determine whether
an entity instance (or one of its properties) was fully loaded or is an uninitial-
ized reference (Hibernate proxy or unloaded collection wrapper.)
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#Caching
jpwh-2e-preview.xhtml#DynamicSQLGeneration
jpwh-2e-preview.xhtml#DynamicSQLGeneration
jpwh-2e-preview.xhtml#DynamicSQLGeneration
jpwh-2e-preview.xhtml#ClientServerApplications
jpwh-2e-preview.xhtml#ClientServerApplications
jpwh-2e-preview.xhtml#ClientServerApplications

231The persistence life cycle
10.1.1 Entity instance states

Different ORM solutions use different terminology and define different states and
state transitions for the persistence life cycle. Moreover, the states used internally may
be different from those exposed to the client application. JPA defines four states, hid-
ing the complexity of Hibernate’s internal implementation from the client code. Fig-
ure 10.1 shows these states and their transitions.

The state chart also includes the method calls to the EntityManager (and Query) API
that trigger transitions. We discuss this chart in this chapter; refer to it whenever you
need an overview. Let’s explore the states and transitions in more detail.

TRANSIENT STATE

Instances created with the new Java operator are transient, which means their state is
lost and garbage-collected as soon as they’re no longer referenced. For example, new
Item() creates a transient instance of the Item class, just like new Long() and new
BigDecimal(). Hibernate doesn’t provide any rollback functionality for transient
instances; if you modify the price of a transient Item, you can’t automatically undo the
change.

 For an entity instance to transition from transient to persistent state, to become
managed, requires either a call to the EntityManager#persist() method or the cre-
ation of a reference from an already-persistent instance and enabled cascading of
state for that mapped association.

PERSISTENT STATE

A persistent entity instance has a representation in the database. It’s stored in the data-
base—or it will be stored when the unit of work completes. It’s an instance with a

Transient

Persistent

Detached

persist()

remove()

merge() **

getReference()
Query#getResultList()
Query#getSingleResult()

detach()
close() *
clear() *

* Affects all instances in the persistence context
** Merging returns a persistent instance, original doesn't change state

Removed

refresh()

garbage

garbage

garbagenew

merge() **

persist()
find()

Figure 10.1 Entity instance states and their transitions
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#Interceptor

232 CHAPTER 10 Managing data
database identity, as defined in section 4.2; its database identifier is set to the primary
key value of the database representation.

 The application may have created instances and then made them persistent by call-
ing EntityManager#persist(). There may be instances that became persistent when
the application created a reference to the object from another persistent instance that
the JPA provider already manages. A persistent entity instance may be an instance
retrieved from the database by execution of a query, by an identifier lookup, or by nav-
igating the object graph starting from another persistent instance.

 Persistent instances are always associated with a persistence context. You see more
about this in a moment.

REMOVED STATE

You can delete a persistent entity instance from the database in several ways: For
example, you can remove it with EntityManager#remove(). It may also become avail-
able for deletion if you remove a reference to it from a mapped collection with orphan
removal enabled.

 An entity instance is then in the removed state: the provider will delete it at the end
of a unit of work. You should discard any references you may hold to it in the applica-
tion after you finish working with it—for example, after you’ve rendered the removal-
confirmation screen your users see.

DETACHED STATE

To understand detached entity instances, consider loading an instance. You call
EntityManager#find() to retrieve an entity instance by its (known) identifier. Then
you end your unit of work and close the persistence context. The application still has
a handle—a reference to the instance you loaded. It’s now in the detached state, and
the data is becoming stale. You could discard the reference and let the garbage collec-
tor reclaim the memory. Or, you could continue working with the data in the
detached state and later call the merge() method to save your modifications in a new
unit of work. We’ll discuss detachment and merging again later in this chapter, in a
dedicated section.

 You should now have a basic understanding of entity instance states and their tran-
sitions. Our next topic is the persistence context: an essential service of any Java Per-
sistence provider.

10.1.2 The persistence context

In a Java Persistence application, an EntityManager has a persistence context. You
create a persistence context when you call EntityManagerFactory#createEntity-
Manager(). The context is closed when you call EntityManager#close(). In JPA termi-
nology, this is an application-managed persistence context; your application defines the
scope of the persistence context, demarcating the unit of work.

 The persistence context monitors and manages all entities in persistent state. The
persistence context is the centerpiece of much of the functionality of a JPA provider.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#FetchPlanStrategy
jpwh-2e-preview.xhtml#StatefulServer
jpwh-2e-preview.xhtml#StatefulServer

233The persistence life cycle
 The persistence context allows the persistence engine to perform automatic dirty
checking, detecting which entity instances the application modified. The provider then
synchronizes with the database the state of instances monitored by a persistence con-
text, either automatically or on demand. Typically, when a unit of work completes, the
provider propagates state held in memory to the database through the execution of
SQL INSERT, UPDATE, and DELETE statements (all part of the Data Modification Lan-
guage [DML]). This flushing procedure may also occur at other times. For example,
Hibernate may synchronize with the database before execution of a query. This
ensures that queries are aware of changes made earlier during the unit of work.

 The persistence context acts as a first-level cache; it remembers all entity instances
you’ve handled in a particular unit of work. For example, if you ask Hibernate to load
an entity instance using a primary key value (a lookup by identifier), Hibernate can
first check the current unit of work in the persistence context. If Hibernate finds the
entity instance in the persistence context, no database hit occurs—this is a repeatable
read for an application. Consecutive em.find(Item.class, ITEM_ID) calls with the
same persistence context will yield the same result.

 This cache also affects results of arbitrary queries, executed for example with the
javax.persistence.Query API. Hibernate reads the SQL result set of a query and
transforms it into entity instances. This process first tries to resolve every entity
instance in the persistence context by identifier lookup. Only if an instance with the
same identifier value can’t be found in the current persistence context does Hiber-
nate read the rest of the data from the result-set row. Hibernate ignores any poten-
tially newer data in the result set, due to read-committed transaction isolation at the
database level, if the entity instance is already present in the persistence context.

 The persistence context cache is always on—it can’t be turned off. It ensures the
following:

 The persistence layer isn’t vulnerable to stack overflows in the case of circular
references in an object graph.

 There can never be conflicting representations of the same database row at the
end of a unit of work. The provider can safely write all changes made to an
entity instance to the database.

 Likewise, changes made in a particular persistence context are always immedi-
ately visible to all other code executed inside that unit of work and its persis-
tence context. JPA guarantees repeatable entity-instance reads.

The persistence context provides a guaranteed scope of object identity; in the scope of a
single persistence context, only one instance represents a particular database row.
Consider the comparison of references entityA == entityB. This is true only if both
are references to the same Java instance on the heap. Now, consider the comparison
entityA.getId().equals(entityB.getId()). This is true if both have the same
database identifier value. Within one persistence context, Hibernate guarantees that
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#ProblemOfIdentity
jpwh-2e-preview.xhtml#ProblemOfIdentity
jpwh-2e-preview.xhtml#EventListenersInterceptors
jpwh-2e-preview.xhtml#EventListenersInterceptors
jpwh-2e-preview.xhtml#EventListenersInterceptors
jpwh-2e-preview.xhtml#BulkBatch

234 CHAPTER 10 Managing data
both comparisons will yield the same result. This solves one of the fundamental O/R
mismatch problems we introduced in section 1.2.3.

The life cycle of entity instances and the services provided by the persistence context
can be difficult to understand at first. Let’s look at some code examples of dirty check-
ing, caching, and how the guaranteed identity scope works in practice. To do this, you
work with the persistence manager API.

10.2 The EntityManager interface
Any transparent persistence tool includes a persistence manager API. This persistence
manager usually provides services for basic CRUD (create, read, update, delete) opera-
tions, query execution, and controlling the persistence context. In Java Persistence
applications, the main interface you interact with is the EntityManager, to create units
of work.

10.2.1 The canonical unit of work

In Java SE and some EE architectures (if you only have plain servlets, for example),
you get an EntityManager by calling EntityManagerFactory#createEntity-

Manager(). Your application code shares the EntityManagerFactory, representing
one persistence unit, or one logical database. Most applications have only one shared
EntityManagerFactory.

 You use the EntityManager for a single unit of work in a single thread, and it’s
inexpensive to create. The following listing shows the canonical, typical form of a unit
of work.

EntityManager em = null;
UserTransaction tx = TM.getUserTransaction();
try {
 tx.begin();
 em = JPA.createEntityManager();

Listing 10.1 A typical unit of work

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Would process-scoped identity be better?
For a typical web or enterprise application, persistence context-scoped identity is pre-
ferred. Process-scoped identity, where only one in-memory instance represents the
row in the entire process (JVM), would offer some potential advantages in terms of
cache utilization. In a pervasively multithreaded application, though, the cost of
always synchronizing shared access to persistent instances in a global identity map
is too high a price to pay. It’s simpler and more scalable to have each thread work
with a distinct copy of the data in each persistence context.

Application-managed
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#ProblemOfIdentity
jpwh-2e-preview.xhtml#ProblemOfIdentity
jpwh-2e-preview.xhtml#StatefulServer
jpwh-2e-preview.xhtml#UnderstandingProxies
jpwh-2e-preview.xhtml#UnderstandingProxies
jpwh-2e-preview.xhtml#UnderstandingProxies

235The EntityManager interface
 // ...

 tx.commit();
} catch (Exception ex) {
 // Transaction rollback, exception handling
 // ...
} finally {
 if (em != null && em.isOpen())
 em.close();
}

(The TM class is a convenience class bundled with the example code of this book. Here
it simplifies the lookup of the standard UserTransaction API in JNDI. The JPA class
provides convenient access to the shared EntityManagerFactory.)

 Everything between tx.begin() and tx.commit() occurs in one transaction. For
now, keep in mind that all database operations in transaction scope, such as the SQL
statements executed by Hibernate, completely either succeed or fail. Don’t worry too
much about the transaction code for now; you’ll read more about concurrency con-
trol in the next chapter. We’ll look at the same example again with a focus on the
transaction and exception-handling code. Don’t write empty catch clauses in your
code, though—you’ll have to roll back the transaction and handle exceptions.

 Creating an EntityManager starts its persistence context. Hibernate won’t access
the database until necessary; the EntityManager doesn’t obtain a JDBC Connection
from the pool until SQL statements have to be executed. You can create and close an
EntityManager without hitting the database. Hibernate executes SQL statements
when you look up or query data and when it flushes changes detected by the persis-
tence context to the database. Hibernate joins the in-progress system transaction
when an EntityManager is created and waits for the transaction to commit. When
Hibernate is notified (by the JTA engine) of the commit, it performs dirty checking of
the persistence context and synchronizes with the database. You can also force dirty
checking synchronization manually by calling EntityManager#flush() at any time
during a transaction.

 You decide the scope of the persistence context by choosing when to close() the
EntityManager. You have to close the persistence context at some point, so always
place the close() call in a finally block.

 How long should the persistence context be open? Let’s assume for the following
examples that you’re writing a server, and each client request will be processed with
one persistence context and system transaction in a multithreaded environment. If
you’re familiar with servlets, imagine the code in listing 10.1 embedded in a servlet’s
service() method. Within this unit of work, you access the EntityManager to load
and store data.

Synchronizes/flushes persistence context

You create it, you close it!
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#OptimisticConcurrency
jpwh-2e-preview.xhtml#OptimisticConcurrency
jpwh-2e-preview.xhtml#BulkBatch
jpwh-2e-preview.xhtml#BulkBatch

236 CHAPTER 10 Managing data
10.2.2 Making data persistent

Let’s create a new instance of an entity and bring it from transient into persistent state:

Item item = new Item();
item.setName("Some Item");

em.persist(item);

Long ITEM_ID = item.getId();

You can see the same unit of work and how the Item instances changes state in figure 10.2.

A new transient Item is instantiated as usual. Of course, you may also instantiate it before
creating the EntityManager. A call to persist() makes the transient instance of Item
persistent. It’s now managed by and associated with the current persistence context.

 To store the Item instance in the database, Hibernate has to execute an SQL
INSERT statement. When the transaction of this unit of work commits, Hibernate
flushes the persistence context, and the INSERT occurs at that time. Hibernate may
even batch the INSERT at the JDBC level with other statements. When you call
persist(), only the identifier value of the Item is assigned. Alternatively, if your iden-
tifier generator isn’t pre-insert, the INSERT statement will be executed immediately
when persist() is called. You may want to review section 4.2.5.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Item#name is NOT NULL.

Has been assigned

Persistence Context

P D
new O()

T

1.

createEM()
2.

persist(o)

4.

3.

flush()/close()
Figure 10.2 Making an instance
persistent in a unit of work

Detecting entity state using the identifier
Sometimes you need to know whether an entity instance is transient, persistent, or
detached. An entity instance is in persistent state if EntityManager#contains(e)
returns true. It’s in transient state if PersistenceUnitUtil#getIdentifier(e)
returns null. It’s in detached state if it’s not persistent, and Persistence-
UnitUtil#getIdentifier(e) returns the value of the entity’s identifier property.
You can get to the PersistenceUnitUtil from the EntityManagerFactory.

There are two issues to look out for. First, be aware that the identifier value may not
be assigned and available until the persistence context is flushed. Second, Hibernate
(unlike some other JPA providers) never returns null from Persistence-
UnitUtil#getIdentifier() if your identifier property is a primitive (a long and not
a Long).
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#GeneratorStrategies
jpwh-2e-preview.xhtml#CreatingExecutingQueries

237The EntityManager interface
It’s better (but not required) to fully initialize the Item instance before managing it
with a persistence context. The SQL INSERT statement contains the values that were
held by the instance at the point when persist() was called. If you don’t set the name
of the Item before making it persistent, a NOT NULL constraint may be violated. You
can modify the Item after calling persist(), and your changes will be propagated to
the database with an additional SQL UPDATE statement.

 If one of the INSERT or UPDATE statements made when flushing fails, Hibernate
causes a rollback of changes made to persistent instances in this transaction at the
database level. But Hibernate doesn’t roll back in-memory changes to persistent
instances. If you change the Item#name after persist(), a commit failure won’t roll
back to the old name. This is reasonable because a failure of a transaction is normally
non-recoverable, and you have to discard the failed persistence context and Entity-
Manager immediately. We’ll discuss exception handling in the next chapter.

 Next, you load and modify the stored data.

10.2.3 Retrieving and modifying persistent data

You can retrieve persistent instances from the database with the EntityManager. For
the next example, we assume you’ve kept the identifier value of the Item stored in the
previous section somewhere and are now looking up the same instance in a new unit
of work by identifier:

Item item = em.find(Item.class, ITEM_ID);

if (item != null)
 item.setName("New Name");

Figure 10.3 shows this transition graphically.
 You don’t need to cast the returned value of the find() operation; it’s a generic

method, and its return type is set as a side effect of the first parameter. The retrieved
entity instance is in persistent state, and you can now modify it inside the unit of work.

 If no persistent instance with the given identifier value can be found, find()
returns null. The find() operation always hits the database if there was no hit for the
given entity type and identifier in the per-
sistence context cache. The entity instance
is always initialized during loading. You can
expect to have all of its values available later
in detached state: for example, when ren-
dering a screen after you close the persis-
tence context. (Hibernate may not hit the
database if its optional second-level cache is
enabled; we’ll discuss this shared cache in
section 20.2.)

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Hits database if not already in
persistence context

Modify

Persistence Context

P D

createEM()
1.

2.

4.
setXYZ()

3.

find(ID)

flush()/close()

Figure 10.3 Making an instance persistent in
a unit of work
Licensed to Thomas Snead <n.ordickan@gmail.com>

238 CHAPTER 10 Managing data
 You can modify the Item instance, and the persistence context will detect these
changes and record them in the database automatically. When Hibernate flushes the
persistence context during commit, it executes the necessary SQL DML statements to
synchronize the changes with the database. Hibernate propagates state changes to the
database as late as possible, toward the end of the transaction. DML statements usually
create locks in the database that are held until the transaction completes, so Hiber-
nate keeps the lock duration in the database as short as possible.

 Hibernate writes the new Item#name to the database with an SQL UPDATE. By
default, Hibernate includes all columns of the mapped ITEM table in the SQL UPDATE
statement, updating unchanged columns to their old values. Hence, Hibernate can
generate these basic SQL statements at startup, not at runtime. If you want to include
only modified (or non-nullable for INSERT) columns in SQL statements, you can
enable dynamic SQL generation as discussed in section 4.3.2.

 Hibernate detects the changed name by comparing the Item with a snapshot copy it
took before, when the Item was loaded from the database. If your Item is different
from the snapshot, an UPDATE is necessary. This snapshot in the persistence context
consumes memory. Dirty checking with snapshots can also be time consuming,
because Hibernate has to compare all instances in the persistence context with their
snapshot during flushing.

 You may want to customize how Hibernate detects dirty state, using an extension
point. Set the property hibernate.entity_dirtiness_strategy in your persis-
tence.xml configuration file to a class name that implements org.hibernate.Custom-
EntityDirtinessStrategy. See the Javadoc of this interface for more information.
org.hibernate.Interceptor is another extension point used to customize dirty
checking, by implementing its findDirty() method. You can find an example inter-
ceptor in section 13.2.2.

 We mentioned earlier that the persistence context enables repeatable reads of
entity instances and provides an object-identity guarantee:

Item itemA = em.find(Item.class, ITEM_ID);
Item itemB = em.find(Item.class, ITEM_ID);

assertTrue(itemA == itemB);
assertTrue(itemA.equals(itemB));
assertTrue(itemA.getId().equals(itemB.getId()));

The first find() operation hits the database and retrieves the Item instance with a
SELECT statement. The second find() is resolved in the persistence context, and the
same cached Item instance is returned.

 Sometimes you need an entity instance but you don’t want to hit the database.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Repeatable read
Licensed to Thomas Snead <n.ordickan@gmail.com>

239The EntityManager interface
10.2.4 Getting a reference

If you don’t want to hit the database when loading an entity instance, because you
aren’t sure you need a fully initialized instance, you can tell the EntityManager to
attempt the retrieval of a hollow placeholder—a proxy:

Item item = em.getReference(Item.class, ITEM_ID);

PersistenceUnitUtil persistenceUtil =
 JPA.getEntityManagerFactory().getPersistenceUnitUtil();
assertFalse(persistenceUtil.isLoaded(item));

// assertEquals(item.getName(), "Some Item");
// Hibernate.initialize(item);

tx.commit();
em.close();

assertEquals(item.getName(), "Some Item");

B If the persistence context already contains an Item with the given identifier, that Item
instance is returned by getReference() without hitting the database. Furthermore, if
no persistent instance with that identifier is currently managed, Hibernate produces a
hollow placeholder: a proxy. This means getReference() won’t access the database,
and it doesn’t return null, unlike find().

C JPA offers PersistenceUnitUtil helper methods such as isLoaded() to detect
whether you’re working with an uninitialized proxy.

D As soon as you call any method such as Item#getName() on the proxy, a SELECT is exe-
cuted to fully initialize the placeholder. The exception to this rule is a mapped
database identifier getter method, such as getId(). A proxy may look like the real
thing, but it’s only a placeholder carrying the identifier value of the entity instance it
represents. If the database record no longer exists when the proxy is initialized, an
EntityNotFoundException is thrown. Note that the exception can be thrown when
Item#getName() is called.

E Hibernate has a convenient static initialize() method that loads the proxy’s data.

F After the persistence context is closed, item is in detached state. If you don’t initialize
the proxy while the persistence context is still open, you get a LazyInitialization-
Exception if you access the proxy. You can’t load data on demand once the persis-
tence context is closed. The solution is simple: load the data before you close the
persistence context.

 We’ll have much more to say about proxies, lazy loading, and on-demand fetching in
chapter 12.

 If you want to remove the state of an entity instance from the database, you have to
make it transient.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

getReference()B

C
Helper
method

Initializes proxyD

E Loads proxy data

F
item in
detached state
Licensed to Thomas Snead <n.ordickan@gmail.com>

240 CHAPTER 10 Managing data

Comm
transacti

comm
10.2.5 Making data transient

To make an entity instance transient and delete its database representation, call the
remove() method on the EntityManager:

Item item = em.find(Item.class, ITEM_ID);
//Item item = em.getReference(Item.class, ITEM_ID);

em.remove(item);

assertFalse(em.contains(item));

// em.persist(item);

assertNull(item.getId());

tx.commit();
em.close();

B If you call find(), Hibernate executes a SELECT to load the Item. If you call get-
Reference(), Hibernate attempts to avoid the SELECT and returns a proxy.

C Calling remove() queues the entity instance for deletion when the unit of work com-
pletes; it’s now in removed state. If remove() is called on a proxy, Hibernate executes a
SELECT to load the data. An entity instance must be fully initialized during life cycle
transitions. You may have life cycle callback methods or an entity listener enabled (see
section 13.2), and the instance must pass through these interceptors to complete its
full life cycle.

D An entity in removed state is no longer in persistent state. You can check this with the
contains() operation.

E You can make the removed instance persistent again, cancelling the deletion.

F When the transaction commits, Hibernate synchronizes the state transitions with the
database and executes the SQL DELETE. The JVM garbage collector detects that the
item is no longer referenced by anyone and finally deletes the last trace of the data.

Figure 10.4 shows the same process.
 By default, Hibernate won’t alter the identifier value of a removed entity instance.

This means the item.getId() method still returns the now outdated identifier value.
Sometimes it’s useful to work with the
“deleted” data further: for example, you
might want to save the removed Item
again if your user decides to undo. As
shown in the example, you can call per-
sist() on a removed instance to cancel
the deletion before the persistence
context is flushed. Alternatively, if you

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

hibernate.use_identifier_rollback
was enabled; now looks like
transient instance.

B
Calls find() or
getReference()

C
Queues instance
for deletion

D Checks entity state

E Cancels deletion

its
on
its F

Persistence Context

P T

createEM()
1.

2.

4.

R
remove()

3.
find(ID)

flush()/close()

Figure 10.4 Removing an instance in a unit of work
Licensed to Thomas Snead <n.ordickan@gmail.com>

241The EntityManager interface
set the property hibernate.use_ identifier_ rollback to true in persistence.xml,
Hibernate will reset the identifier value after removal of an entity instance. In the previ-
ous code example, the identifier value is reset to the default value of null (it’s a Long).
The Item is now the same as in transient state, and you can save it again in a new persis-
tence context.

 Java Persistence also offers bulk operations that translate into direct SQL DELETE
statements without life cycle interceptors in the application. We’ll discuss these opera-
tions in section 20.1.

 Let’s say you load an entity instance from the database and work with the data. For
some reason, you know that another application or maybe another thread of your
application has updated the underlying row in the database. Next, we’ll see how to
refresh the data held in memory.

10.2.6 Refreshing data

The following example demonstrates refreshing a persistent entity instance:

Item item = em.find(Item.class, ITEM_ID);
item.setName("Some Name");

// Someone updates this row in the database

String oldName = item.getName();
em.refresh(item);
assertNotEquals(item.getName(), oldName);

After you load the entity instance, you realize (how isn’t important) that someone else
changed the data in the database. Calling refresh() causes Hibernate to execute a
SELECT to read and marshal a whole result set, overwriting changes you already made
to the persistent instance in application memory. If the database row no longer exists
(someone deleted it), Hibernate throws an EntityNotFoundException on refresh().

 Most applications don’t have to manually refresh in-memory state; concurrent
modifications are typically resolved at transaction commit time. The best use case for
refreshing is with an extended persistence context, which might span several
request/response cycles and/or system transactions. While you wait for user input
with an open persistence context, data gets stale, and selective refreshing may be
required depending on the duration of the conversation and the dialogue between
the user and the system. Refreshing can be useful to undo changes made in memory
during a conversation, if the user cancels the dialogue. We’ll have more to say about
refreshing in a conversation in section 18.3.

 Another infrequently used operation is replication of an entity instance.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

242 CHAPTER 10 Managing data
10.2.7 Replicating data

Replication is useful, for example, when you need to retrieve data from one database
and store it in another. Replication takes detached instances loaded in one persis-
tence context and makes them persistent in another persistence context. You usually
open these contexts from two different EntityManagerFactory configurations,
enabling two logical databases. You have to map the entity in both configurations.

 The replicate() operation is only available on the Hibernate Session API. Here
is an example that loads an Item instance from one database and copies it into
another:

tx.begin();

EntityManager emA = getDatabaseA().createEntityManager();
Item item = emA.find(Item.class, ITEM_ID);

EntityManager emB = getDatabaseB().createEntityManager();
emB.unwrap(Session.class)
 .replicate(item, org.hibernate.ReplicationMode.LATEST_VERSION);

tx.commit();
emA.close();
emB.close();

Connections to both databases can participate in the same system transaction.
 ReplicationMode controls the details of the replication procedure:

 IGNORE—Ignores the instance when there is an existing database row with the
same identifier in the database.

 OVERWRITE—Overwrites any existing database row with the same identifier in
the database.

 EXCEPTION—Throws an exception if there is an existing database row with the
same identifier in the target database.

 LATEST_VERSION—Overwrites the row in the database if its version is older than
the version of the given entity instance, or ignores the instance otherwise.
Requires enabled optimistic concurrency control with entity versioning (see
section 11.2.2).

You may need replication when you reconcile data entered into different databases.
An example case is a product upgrade: if the new version of your application requires
a new database (schema), you may want to migrate and replicate the existing data
once.

 The persistence context does many things for you: automatic dirty checking, guar-
anteed scope of object identity, and so on. It’s equally important that you know some
of the details of its management, and that you sometimes influence what goes on
behind the scenes.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

243The EntityManager interface
10.2.8 Caching in the persistence context

The persistence context is a cache of persistent instances. Every entity instance in per-
sistent state is associated with the persistence context.

 Many Hibernate users who ignore this simple fact run into an OutOfMemory-
Exception. This is typically the case when you load thousands of entity instances in a
unit of work but never intend to modify them. Hibernate still has to create a snapshot
of each instance in the persistence context cache, which can lead to memory exhaus-
tion. (Obviously, you should execute a bulk data operation if you modify thousands of
rows—we’ll get back to this kind of unit of work in section 20.1.)

 The persistence context cache never shrinks automatically. Keep the size of your
persistence context to the necessary minimum. Often, many persistent instances in
your context are there by accident—for example, because you needed only a few
items but queried for many. Extremely large graphs can have a serious performance
impact and require significant memory for state snapshots. Check that your queries
return only data you need, and consider the following ways to control Hibernate’s
caching behavior.

 You can call EntityManager#detach(i) to evict a persistent instance manually
from the persistence context. You can call EntityManager#clear() to detach all per-
sistent entity instances, leaving you with an empty persistence context.

 The native Session API has some extra operations you might find useful. You can
set the entire persistence context to read-only mode. This disables state snapshots and
dirty checking, and Hibernate won’t write modifications to the database:

em.unwrap(Session.class).setDefaultReadOnly(true);

Item item = em.find(Item.class, ITEM_ID);
item.setName("New Name");

em.flush();

You can disable dirty checking for a single entity instance:

Item item = em.find(Item.class, ITEM_ID);

em.unwrap(Session.class).setReadOnly(item, true);

item.setName("New Name");

em.flush();

A query with the org.hibernate.Query interface can return read-only results, which
Hibernate doesn’t check for modifications:

PATH: /examples/src/test/java/org/jpwh/test/fetching/ReadOnly.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/ReadOnly.java

No UPDATE

No UPDATE
Licensed to Thomas Snead <n.ordickan@gmail.com>

244 CHAPTER 10 Managing data

org.hibernate.Query query = em.unwrap(Session.class)
 .createQuery("select i from Item i");

query.setReadOnly(true).list();

List<Item> result = query.list();

for (Item item : result)
 item.setName("New Name");

em.flush();

Thanks to query hints, you can also disable dirty checking for instances obtained with
the JPA standard javax.persistence.Query interface:

Query query = em.createQuery(queryString)
 .setHint(
 org.hibernate.annotations.QueryHints.READ_ONLY,
 true
);

Be careful with read-only entity instances: you can still delete them, and modifications
to collections are tricky! The Hibernate manual has a long list of special cases you
need to read if you use these settings with mapped collections. You’ll see more query
examples in chapter 14.

 So far, flushing and synchronization of the persistence context have occurred auto-
matically, when the transaction commits. In some cases, you need more control over
the synchronization process.

10.2.9 Flushing the persistence context

By default, Hibernate flushes the persistence context of an EntityManager and syn-
chronizes changes with the database whenever the joined transaction is committed.
All the previous code examples, except some in the last section, have used that strat-
egy. JPA allows implementations to synchronize the persistence context at other times,
if they wish.

 Hibernate, as a JPA implementation, synchronizes at the following times:

 When a joined JTA system transaction is committed
 Before a query is executed—we don’t mean lookup with find() but a query

with javax.persistence.Query or the similar Hibernate API

 When the application calls flush() explicitly

You can control this behavior with the FlushModeType setting of an EntityManager:

PATH: /examples/src/test/java/org/jpwh/test/fetching/ReadOnly.java

No UPDATE
Licensed to Thomas Snead <n.ordickan@gmail.com>

245Working with detached state

tx.begin();
EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
item.setName("New Name");

em.setFlushMode(FlushModeType.COMMIT);

assertEquals(
 em.createQuery("select i.name from Item i where i.id = :id")
 .setParameter("id", ITEM_ID).getSingleResult(),
 "Original Name"
);

tx.commit();
em.close();

Here, you load an Item instance B and change its name C. Then you query the data-
base, retrieving the item’s name D. Usually Hibernate recognizes that data has
changed in memory and synchronizes these modifications with the database before the
query. This is the behavior of FlushModeType.AUTO, the default if you join the Entity-
Manager with a transaction. With FlushModeType.COMMIT, you’re disabling flushing
before queries, so you may see different data returned by the query than what you have
in memory. The synchronization then occurs only when the transaction commits.

 You can at any time, while a transaction is in progress, force dirty checking and syn-
chronization with the database by calling EntityManager#flush().

 This concludes our discussion of the transient, persistent, and removed entity states,
and the basic usage of the EntityManager API. Mastering these state transitions and
API methods is essential; every JPA application is built with these operations.

 Next, we look at the detached entity state. We already mentioned some issues you’ll
see when entity instances aren’t associated with a persistence context anymore, such
as disabled lazy initialization. Let’s explore the detached state with some examples, so
you know what to expect when you work with data outside of a persistence context.

10.3 Working with detached state
If a reference leaves the scope of guaranteed identity, we call it a reference to a detached
entity instance. When the persistence context is closed, it no longer provides an
identity-mapping service. You’ll run into aliasing problems when you work with
detached entity instances, so make sure you understand how to handle the identity of
detached instances.

10.3.1 The identity of detached instances

If you look up data using the same database identifier value in the same persistence
context, the result is two references to the same in-memory instance on the JVM heap.
Consider the two units of work shown next.

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Loads Item instanceB

Changes instance nameC

Disables flushing before queries

DGets instance name

Flush!
Licensed to Thomas Snead <n.ordickan@gmail.com>

246 CHAPTER 10 Managing data

Comm
transac

tx.begin();

em = JPA.createEntityManager();

Item a = em.find(Item.class, ITEM_ID);

Item b = em.find(Item.class, ITEM_ID);

assertTrue(a == b);

assertTrue(a.equals(b));

assertEquals(a.getId(), b.getId());

tx.commit();

em.close();

tx.begin();

em = JPA.createEntityManager();

Item c = em.find(Item.class, ITEM_ID);

assertTrue(a != c);

assertFalse(a.equals(c));

assertEquals(a.getId(), c.getId());

tx.commit();

em.close();

In the first unit of work at begin() B, you start by creating a persistence context C and
loading some entity instances. Because references a and b are obtained from the same
persistence context, they have the same Java identity D. They're equal E because by
default equals() relies on Java identity comparison. They obviously have the same
database identity F. They reference the same Item instance, in persistent state, man-
aged by the persistence context for that unit of work. The first part of this example fin-
ishes by committing the transaction G and closing the persistence context H.
References a and b are in detached state when the first persistence context is closed.
You're dealing with instances that live outside of a guaranteed scope of object identity.

 You can see that a and c, loaded in a different persistence context, aren't identical
I. The test for equality with a.equals(c) is also false J. A test for database identity
still returns true 1).This behavior can lead to problems if you treat entity instances as
equal in detached state. For example, consider the following extension of the code,
after the second unit of work has ended:

em.close();

Set<Item> allItems = new HashSet<>();
allItems.add(a);
allItems.add(b);
allItems.add(c);
assertEquals(allItems.size(), 2);

Listing 10.2 Guaranteed scope of object identity in Java Persistence

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Creates persistent contextB
Loads entity instancesC

a and b have same Java identityD

a and b are equalE

F
a and b have the same
database identity

H
Closes persistence
context

G
its

tion

a and c aren’t identicalI

a and c aren’t equalJ

Identity test still true1)

That seems wrong
and arbitrary.
Licensed to Thomas Snead <n.ordickan@gmail.com>

247Working with detached state
This example adds all three references to a Set. All are references to detached
instances. Now, if you check the size of the collection—the number of elements—
what result do you expect?

 A Set doesn’t allow duplicate elements. Duplicates are detected by the Set; when-
ever you add a reference, the Item#equals() method is called automatically against
all other elements already in the collection. If equals() returns true for any element
already in the collection, the addition doesn’t occur.

 By default, all Java classes inherit the equals() method of java.lang.Object. This
implementation uses a double-equals (==) comparison to check whether two refer-
ences refer to the same in-memory instance on the Java heap.

 You may guess that the number of elements in the collection is two. After all, a and
b are references to the same in-memory instance; they have been loaded in the same
persistence context. You obtained reference c from another persistence context; it
refers to a different instance on the heap. You have three references to two instances,
but you know this only because you’ve seen the code that loaded the data. In a real
application, you may not know that a and b are loaded in a different context than c.
Furthermore, you obviously expect that the collection has exactly one element,
because a, b, and c represent the same database row, the same Item.

 Whenever you work with instances in detached state and you test them for equality (usually in
hash-based collections), you need to supply your own implementation of the equals() and
hashCode() methods for your mapped entity class. This is an important issue: if you don’t
work with entity instances in detached state, no action is needed, and the default
equals() implementation of java.lang.Object is fine. You rely on Hibernate’s guar-
anteed scope of object identity within a persistence context. Even if you work with
detached instances: if you never check if they’re equal, you never put them in a Set or
use them as keys in a Map, you don’t have to worry. If all you do is render a detached
Item on the screen, you aren’t comparing it to anything.

 Many developers new to JPA think they always have to provide a custom equality
routine for all entity classes, but this isn’t the case. In section 18.3, we’ll show you an
application design with an extended persistence context strategy. This strategy will also
extend the scope of guaranteed object identity to span an entire conversation and sev-
eral system transactions. Note that you still need the discipline not to compare
detached instances obtained in two conversations!

 Let’s assume that you want to use detached instances and that you have to test
them for equality with your own method.

10.3.2 Implementing equality methods

You can implement equals() and hashCode() methods several ways. Keep in mind that
when you override equals(), you always need to also override hashCode() so the two
methods are consistent. If two instances are equal, they must have the same hash value.

 A seemingly clever approach is to implement equals() to compare just the data-
base identifier property, which is often a surrogate primary key value. Basically, if two
Item instances have the same identifier returned by getId(), they must be the same.
If getId() returns null, it must be a transient Item that hasn’t been saved.
Licensed to Thomas Snead <n.ordickan@gmail.com>

248 CHAPTER 10 Managing data
 Unfortunately, this solution has one huge problem: identifier values aren’t
assigned by Hibernate until an instance becomes persistent. If a transient instance
were added to a Set before being saved, then when you save it, its hash value would
change while it’s contained by the Set. This is contrary to the contract of
java.util.Set, breaking the collection. In particular, this problem makes cascading
persistent state useless for mapped associations based on sets. We strongly discourage
database identifier equality.

 To get to the solution that we recommend, you need to understand the notion of a
business key. A business key is a property, or some combination of properties, that is
unique for each instance with the same database identity. Essentially, it’s the natural
key that you would use if you weren’t using a surrogate primary key instead. Unlike a
natural primary key, it isn’t an absolute requirement that the business key never
changes—as long as it changes rarely, that’s enough.

 We argue that essentially every entity class should have a business key, even if it
includes all properties of the class (which would be appropriate for some immutable
classes). If your user is looking at a list of items on screen, how do they differentiate
between items A, B, and C? The same property, or combination of properties, is your
business key. The business key is what the user thinks of as uniquely identifying a par-
ticular record, whereas the surrogate key is what the application and database systems
rely on. The business key property or properties are most likely constrained UNIQUE in
your database schema.

 Let’s write custom equality methods for the User entity class; this is easier than com-
paring Item instances. For the User class, username is a great candidate business key.
It’s always required, it’s unique with a database constraint, and it changes rarely, if ever.

@Entity
@Table(name = "USERS",
 uniqueConstraints =
 @UniqueConstraint(columnNames = "USERNAME"))
public class User {

 @Override
 public boolean equals(Object other) {
 if (this == other) return true;
 if (other == null) return false;
 if (!(other instanceof User)) return false;
 User that = (User) other;
 return

this.getUsername().equals(that.getUsername());
 }

 @Override
 public int hashCode() {
 return getUsername().hashCode();
 }

 // ...
}

Listing 10.3 Custom implementation of User equality

Use instanceof.

Use getters.
Licensed to Thomas Snead <n.ordickan@gmail.com>

249Working with detached state
You may have noticed that the equals() method code always accesses the properties
of the “other” reference via getter methods. This is extremely important, because the
reference passed as other may be a Hibernate proxy, not the actual instance that
holds the persistent state. You can’t access the username field of a User proxy directly.
To initialize the proxy to get the property value, you need to access it with a getter
method. This is one point where Hibernate isn’t completely transparent, but it’s good
practice anyway to use getter methods instead of direct instance variable access.

 Check the type of the other reference with instanceof, not by comparing the val-
ues of getClass(). Again, the other reference may be a proxy, which is a runtime-
generated subclass of User, so this and other may not be exactly the same type but a
valid super/subtype. You can find more about proxies in section 12.1.1.

 You can now safely compare User references in persistent state:

tx.begin();
em = JPA.createEntityManager();

User a = em.find(User.class, USER_ID);
User b = em.find(User.class, USER_ID);
assertTrue(a == b);
assertTrue(a.equals(b));
assertEquals(a.getId(), b.getId());

tx.commit();
em.close();

In addition, of course, you get correct behavior if you compare references to instances
in persistent and detached state:

tx.begin();
em = JPA.createEntityManager();

User c = em.find(User.class, USER_ID);
assertFalse(a == c);
assertTrue(a.equals(c));
assertEquals(a.getId(), c.getId());

tx.commit();
em.close();

Set<User> allUsers = new HashSet();
allUsers.add(a);
allUsers.add(b);
allUsers.add(c);
assertEquals(allUsers.size(), 1);

For some other entities, the business key may be more complex, consisting of a combi-
nation of properties. Here are some hints that should help you identify a business key
in your domain model classes:

 Consider what attributes users of your application will refer to when they have
to identify an object (in the real world). How do users tell the difference
between one element and another if they’re displayed on the screen? This is
probably the business key you’re looking for.

Still false, of course
Now true

Correct!
Licensed to Thomas Snead <n.ordickan@gmail.com>

250 CHAPTER 10 Managing data
 Every immutable attribute is probably a good candidate for the business key.
Mutable attributes may be good candidates, too, if they’re updated rarely or if
you can control the case when they’re updated—for example, by ensuring the
instances aren’t in a Set at the time.

 Every attribute that has a UNIQUE database constraint is a good candidate for the
business key. Remember that the precision of the business key has to be good
enough to avoid overlaps.

 Any date or time-based attribute, such as the creation timestamp of the record,
is usually a good component of a business key, but the accuracy of System
.currentTimeMillis() depends on the virtual machine and operating system.
Our recommended safety buffer is 50 milliseconds, which may not be accurate
enough if the time-based property is the single attribute of a business key.

 You can use database identifiers as part of the business key. This seems to con-
tradict our previous statements, but we aren’t talking about the database identi-
fier value of the given entity. You may be able to use the database identifier of
an associated entity instance. For example, a candidate business key for the Bid
class is the identifier of the Item it matches together with the bid amount. You
may even have a unique constraint that represents this composite business key
in the database schema. You can use the identifier value of the associated Item
because it never changes during the life cycle of a Bid—the Bid constructor can
require an already-persistent Item.

If you follow our advice, you shouldn’t have much difficulty finding a good business
key for all your business classes. If you encounter a difficult case, try to solve it without
considering Hibernate. After all, it’s purely an object-oriented problem. Notice that
it’s almost never correct to override equals() on a subclass and include another prop-
erty in the comparison. It’s a little tricky to satisfy the Object identity and equality
requirements that equality be both symmetric and transitive in this case; and, more
important, the business key may not correspond to any well-defined candidate natural
key in the database (subclass properties may be mapped to a different table). For
more information on customizing equality comparisons, see Effective Java, 2nd edition,
by Joshua Bloch (Bloch, 2008), a mandatory book for all Java programmers.

 The User class is now prepared for detached state; you can safely put instances
loaded in different persistence contexts into a Set. Next, we’ll look at some examples
that involve detached state, and you see some of the benefits of this concept.

 Sometimes you might want to detach an entity instance manually from the persis-
tence context.

10.3.3 Detaching entity instances

You don’t have to wait for the persistence context to close. You can evict entity
instances manually:
Licensed to Thomas Snead <n.ordickan@gmail.com>

251Working with detached state

User user = em.find(User.class, USER_ID);

em.detach(user);

assertFalse(em.contains(user));

This example also demonstrates the EntityManager#contains() operation, which returns
true if the given instance is in managed persistent state in this persistence context.

 You can now work with the user reference in detached state. Many applications
only read and render the data after the persistence context is closed.

 Modifying the loaded user after the persistence context is closed has no effect on
its persistent representation in the database. JPA allows you to merge any changes back
into the database in a new persistence context, though.

10.3.4 Merging entity instances

Let’s assume you’ve retrieved a User instance in a previous persistence context, and
now you want to modify it and save these modifications:

detachedUser.setUsername("johndoe");

tx.begin();
em = JPA.createEntityManager();

User mergedUser = em.merge(detachedUser);

mergedUser.setUsername("doejohn");

tx.commit();
em.close();

Consider the graphical representation of this procedure in figure 10.5. It’s not as diffi-
cult as it seems.

 The goal is record the new username of the detached User. First, when you call
merge(), Hibernate checks whether a persistent instance in the persistence context
has the same database identifier as the detached instance you’re merging.

 In this example, the persistence context is empty; nothing has been loaded from
the database. Hibernate therefore loads an instance with this identifier from the data-

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

Discard detachedUser
reference after merging.
mergedUser is in
persistent state.

UPDATE in database

Persistence Context

P D
merge()

2.

createEM()
1.

(copy state)
4.

5.

Database

D

3.

(garbage)
6. (find by ID)

flush()/close() Figure 10.5 Making an
instance persistent in a
unit of work
Licensed to Thomas Snead <n.ordickan@gmail.com>

252 CHAPTER 10 Managing data
base. Then, merge() copies the detached entity instance onto this loaded persistent
instance. In other words, the new username you have set on the detached User is also
set on the persistent merged User, which merge() returns to you.

 Now discard the old reference to the stale and outdated detached state; the
detachedUser no longer represents the current state. You can continue modifying the
returned mergedUser; Hibernate will execute a single UPDATE when it flushes the per-
sistence context during commit.

 If there is no persistent instance with the same identifier in the persistence con-
text, and a lookup by identifier in the database is negative, Hibernate instantiates a
fresh User. Hibernate then copies your detached instance onto this fresh instance,
which it inserts into the database when you synchronize the persistence context with
the database.

 If the instance you’re giving to merge() is not detached but rather is transient (it
doesn’t have an identifier value), Hibernate instantiates a fresh User, copies the values
of the transient User onto it, and then makes it persistent and returns it to you. In sim-
pler terms, the merge() operation can handle detached and transient entity instances.
Hibernate always returns the result to you as a persistent instance.

 An application architecture based on detachment and merging may not call the
persist() operation. You can merge new and detached entity instances to store data.
The important difference is the returned current state and how you handle this switch
of references in your application code. You have to discard the detachedUser and
from now on reference the current mergedUser. Every other component in your appli-
cation still holding on to detachedUser has to switch to mergedUser.

If you want to delete a detached instance, you have to merge it first. Then call
remove() on the persistent instance returned by merge().

 We’ll look at detached state and merging again in chapter 18 and implement a
more complex conversation between a user and the system using this strategy.

Can I reattach a detached instance?
The Hibernate Session API has a method for reattachment called saveOrUpdate().
It accepts either a transient or a detached instance and doesn’t return anything. The
given instance will be in persistent state after the operation, so you don’t have to
switch references. Hibernate will execute an INSERT if the given instance was tran-
sient or an UPDATE if it was detached. We recommend that you rely on merging
instead, because it’s standardized and therefore easier to integrate with other frame-
works. In addition, instead of an UPDATE, merging may only trigger a SELECT if the
detached data wasn’t modified. If you’re wondering what the saveOrUpdateCopy()
method of the Session API does, it’s the same as merge() on the EntityManager.
Licensed to Thomas Snead <n.ordickan@gmail.com>

253Summary
10.4 Summary
 We discussed the most important strategies and some optional ones for interact-

ing with entity instances in a JPA application.
 You learned about the life cycle of entity instances and how they become persis-

tent, detached, and removed.
 The most important interface in JPA is the EntityManager.
 In most applications, data isn’t stored and loaded in isolation. Hibernate is typi-

cally integrated in a multiuser application, and the database is accessed concur-
rently in many threads.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Transactions
and concurrency
In this chapter, we finally talk about transactions: how you create and control con-
current units of work in an application. A unit of work is an atomic group of opera-
tions. Transactions allow you to set unit of work boundaries and help you isolate
one unit of work from another. In a multiuser application, you may also be process-
ing these units of work concurrently.

 To handle concurrency, we first focus on units of work at the lowest level: data-
base and system transactions. You’ll learn the APIs for transaction demarcation and
how to define units of work in Java code. We’ll talk about how to preserve isolation
and control concurrent access with pessimistic and optimistic strategies.

 Finally, we look at some special cases and JPA features, based on accessing the data-
base without explicit transactions. Let’s start with some background information.

In this chapter
 Defining database and system transaction

essentials

 Controlling concurrent access with Hibernate
and JPA

 Using nontransactional data access
254

Licensed to Thomas Snead <n.ordickan@gmail.com>

255Transaction essentials

11.1 Transaction essentials
Application functionality requires that several things be done in one go. For example,
when an auction finishes, the CaveatEmptor application must perform three different
tasks:

1 Find the winning bid (highest amount) for the auction item.
2 Charge the seller of the item the cost of the auction.
3 Notify the seller and successful bidder.

What happens if you can’t bill the auction costs because of a failure in the external
credit-card system? The business requirements may state that either all listed actions
must succeed or none must succeed. If so, you call these steps collectively a transaction
or unit of work. If only a single step fails, the entire unit of work must fail.

11.1.1 ACID attributes

ACID stands for atomicity, consistency, isolation, durability. Atomicity is the notion that all
operations in a transaction execute as an atomic unit. Furthermore, transactions allow
multiple users to work concurrently with the same data without compromising the con-
sistency of the data (consistent with database integrity rules). A particular transaction
should not be visible to other concurrently running transactions; they should run in
isolation. Changes made in a transaction should be durable, even if the system fails after
the transaction has completed successfully.

 In addition, you want correctness of a transaction. For example, the business rules
dictate that the application charges the seller once, not twice. This is a reasonable
assumption, but you may not be able to express it with database constraints. Hence,
the correctness of a transaction is the responsibility of the application, whereas consis-
tency is the responsibility of the database. Together, these transaction attributes define
the ACID criteria.

Major new features in JPA 2
 There are new lock modes and exceptions for pessimistic locking.
 You can set a lock mode, pessimistic or optimistic, on a Query.
 You can set a lock mode when calling EntityManager#find(), refresh(), or

lock(). A lock timeout hint for pessimistic lock modes is also standardized.
 When the new QueryTimeoutException or LockTimeoutException is

thrown, the transaction doesn’t have to be rolled back.
 The persistence context can now be in an unsynchronized mode with disabled

automatic flushing. This allows you to queue modifications until you join a
transaction and to decouple the EntityManager usage from transactions.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#HandlingExceptions
jpwh-2e-preview.xhtml#HandlingExceptions

256 CHAPTER 11 Transactions and concurrency
11.1.2 Database and system transactions

We’ve also mentioned system and database transactions. Consider the last example
again: during the unit of work ending an auction, we might mark the winning bid in a
database system. Then, in the same unit of work, we talk to an external system to bill
the seller’s credit card. This is a transaction spanning several (sub)systems, with coor-
dinated subordinate transactions on possibly several resources such as a database con-
nection and an external billing processor.

 Database transactions have to be short, because open transactions consume data-
base resources and potentially prevent concurrent access due to exclusive locks on
data. A single database transaction usually involves only a single batch of database
operations.

 To execute all of your database operations inside a system transaction, you have to
set the boundaries of that unit of work. You must start the transaction and, at some
point, commit the changes. If an error occurs (either while executing database opera-
tions or when committing the transaction), you have to roll back the changes to leave
the data in a consistent state. This process defines a transaction demarcation and,
depending on the technique you use, involves a certain level of manual intervention.
In general, transaction boundaries that begin and end a transaction can be set either
programmatically in application code or declaratively.

11.1.3 Programmatic transactions with JTA

In a Java SE environment, you call the JDBC API to mark transaction boundaries. You
begin a transaction with setAutoCommit(false) on a JDBC Connection and end it by
calling commit(). You may, at any time while the transaction is in progress, force an
immediate rollback with rollback().

 In an application that manipulates data in several systems, a particular unit of work
involves access to more than one transactional resource. In this case, you can’t achieve
atomicity with JDBC alone. You need a transaction manager that can handle several
resources in one system transaction. JTA standardizes system transaction management
and distributed transactions so you won’t have to worry much about the lower-level
details. The main API in JTA is the UserTransaction interface with methods to
begin() and commit() a system transaction.

Other transaction demarcation APIs
JTA provides a nice abstraction of the underlying resource’s transaction system, with
the added bonus of distributed system transactions. Many developers still believe
you can only get JTA with components that run in a Java EE application server. Today,
high-quality standalone JTA providers such as Bitronix (used for the example code of
this book) and Atomikos are available and easy to install in any Java environment.
Think of these solutions as JTA-enabled database connection pools.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#DynamicSQLGeneration
jpwh-2e-preview.xhtml#DynamicSQLGeneration

257Transaction essentials
In section 10.2.1, we promised to look at transactions again with a focus on exception
handling. Here is the code, this time complete with rollback and exception handling.

EntityManager em = null;
UserTransaction tx = TM.getUserTransaction();
try {
 tx.begin();
 em = JPA.createEntityManager();

 // ...

 tx.commit();
} catch (Exception ex) {
 try {
 if (tx.getStatus() == Status.STATUS_ACTIVE
 || tx.getStatus() == Status.STATUS_MARKED_ROLLBACK)
 tx.rollback();
 } catch (Exception rbEx) {
 System.err.println("Rollback of transaction failed, trace follows!");
 rbEx.printStackTrace(System.err);
 }
 throw new RuntimeException(ex);
} finally {
 if (em != null && em.isOpen())
 em.close();
}

The most complicated bit of this code snippet seems to be the exception handling;
we’ll discuss this part in a moment. First, you have to understand how the transaction
management and the EntityManager work together.

 The EntityManager is lazy; we mentioned in the previous chapter that it doesn’t
consume any database connections until SQL statements have to be executed. The
same is true for JTA: starting and committing an empty transaction is cheap when you
haven’t accessed any transactional resources. For example, you could execute this
empty unit of work on a server, for each client request, without consuming any
resources or holding any database locks.

 When you create an EntityManager, it looks for an ongoing JTA system transaction
within the current thread of execution. If the EntityManager finds an ongoing trans-
action, it joins the transaction by listening to transaction events. This means you

Listing 11.1 Typical unit of work with transaction boundaries

PATH: /examples/src/test/java/org/jpwh/test/simple/SimpleTransitions.java

You should use JTA whenever you can and avoid proprietary transaction APIs
such as org.hibernate.Transaction or the very limited javax.persistence
.EntityTransaction. These APIs were created at a time when JTA wasn’t readily
available outside of EJB runtime containers.

Application-managed

Synchronizes/flushes persistence context

Transaction
rollback;
exception
handling

You create it, you close it!
Licensed to Thomas Snead <n.ordickan@gmail.com>

258 CHAPTER 11 Transactions and concurrency
should always call UserTransaction#begin() and EntityManagerFactory#create-
EntityManager() on the same thread if you want them to be joined. By default, and as
explained in chapter 10, Hibernate automatically flushes the persistence context
when the transaction commits.

 If the EntityManager can’t find a started transaction in the same thread when it’s
created, it’s in a special unsynchronized mode. In this mode, JPA won’t automatically
flush the persistence context. We talk more about this behavior later in this chapter;
it’s a convenient feature of JPA when you design more complex conversations.

The transaction manager will stop a transaction when it has been running for too
long. Remember that you want to keep database transactions as short as possible in a
busy OLTP system. The default timeout depends on the JTA provider—Bitronix, for
example, defaults to 60 seconds. You can override this selectively, before you begin the
transaction, with UserTransaction#setTransactionTimeout().

 We still need to discuss the exception handling of the previous code snippet.

11.1.4 Handling exceptions

If any EntityManager call or flushing the persistence context during a commit throws
an exception, you must check the current state of the system transaction. When an
exception occurs, Hibernate marks the transaction for rollback. This means the only
possible outcome for this transaction is undoing all of its changes. Because you started
the transaction, it’s your job to check for STATUS_MARKED_ROLLBACK. The transaction
might also still be STATUS_ACTIVE, if Hibernate wasn’t able to mark it for rollback. In
both cases, call UserTransaction#rollback() to abort any SQL statements that have
been sent to the database within this unit of work.

 All JPA operations, including flushing the persistence context, can throw a Run-
timeException. But the methods UserTransaction#begin(), commit(), and even
rollback() throw a checked Exception. The exception for rollback requires special

FAQ: Is it faster to roll back read-only transactions?
If code in a transaction reads data but doesn’t modify it, should you roll back the
transaction instead of committing it? Would this be faster? Apparently, some devel-
opers found this to be faster in some special circumstances, and this belief has
spread through the community. We tested this with the more popular database sys-
tems and found no difference. We also failed to discover any source of real numbers
showing a performance difference. There is also no reason a database system
should have a suboptimal cleanup implementation—why it shouldn’t use the fastest
transaction cleanup algorithm internally.

Always commit your transaction and roll back if the commit fails. Having said that,
the SQL standard includes the statement SET TRANSACTION READ ONLY. We recom-
mend that you first investigate whether your database supports this and see what the
possible performance benefits are, if any.
Licensed to Thomas Snead <n.ordickan@gmail.com>

259Transaction essentials

H

treatment: you want to catch this exception and log it; otherwise, the original excep-
tion that led to the rollback is lost. Continue throwing the original exception after
rollback. Typically, you have another layer of interceptors in your system that will
finally deal with the exception, for example by rendering an error screen or contact-
ing the operations team. An error during rollback is more difficult to handle prop-
erly; we suggest logging and escalation, because a failed rollback indicates a serious
system problem.

 Hibernate throws typed exceptions, all subtypes of RuntimeException that help
you identify errors:

 The most common, HibernateException, is a generic error. You have to either
check the exception message or find out more about the cause by calling get-
Cause() on the exception.

 A JDBCException is any exception thrown by Hibernate’s internal JDBC layer.
This kind of exception is always caused by a particular SQL statement, and you
can get the offending statement with getSQL(). The internal exception thrown
by the JDBC connection (the JDBC driver) is available with getSQLException()
or getCause(), and the database- and vendor-specific error code is available
with getErrorCode().

 Hibernate includes subtypes of JDBCException and an internal converter that
tries to translate the vendor-specific error code thrown by the database driver
into something more meaningful. The built-in converter can produce JDBC-
ConnectionException, SQLGrammarException, LockAcquisitionException,
DataException, and ConstraintViolationException for the most important
database dialects supported by Hibernate. You can either manipulate or
enhance the dialect for your database or plug in a SQLExceptionConverter-
Factory to customize this conversion.

Some developers get excited when they see how many fine-grained exception types
Hibernate can throw. This can lead you down the wrong path. For example, you may
be tempted to catch a ConstraintViolationException for validation purposes. If you
forget to set the Item#name property, and its mapped column is NOT NULL in the data-
base schema, Hibernate will throw this exception when you flush the persistence con-
text. Why not catch it, display a (customized depending on the error code and text)
failure message to application users, and let them correct the mistake? This strategy
has two significant disadvantages.

 First, throwing unchecked values against the database to see what sticks isn’t the
right strategy for a scalable application. You want to implement at least some data-
integrity validation in the application layer. Second, exceptions are fatal for your cur-
rent unit of work. But this isn’t how application users will interpret a validation error:
they expect to still be inside a unit of work. Coding around this mismatch is awkward

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#FallbackJDBC
jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#MappingEntityAssociations

260 CHAPTER 11 Transactions and concurrency
and difficult. Our recommendation is that you use the fine-grained exception types to
display better-looking (fatal) error messages, not for validation. For example, you
could catch ConstraintViolationException separately and render a screen that says,
“Application bug: someone forgot to validate data before sending it to the database.
Please report it to the programmers.” For other exceptions, you’d render a generic
error screen.

 Doing so helps you during development and also helps any customer-support engi-
neer who has to decide quickly whether it’s an application error (constraint violated,
wrong SQL executed) or whether the database system is under load (locks couldn’t be
acquired). For validation, you have a unifying framework available with Bean Valida-
tion. From a single set of rules in annotations on entities, Hibernate can verify all
domain and single-row constraints at the user interface layer and can automatically
generate SQL DDL rules.

 You now know what exceptions you should catch and when to expect them. One
question is probably on your mind: what should you do after you’ve caught an excep-
tion and rolled back the system transaction? Exceptions thrown by Hibernate are
fatal. This means you have to close the current persistence context. You aren’t allowed
to continue working with the EntityManager that threw an exception. Render an
error screen and/or log the error, and then let the user restart the conversation with
the system using a fresh transaction and persistence context.

 As usual, this isn’t the whole picture. Some standardized exceptions aren’t fatal:

 javax.persistence.NoResultException—Thrown when a Query or Typed-
Query is executed with getSingleResult() and no result was returned from
the database. You can wrap the query call with exception-handling code and
continue working with the persistence context. The current transaction won’t
be marked for rollback.

 javax.persistence.NonUniqueResultException—Thrown when a Query or
TypedQuery is executed with getSingleResult() and several results were
returned from the database. You can wrap the query call with exception han-
dling code and continue working with the persistence context. Hibernate won’t
mark the current transaction for rollback.

 javax.persistence.QueryTimeoutException—Thrown when a Query or
TypedQuery takes too long to execute. Doesn’t mark the transaction for roll-
back. You may want to repeat the query, if appropriate.

 javax.persistence.LockTimeoutException—Thrown when a pessimistic lock
couldn’t be acquired. May occur during flushing or explicit locking (more on this
topic later in this chapter). The transaction isn’t marked for rollback, and you may
want to repeat the operation. Keep in mind that endlessly hammering on a data-
base system that is already struggling to keep up won’t improve the situation.

Notably absent from this list is javax.persistence.EntityNotFoundException. It can
be thrown by the EntityManager#getReference() and refresh() methods, as well as
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#GeneratorStrategies
jpwh-2e-preview.xhtml#GeneratorStrategies

261Controlling concurrent access
lock(), which you’ll see later in this chapter. Hibernate may throw it when you try to
access the reference/proxy of an entity instance and the database record is no longer
available. It’s a fatal exception: it marks the current transaction for rollback, and you
have to close and discard the persistence context.

 Programmatic transaction demarcation requires application code written against a
transaction demarcation interface such as JTA’s UserTransaction. Declarative transac-
tion demarcation, on the other hand, doesn’t require extra coding.

11.1.5 Declarative transaction demarcation

In a Java EE application, you can declare when you wish to work inside a transaction. It’s
then the responsibility of the runtime environment to handle this concern. Usually
you set transaction boundaries with annotations on your managed components (EJBs,
CDI beans, and so on).

 You can use the older annotation @javax.ejb.TransactionAttribute to demar-
cate transaction boundaries declaratively on EJB components. You can find examples
in section 18.2.1.

 You can apply the newer and more general @javax.transaction.Transactional
on any Java EE managed component. You can find an example in section 19.3.1.

 All other examples in this chapter work in any Java SE environment, without a spe-
cial runtime container. Hence, from now on, you’ll only see programmatic transaction
demarcation code until we focus on specific Java EE application examples.

 Next, we focus on the most complex aspect of ACID properties: how you isolate con-
currently running units of work from each other.

11.2 Controlling concurrent access
Databases (and other transactional systems) attempt to ensure transaction isolation,
meaning that, from the point of view of each concurrent transaction, it appears that
no other transactions are in progress. Traditionally, database systems have imple-
mented isolation with locking. A transaction may place a lock on a particular item of
data in the database, temporarily preventing read and/or write access to that item by
other transactions. Some modern database engines implement transaction isolation
with multiversion concurrency control (MVCC), which vendors generally consider
more scalable. We’ll discuss isolation assuming a locking model, but most of our
observations are also applicable to MVCC.

 How databases implement concurrency control is of the utmost importance in
your Java Persistence application. Applications inherit the isolation guarantees pro-
vided by the database management system. For example, Hibernate never locks any-
thing in memory. If you consider the many years of experience that database vendors
have with implementing concurrency control, you’ll see the advantage of this
approach. Additionally, some features in Java Persistence, either because you explic-
itly use them or by design, can improve the isolation guarantee beyond what the data-
base provides.
Licensed to Thomas Snead <n.ordickan@gmail.com>

262 CHAPTER 11 Transactions and concurrency
 We discuss concurrency control in several steps. First, we explore the lowest layer:
the transaction isolation guarantees provided by the database. After that, you’ll see
the Java Persistence features for pessimistic and optimistic concurrency control at the
application level, and what other isolation guarantees Hibernate can provide.

11.2.1 Understanding database-level concurrency

If we’re talking about isolation, you may assume that two things are either isolated or
not; there is no grey area in the real world. When we talk about database transactions,
complete isolation comes at a high price. You can’t stop the world to access data exclu-
sively in a multiuser OLTP system. Therefore,
several isolation levels are available, which,
naturally, weaken full isolation but increase
performance and scalability of the system.

TRANSACTION ISOLATION ISSUES

First, let’s look at several phenomena that may
occur when you weaken full transaction isola-
tion. The ANSI SQL standard defines the stan-
dard transaction isolation levels in terms of
which of these phenomena are permissible.

 A lost update occurs if two transactions
both update a data item and then the second
transaction aborts, causing both changes to
be lost. This occurs in systems that don’t
implement concurrency control, where con-
current transactions aren’t isolated. This is
shown in figure 11.1.

 A dirty read occurs if a transaction reads
changes made by another transaction that
hasn’t yet been committed. This is dangerous
because the changes made by the other trans-
action may later be rolled back, and invalid
data may be written by the first transaction;
see figure 11.2.

 An unrepeatable read occurs if a transaction
reads a data item twice and reads different
state each time. For example, another trans-
action may have written to the data item and
committed between the two reads, as shown
in figure 11.3.

 A special case of an unrepeatable read is
the last commit wins problem. Imagine that
two concurrent transactions both read a data

Tx A

D1

COMMIT
3.

UPDATE
1.

Tx B
ROLLBACK

4.

D1

UPDATE
2.

Figure 11.1 Lost update: two transactions
update the same data without isolation.

Tx A

D1

COMMIT
4.

SELECT
2.

Tx B
ROLLBACK

3.

D1

UPDATE
1.

Figure 11.2 Dirty read: transaction A reads
uncommitted data from transaction B.

Tx A

D1

SELECT
4.

Tx B
COMMIT

3.

D1

UPDATE
2.

D1

SELECT
1.

Figure 11.3 Unrepeatable read: transaction
A executes two non-repeatable reads.
Licensed to Thomas Snead <n.ordickan@gmail.com>

263Controlling concurrent access
item, as shown in figure 11.4. One writes
to it and commits, and then the second
writes to it and commits. The changes
made by the first writer are lost. This
issue is especially frustrating for users:
user A’s changes are overwritten without
warning, and B has potentially made a
decision based on outdated information.

 A phantom read is said to occur when a
transaction executes a query twice, and
the second result includes data that
wasn’t visible in the first result or less
data because something was deleted. It
need not necessarily be exactly the same
query. Another transaction inserting or
deleting data between the executions of
the two queries causes this situation, as
shown in figure 11.5.

 Now that you understand all the bad
things that can occur, we can define the
transaction isolation levels and see what
problems they prevent.

ANSI ISOLATION LEVELS

The standard isolation levels are defined by the ANSI SQL standard, but they aren’t
specific to SQL databases. JTA defines exactly the same isolation levels, and you’ll use
these levels to declare your desired transaction isolation. With increased levels of isola-
tion come higher cost and serious degradation of performance and scalability:

 Read uncommitted isolation—A system that permits dirty reads but not lost
updates operates in read uncommitted isolation. One transaction may not write
to a row if another uncommitted transaction has already written to it. Any trans-
action may read any row, however. A DBMS may implement this isolation level
with exclusive write locks.

 Read committed isolation—A system that permits unrepeatable reads but not dirty
reads implements read committed isolation. A DBMS may achieve this by using
shared read locks and exclusive write locks. Reading transactions don’t block
other transactions from accessing a row, but an uncommitted writing transac-
tion blocks all other transactions from accessing the row.

 Repeatable read isolation—A system operating in repeatable read isolation mode
permits neither unrepeatable reads nor dirty reads. Phantom reads may occur.
Reading transactions block writing transactions but not other reading transac-
tions, and writing transactions block all other transactions.

Tx A

D1

UPDATE
3.

Tx B
COMMIT

6.

D1

SELECT
2.

D1

SELECT
1.

COMMIT
4.

D1

UPDATE
5.

Figure 11.4 Last commit wins: transaction B
overwrites changes made by A.

Tx A

D1
D2

SELECT
4.

Tx B
COMMIT

3.

D2

INSERT
2.

D1

SELECT
1.

Figure 11.5 Phantom read: transaction A reads
new data in the second SELECT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

264 CHAPTER 11 Transactions and concurrency
 Serializable isolation—The strictest isolation, serializable, emulates serial execu-
tion, as if transactions were executed one after another, rather than concur-
rently. A DBMS may not implement serializable using only row-level locks. A
DBMS must instead provide some other mechanism that prevents a newly
inserted row from becoming visible to a transaction that has already executed a
query that would return the row. A crude mechanism is exclusively locking the
entire database table after a write, so no phantom reads can occur.

How exactly a DBMS implements its locking system varies significantly; each vendor
has a different strategy. You should study the documentation of your DBMS to find out
more about its locking system, how locks are escalated (from row-level, to pages, to
entire tables, for example), and what impact each isolation level has on the perfor-
mance and scalability of your system.

 It’s nice to know how all these technical terms are defined, but how does that help
you choose an isolation level for your application?

CHOOSING AN ISOLATION LEVEL

Developers (ourselves included) are often unsure what transaction isolation level to
use in a production application. Too high an isolation level harms the scalability of a
highly concurrent application. Insufficient isolation may cause subtle, difficult-to-
reproduce bugs in an application that you won’t discover until the system is working
under heavy load.

 Note that we refer to optimistic locking (with versioning) in the following explana-
tion, a concept explained later in this chapter. You may want to skip this section for
now and come back to it later when it’s time to pick an isolation level for your applica-
tion. Choosing the correct isolation level is, after all, highly dependent on your partic-
ular scenario. Read the following discussion as recommendations, not dictums carved
in stone.

 Hibernate tries hard to be as transparent as possible regarding transactional
semantics of the database. Nevertheless, persistence context caching and versioning
affect these semantics. What is a sensible database isolation level to choose in a JPA
application?

 First, for almost all scenarios, eliminate the read uncommitted isolation level. It’s
extremely dangerous to use one transaction’s uncommitted changes in a different
transaction. The rollback or failure of one transaction will affect other concurrent
transactions. Rollback of the first transaction could bring other transactions down
with it, or perhaps even cause them to leave the database in an incorrect state (the
seller of an auction item might be charged twice—consistent with database integrity
rules but incorrect). It’s possible that changes made by a transaction that ends up
being rolled back could be committed anyway, because they could be read and then
propagated by another transaction that is successful!

 Second, most applications don’t need serializable isolation. Phantom reads aren’t
usually problematic, and this isolation level tends to scale poorly. Few existing
Licensed to Thomas Snead <n.ordickan@gmail.com>

265Controlling concurrent access
applications use serializable isolation in production, but rather rely on selectively
applied pessimistic locks that effectively force a serialized execution of operations in
certain situations.

 Next, let’s consider repeatable read. This level provides reproducibility for query
result sets for the duration of a database transaction. This means you won’t read com-
mitted updates from the database if you query it several times. But phantom reads are
still possible: new rows might appear—rows you thought existed might disappear if
another transaction committed such changes concurrently. Although you may some-
times want repeatable reads, you typically don’t need them in every transaction.

 The JPA specification assumes that read committed is the default isolation level. This
means you have to deal with unrepeatable reads, phantom reads, and the last commit
wins problem.

 Let’s assume you’re enabling versioning of your domain model entities, something
that Hibernate can do for you automatically. The combination of the (mandatory)
persistence context cache and versioning already gives you most of the nice features
of repeatable read isolation. The persistence context cache ensures that the state of the
entity instances loaded by one transaction is isolated from changes made by other
transactions. If you retrieve the same entity instance twice in a unit of work, the sec-
ond lookup will be resolved within the persistence context cache and not hit the data-
base. Hence, your read is repeatable, and you won’t see conflicting committed data.
(You still get phantom reads, though, which are typically much easier to deal with.)
Additionally, versioning switches to first commit wins. Hence, for almost all multiuser
JPA applications, read committed isolation for all database transactions is acceptable with
enabled entity versioning.

 Hibernate retains the isolation level of your database connection; it doesn’t
change the level. Most products default to read committed isolation. There are several
ways you can change either the default transaction isolation level or the settings of the
current transaction.

 First, you can check whether your DBMS has a global transaction isolation level set-
ting in its proprietary configuration. If your DBMS supports the standard SQL state-
ment SET SESSION CHARACTERISTICS, you can execute it to set the transaction settings
of all transactions started in this particular database session (which means a particular
connection to the database, not a Hibernate Session). SQL also standardizes the SET
TRANSACTION syntax, which sets the isolation level of the current transaction. Finally,
the JDBC Connection API offers the setTransactionIsolation() method, which
(according to its documentation) “attempts to change the transaction isolation level
for this connection.” In a Hibernate/JPA application, you can obtain a JDBC Connec-
tion from the native Session API; see section 17.1.

 We recommend a different approach if you’re using a JTA transaction manager or
even a simple JDBC connection pool. JTA transaction management systems, such as
Bitronix used for the examples of this book, allow you to set a default transaction iso-
lation level for every connection obtained from the pool. In Bitronix, you can set the
Licensed to Thomas Snead <n.ordickan@gmail.com>

266 CHAPTER 11 Transactions and concurrency
default isolation level on startup with PoolingDataSource#setIsolationLevel().
Check the documentation of your data source provider, application server, or JDBC
connection pool for more information.

 We assume from now on that your database connections are by default in read com-
mitted isolation level. From time to time, a particular unit of work in your application
may require a different, usually stricter isolation level. Instead of changing the isola-
tion level of the entire transaction, you should use the Java Persistence API to obtain
additional locks on the relevant data. This fine-grained locking is more scalable in a
highly concurrent application. JPA offers optimistic version checking and database-
level pessimistic locking.

11.2.2 Optimistic concurrency control

Handling concurrency in an optimistic way is appropriate when concurrent modifica-
tions are rare and it’s feasible to detect conflicts late in a unit of work. JPA offers auto-
matic version checking as an optimistic conflict-detection procedure.

 First you’ll enable versioning, because it’s turned off by default—that’s why you get
last commit wins if you don’t do anything. Most multiuser applications, especially web
applications, should rely on versioning for any concurrently modified @Entity
instances, enabling the more user-friendly first commit wins.

 The previous sections have been somewhat dry; it’s time for code. After enabling
automatic version checking, you’ll see how manual version checking works and when
you have to use it.

ENABLING VERSIONING

You enable versioning with an @Version annotation on a special additional property
of your entity class, as shown next.

@Entity
public class Item implements Serializable {

 @Version
 protected long version;

 // ...
}

In this example, each entity instance carries a numeric version. It’s mapped to an
additional column of the ITEM database table; as usual, the column name defaults to
the property name, here VERSION. The actual name of the property and column
doesn’t matter—you could rename it if VERSION is a reserved keyword in your DBMS.

 You could add a getVersion() method to the class, but you shouldn’t have a setter
method and the application shouldn’t modify the value. Hibernate automatically
changes the version value: it increments the version number whenever an Item

Listing 11.2 Enabling versioning on a mapped entity

PATH: /model/src/main/java/org/jpwh/model/concurrency/version/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

267Controlling concurrent access
instance has been found dirty during flushing of the persistence context. The version
is a simple counter without any useful semantic value beyond concurrency control.
You can use an int, an Integer, a short, a Short, or a Long instead of a long; Hiber-
nate wraps and starts from zero again if the version number reaches the limit of the
data type.

 After incrementing the version number of a detected dirty Item during flushing,
Hibernate compares versions when executing the UPDATE and DELETE SQL statements.
For example, assume that in a unit of work, you load an Item and change its name, as
follows.

tx.begin();
em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
// select * from ITEM where ID = ?

assertEquals(item.getVersion(), 0);

item.setName("New Name");

em.flush();
// update ITEM set NAME = ?, VERSION = 1 where ID = ? and VERSION = 0

B Retrieving an entity instance by identifier loads the current version from the database
with a SELECT.

C The current version of the Item instance is 0.

D When the persistence context is flushed, Hibernate detects the dirty Item instance
and increments its version to 1. SQL UPDATE now performs the version check, storing
the new version in the database, but only if the database version is still 0.

Pay attention to the SQL statements, in particular the UPDATE and its WHERE clause. This
update will be successful only if there is a row with VERSION = 0 in the database. JDBC
returns the number of updated rows to Hibernate; if that result is zero, it means the ITEM
row is either gone or doesn’t have the version 0 anymore. Hibernate detects this conflict
during flushing, and a javax.persistence.OptimisticLockException is thrown.

 Now imagine two users executing this unit of work at the same time, as shown pre-
viously in figure 11.4. The first user to commit updates the name of the Item and
flushes the incremented version 1 to the database. The second user’s flush (and com-
mit) will fail, because their UPDATE statement can’t find the row in the database with
version 0. The database version is 1. Hence, the first commit wins, and you can catch the
OptimisticLockException and handle it specifically. For example, you could show
the following message to the second user: “The data you have been working with has
been modified by someone else. Please start your unit of work again with fresh data.
Click the Restart button to proceed.”

Listing 11.3 Hibernate incrementing and checking the version automatically

PATH: /examples/src/test/java/org\jpwh/test/concurrency/Versioning.java

Retrieves by identifierB

Instance version: 0C

Flushes persistence contextD
Licensed to Thomas Snead <n.ordickan@gmail.com>

268 CHAPTER 11 Transactions and concurrency
 What modifications trigger the increment of an entity’s version? Hibernate incre-
ments the version whenever an entity instance is dirty. This includes all dirty value-
typed properties of the entity, no matter if they’re single-valued (like a String or int
property), embedded (like an Address), or collections. The exceptions are @OneTo-
Many and @ManyToMany association collections that have been made read-only with
mappedBy. Adding or removing elements to these collections doesn’t increment the
version number of the owning entity instance. You should know that none of this is
standardized in JPA—don’t rely on two JPA providers implementing the same rules
when accessing a shared database.

If you don’t want to increment the version of the entity instance when a particular prop-
erty’s value has changed, annotate the property with @org.hibernate.annotations
.OptimisticLock(excluded = true). You may not like the additional VERSION column
in your database schema. Alternatively, you may already have a “last updated” time-
stamp property on your entity class and a matching database column. Hibernate can
check versions with timestamps instead of the extra counter field.

VERSIONING WITH TIMESTAMPS

If your database schema already contains a timestamp column such as LASTUPDATED or
MODIFIED_ON, you can map it for automatic version checking instead of using a
numeric counter.

@Entity
public class Item {

 @Version
 // Optional: @org.hibernate.annotations.Type(type = "dbtimestamp")
 protected Date lastUpdated;

 // ...
}

Listing 11.4 Enabling versioning with timestamps

PATH: /model/src/main/java/org/jpwh/model/concurrency/versiontimestamp/
Item.java

Versioning with a shared database
If several applications access your database, and they don’t all use Hibernate’s ver-
sioning algorithm, you’ll have concurrency problems. An easy solution is to use data-
base-level triggers and stored procedures: An INSTEAD OF trigger can execute a
stored procedure when any UPDATE is made; it runs instead of the update. In the pro-
cedure, you can check whether the application incremented the version of the row; if
the version isn’t updated or the version column isn’t included in the update, you know
the statement wasn’t sent by a Hibernate application. You can then increment the
version in the procedure before applying the UPDATE.
Licensed to Thomas Snead <n.ordickan@gmail.com>

269Controlling concurrent access

H

H

This example maps the column LASTUPDATED to a java.util.Date property; a Calen-
dar type would also work with Hibernate. The JPA standard doesn’t define these types
for version properties; JPA only considers java.sql.Timestamp portable. This is less
attractive, because you’d have to import that JDBC class in your domain model. You
should try to keep implementation details such as JDBC out of the domain model
classes so they can be tested, instantiated, cross-compiled (to JavaScript with GWT, for
example), serialized, and deserialized in as many environments as possible.

 In theory, versioning with a timestamp is slightly less safe, because two concurrent
transactions may both load and update the same Item in the same millisecond; this is
exacerbated by the fact that a JVM usually doesn’t have millisecond accuracy (you
should check your JVM and operating system documentation for the guaranteed pre-
cision). Furthermore, retrieving the current time from the JVM isn’ t necessarily safe
in a clustered environment, where the system time of nodes may not be synchronized,
or time synchronization isn’t as accurate as you’d need for your transactional load.

 You can switch to retrieval of the current time from the database machine by plac-
ing an @org.hibernate.annotations.Type(type="dbtimestamp") annotation on the
version property. Hibernate now asks the database, with for example call current
_timestamp() on H2, for the current time before updating. This gives you a single
source of time for synchronization. Not all Hibernate SQL dialects support this, so
check the source of your configured dialect and whether it overrides the get-
CurrentTimestampSelectString() method. In addition, there is always the overhead
of hitting the database for every increment.

 We recommend that new projects rely on versioning with a numeric counter, not
timestamps. If you’re working with a legacy database schema or existing Java classes, it
may be impossible to introduce a version or timestamp property and column. If that’s
the case, Hibernate has an alternative strategy for you.

VERSIONING WITHOUT VERSION NUMBERS OR TIMESTAMPS

If you don’t have version or timestamp columns, Hibernate can still perform automatic
versioning. This alternative implementation of versioning checks the current database
state against the unmodified values of persistent properties at the time Hibernate
retrieved the entity instance (or the last time the persistence context was flushed).

 You enable this functionality with the proprietary Hibernate annotation
@org.hibernate.annotations.OptimisticLocking:

@Entity
@org.hibernate.annotations.OptimisticLocking(
 type = org.hibernate.annotations.OptimisticLockType.ALL)

PATH: \model\src\main\java\org\jpwh\model\concurrency\versionall\Item.java

ibernate Feature

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

270 CHAPTER 11 Transactions and concurrency
@org.hibernate.annotations.DynamicUpdate
public class Item {

 // ...
}

For this strategy, you also have to enable dynamic SQL generation of UPDATE state-
ments, using @org.hibernate.annotations.DynamicUpdate as explained in section
4.3.2.

 Hibernate now executes the following SQL to flush a modification of an Item
instance:

update ITEM set NAME = 'New Name'
 where ID = 123
 and NAME = 'Old Name'
 and PRICE = '9.99'
 and DESCRIPTION = 'Some item for auction'
 and ...
 and SELLER_ID = 45

Hibernate lists all columns and their last known values in the WHERE clause. If any con-
current transaction has modified any of these values or even deleted the row, this
statement returns with zero updated rows. Hibernate then throws an exception at
flush time.

 Alternatively, Hibernate includes only the modified properties in the restriction
(only NAME, in this example) if you switch to OptimisticLockType.DIRTY. This means
two units of work may modify the same Item concurrently, and Hibernate detects a
conflict only if they both modify the same value-typed property (or a foreign key
value). The WHERE clause of the last SQL excerpt would be reduced to where ID = 123
and NAME = 'Old Name'. Someone else could concurrently modify the price, and
Hibernate wouldn’t detect any conflict. Only if the application modified the name
concurrently would you get a javax.persistence.OptimisticLockException.

 In most cases, checking only dirty properties isn’t a good strategy for business enti-
ties. It’s probably not OK to change the price of an item if the description changes!

 This strategy also doesn’t work with detached entities and merging: if you merge a
detached entity into a new persistence context, the “old” values aren’t known. The
detached entity instance will have to carry a version number or timestamp for optimis-
tic concurrency control.

 Automatic versioning in Java Persistence prevents lost updates when two concur-
rent transactions try to commit modifications on the same piece of data. Versioning
can also help you to obtain additional isolation guarantees manually when you need
them.

MANUAL VERSION CHECKING

Here’s a scenario that requires repeatable database reads: imagine you have some cat-
egories in your auction system and that each Item is in a Category. This is a regular
@ManyToOne mapping of an Item#category entity association.
Licensed to Thomas Snead <n.ordickan@gmail.com>

271Controlling concurrent access
 Let’s say you want to sum up all item prices in several categories. This requires a
query for all items in each category, to add up the prices. The problem is, what hap-
pens if someone moves an Item from one Category to another Category while you’re
still querying and iterating through all the categories and items? With read-committed
isolation, the same Item might show up twice while your procedure runs!

 To make the “get items in each category” reads repeatable, JPA’s Query interface
has a setLockMode() method. Look at the procedure in the following listing.

tx.begin();
EntityManager em = JPA.createEntityManager();

BigDecimal totalPrice = new BigDecimal(0);
for (Long categoryId : CATEGORIES) {

 List<Item> items =
 em.createQuery("select i from Item i where i.category.id = :catId")
 .setLockMode(LockModeType.OPTIMISTIC)
 .setParameter("catId", categoryId)
 .getResultList();

 for (Item item : items)
 totalPrice = totalPrice.add(item.getBuyNowPrice());
}

tx.commit();
em.close();

assertEquals(totalPrice.toString(), "108.00");

B For each Category, query all Item instances with an OPTIMISTIC lock mode. Hiber-
nate now knows it has to check each Item at flush time.

C For each Item loaded earlier with the locking query, Hibernate executes a SELECT dur-
ing flushing. It checks whether the database version of each ITEM row is still the same
as when it was loaded. If any ITEM row has a different version or the row no longer
exists, an OptimisticLockException is thrown.

Don’t be confused by the locking terminology: The JPA specification leaves open how
exactly each LockModeType is implemented; for OPTIMISTIC, Hibernate performs ver-
sion checking. There are no actual locks involved. You’ll have to enable versioning on
the Item entity class as explained earlier; otherwise, you can’t use the optimistic Lock-
ModeTypes with Hibernate.

 Hibernate doesn’t batch or otherwise optimize the SELECT statements for manual
version checking: If you sum up 100 items, you get 100 additional queries at flush
time. A pessimistic approach, as we show later in this chapter, may be a better solution
for this particular case.

Listing 11.5 Requesting a version check at flush time to ensure repeatable reads

PATH: /examples/src/test/java/org/jpwh/test/concurrency/Versioning.java

Queries with
OPTIMISTIC lock mode

B

Executes SELECT during flushingC
Licensed to Thomas Snead <n.ordickan@gmail.com>

272 CHAPTER 11 Transactions and concurrency

As shown in the previous example, the Query interface accepts a LockModeType.
Explicit lock modes are also supported by the TypedQuery and the NamedQuery inter-
faces, with the same setLockMode() method.

 An additional optimistic lock mode is available in JPA, forcing an increment of an
entity’s version.

FORCING A VERSION INCREMENT

What happens if two users place a bid for the same auction item at the same time?
When a user makes a new bid, the application must do several things:

1 Retrieve the currently highest Bid for the Item from the database.
2 Compare the new Bid with the highest Bid; if the new Bid is higher, it must be

stored in the database.

There is the potential for a race condition in between these two steps. If, in between
reading the highest Bid and placing the new Bid, another Bid is made, you won’t see
it. This conflict isn’t visible; even enabling versioning of the Item doesn’t help. The
Item is never modified during the procedure. Forcing a version increment of the Item
makes the conflict detectable.

tx.begin();
EntityManager em = JPA.createEntityManager();

Item item = em.find(
 Item.class,
 ITEM_ID,
 LockModeType.OPTIMISTIC_FORCE_INCREMENT
);

Bid highestBid = queryHighestBid(em, item);

Listing 11.6 Forcing a version increment of an entity instance

PATH: /examples/src/test/java/org/jpwh/test/concurrency/Versioning.java

FAQ: Why can’t the persistence context cache prevent this problem?
The “get all items in a particular category” query returns item data in a ResultSet.
Hibernate then looks at the primary key values in this data and first tries to resolve
the rest of the details of each Item in the persistence context cache—it checks
whether an Item instance has already been loaded with that identifier. This cache,
however, doesn’t help in the example procedure: if a concurrent transaction moved
an item to another category, that item might be returned several times in different
ResultSets. Hibernate will perform its persistence context lookup and say, “Oh, I’ve
already loaded that Item instance; let’s use what we already have in memory.” Hiber-
nate isn’t even aware that the category assigned to the item changed or that the item
appeared again in a different result. Hence this is a case where the repeatable-read
feature of the persistence context hides concurrently committed data. You need to
manually check the versions to find out if the data changed while you were expecting
it not to change.

Tells Hibernate to
increment Item version

B

Licensed to Thomas Snead <n.ordickan@gmail.com>

273Controlling concurrent access
try {
 Bid newBid = new Bid(
 new BigDecimal("44.44"),
 item,
 highestBid
);
 em.persist(newBid);
} catch (InvalidBidException ex) {
}

tx.commit();
em.close();

B find() accepts a LockModeType. The OPTIMISTIC_FORCE_INCREMENT mode tells Hiber-
nate that the version of the retrieved Item should be incremented after loading, even
if it’s never modified in the unit of work.

C The code persists a new Bid instance; this doesn’t affect any values of the Item
instance. A new row is inserted into the BID table. Hibernate wouldn’t detect concur-
rently made bids without a forced version increment of the Item.

D You use a checked exception to validate the new bid amount. It must be greater than
the currently highest bid.

E When flushing the persistence context, Hibernate executes an INSERT for the new Bid
and forces an UPDATE of the Item with a version check. If someone modified the Item
concurrently or placed a Bid concurrently with this procedure, Hibernate throws an
exception.

For the auction system, placing bids concurrently is certainly a frequent operation.
Incrementing a version manually is useful in many situations where you insert or
modify data and want the version of some root instance of an aggregate to be
incremented.

 Note that if instead of a Bid#item entity association with @ManyToOne, you have an
@ElementCollection of Item#bids, adding a Bid to the collection will increment the
Item version. The forced increment then isn’t necessary. You may want to review the
discussion of parent/child ambiguity and how aggregates and composition work with
ORM in section 7.3.

 So far, we’ve focused on optimistic concurrency control: we expect that concurrent
modifications are rare, so we don’t prevent concurrent access and detect conflicts late.
Sometimes you know that conflicts will happen frequently, and you want to place an
exclusive lock on some data. This calls for a pessimistic approach.

11.2.3 Explicit pessimistic locking

Let’s repeat the procedure shown in the section “Manual version checking” with a pes-
simistic lock instead of optimistic version checking. You again summarize the total
price of all items in several categories. This is the same code as shown earlier in listing
11.5, with a different LockModeType.

Persists Bid instanceC

Checks bidD

INSERTs BidE
Licensed to Thomas Snead <n.ordickan@gmail.com>

274 CHAPTER 11 Transactions and concurrency

tx.begin();
EntityManager em = JPA.createEntityManager();

BigDecimal totalPrice = new BigDecimal(0);
for (Long categoryId : CATEGORIES) {

 List<Item> items =
 em.createQuery("select i from Item i where i.category.id = :catId")
 .setLockMode(LockModeType.PESSIMISTIC_READ)
 .setHint("javax.persistence.lock.timeout", 5000)
 .setParameter("catId", categoryId)
 .getResultList();

 for (Item item : items)
 totalPrice = totalPrice.add(item.getBuyNowPrice());
}

tx.commit();
em.close();

assertEquals(totalPrice.compareTo(new BigDecimal("108")), 0);

B For each Category, query all Item instances in PESSIMISTIC_READ lock mode. Hiber-
nate locks the rows in the database with the SQL query. If possible, wait 5 seconds if
another transaction holds a conflicting lock. If the lock can’t be obtained, the query
throws an exception.

B If the query returns successfully, you know that you hold an exclusive lock on the data
and no other transaction can access it with an exclusive lock or modify it until this
transaction commits.

B Your locks are released after commit, when the transaction completes.

The JPA specification defines that the lock mode PESSIMISTIC_READ guarantees
repeatable reads. JPA also standardizes the PESSIMISTIC_WRITE mode, with additional
guarantees: in addition to repeatable reads, the JPA provider must serialize data
access, and no phantom reads can occur.

 It’s up to the JPA provider to implement these requirements. For both modes,
Hibernate appends a “for update” clause to the SQL query when loading data. This
places a lock on the rows at the database level. What kind of lock Hibernate uses
depends on the LockModeType and your Hibernate database dialect.

 On H2, for example, the query is SELECT * FROM ITEM ... FOR UPDATE. Because
H2 supports only one type of exclusive lock, Hibernate generates the same SQL for all
pessimistic modes.

 PostgreSQL, on the other hand, supports shared read locks: the PESSIMISTIC_READ
mode appends FOR SHARE to the SQL query. PESSIMISTIC_WRITE uses an exclusive
write lock with FOR UPDATE.

Listing 11.7 Locking data pessimistically

PATH: /examples/src/test/java/org/jpwh/test/concurrency/Locking.java

Queries all Item instancesB

Query success means
exclusive lock

C

Releases lockD
Licensed to Thomas Snead <n.ordickan@gmail.com>

275Controlling concurrent access
 On MySQL, PESSIMISTIC_READ translates to LOCK IN SHARE MODE, and PESSIMISTIC_
WRITE to FOR UPDATE. Check your database dialect. This is configured with the getRea-
dLockString() and getWriteLockString() methods.

 The duration of a pessimistic lock in JPA is a single database transaction. This means
you can’t use an exclusive lock to block concurrent access for longer than a single data-
base transaction. When the database lock can’t be obtained, an exception is thrown.
Compare this with an optimistic approach, where Hibernate throws an exception at
commit time, not when you query. With a pessimistic strategy, you know that you can
read and write the data safely as soon as your locking query succeeds. With an optimis-
tic approach, you hope for the best and may be surprised later, when you commit.

You can configure how long the database will wait to obtain the lock and block the
query in milliseconds with the javax.persistence.lock.timeout hint. As usual with
hints, Hibernate might ignore it, depending on your database product. H2, for exam-
ple, doesn’t support lock timeouts per query, only a global lock timeout per connec-
tion (defaulting to 1 second). With some dialects, such as PostgreSQL and Oracle, a
lock timeout of 0 appends the NOWAIT clause to the SQL string.

 We’ve shown the lock timeout hint applied to a Query. You can also set the timeout
hint for find() operations:

tx.begin();
EntityManager em = JPA.createEntityManager();

Map<String, Object> hints = new HashMap<String, Object>();
hints.put("javax.persistence.lock.timeout", 5000);

Category category =
 em.find(
 Category.class,
 CATEGORY_ID,
 LockModeType.PESSIMISTIC_WRITE,

Path: /examples/src/test/java/org/jpwh/test/concurrency/Locking.java

Offline locks
Pessimistic database locks are held only for a single transaction. Other lock imple-
mentations are possible: for example, a lock held in memory, or a so-called lock table
in the database. A common name for these kinds of locks is offline locks.

Locking pessimistically for longer than a single database transaction is usually a per-
formance bottleneck; every data access involves additional lock checks to a globally
synchronized lock manager. Optimistic locking, however, is the perfect concurrency
control strategy for long-running conversations (as you’ll see in the next chapter) and
performs well. Depending on your conflict-resolution strategy—what happens after a
conflict is detected—your application users may be just as happy as with blocked
concurrent access. They may also appreciate the application not locking them out of
particular screens while others look at the same data.

Executes SELECT .. FOR
UPDATE WAIT 5000 if
supported by dialect
Licensed to Thomas Snead <n.ordickan@gmail.com>

276 CHAPTER 11 Transactions and concurrency
 hints
);

category.setName("New Name");

tx.commit();
em.close();

When a lock can’t be obtained, Hibernate throws either a javax.persistence.Lock-
TimeoutException or a javax.persistence.PessimisticLockException. If Hiber-
nate throws a PessimisticLockException, the transaction must be rolled back, and
the unit of work ends. A timeout exception, on the other hand, isn’t fatal for the trans-
action, as explained in section 11.1.4. Which exception Hibernate throws again
depends on the SQL dialect. For example, because H2 doesn’t support per-statement
lock timeouts, you always get a PessimisticLockException.

 You can use both the PESSIMISTIC_READ and PESSIMISTIC_WRITE lock modes even
if you haven’t enabled entity versioning. They translate to SQL statements with data-
base-level locks.

 The special mode PESSIMISTIC_FORCE_INCREMENT requires versioned entities,
however. In Hibernate, this mode executes a FOR UPDATE NOWAIT lock (or whatever
your dialect supports; check its getForUpdateNowaitString() implementation).
Then, immediately after the query returns, Hibernate increments the version and
UPDATE (!) each returned entity instance. This indicates to any concurrent transaction
that you have updated these rows, even if you haven’t so far modified any data. This
mode is rarely useful, mostly for aggregate locking as explained in the section “Forc-
ing a version increment.”

If you enable pessimistic locking, Hibernate locks only rows that correspond to entity
instance state. In other words, if you lock an Item instance, Hibernate will lock its row
in the ITEM table. If you have a joined inheritance mapping strategy, Hibernate will
recognize this and lock the appropriate rows in super- and sub-tables. This also applies
to any secondary table mappings of an entity. Because Hibernate locks entire rows,
any relationship where the foreign key is in that row will also effectively be locked:
The Item#seller association is locked if the SELLER_ID foreign key column is in the
ITEM table. The actual Seller instance isn’t locked! Neither are collections or other
associations of the Item where the foreign key(s) are in other tables.

 With exclusive locking in the DBMS, you may experience transaction failures
because you run into deadlock situations.

What about lock modes READ and WRITE?
These are older lock modes from Java Persistence 1.0, and you should no longer use
them. LockModeType.READ is equivalent to OPTIMISTIC, and LockModeType.WRITE
is equivalent to OPTIMISTIC_FORCE_INCREMENT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

277Controlling concurrent access
11.2.4 Avoiding deadlocks

Deadlocks can occur if your DBMS relies on exclusive locks to implement transaction
isolation. Consider the following unit of work, updating two Item entity instances in a
particular order:

tx.begin();
EntityManager em = JPA.createEntityManager();

Item itemOne = em.find(Item.class, ITEM_ONE_ID);
itemOne.setName("First new name");

Item itemTwo = em.find(Item.class, ITEM_TWO_ID);
itemTwo.setName("Second new name");

tx.commit();
em.close();

Hibernate executes two SQL UPDATE statements when the persistence context is
flushed. The first UPDATE locks the row representing Item one, and the second UPDATE
locks Item two:

update ITEM set ... where ID = 1;

update ITEM set ... where ID = 2;

A deadlock may (or it may not!) occur if a similar procedure, with the opposite order
of Item updates, executes in a concurrent transaction:

update ITEM set ... where ID = 2;

update ITEM set ... where ID = 1;

With a deadlock, both transactions are blocked and can’t move forward, each waiting
for a lock to be released. The chance of a deadlock is usually small, but in highly con-
current applications, two Hibernate applications may execute this kind of interleaved
update. Note that you may not see deadlocks during testing (unless you write the right
kinds of tests). Deadlocks can suddenly appear when the application has to handle a
high transaction load in production. Usually the DBMS terminates one of the dead-
locked transactions after a timeout period and fails; the other transaction can then
proceed. Alternatively, depending on the DBMS, the DBMS may detect a deadlock situ-
ation automatically and immediately abort one of the transactions.

Extending lock scope
JPA 2.0 defines the PessimisticLockScope.EXTENDED option. It can be set as a
query hint with javax.persistence.lock.scope. If enabled, the persistence
engine expands the scope of locked data to include any data in collection and asso-
ciation join tables of locked entities. At the time of writing, Hibernate doesn’t imple-
ment this feature.

Locks row 1
Attempts to lock row 2

Locks row 2
Attempts to lock row 1
Licensed to Thomas Snead <n.ordickan@gmail.com>

278 CHAPTER 11 Transactions and concurrency
 You should try to avoid transaction failures, because they’re difficult to recover
from in application code. One solution is to run the database connection in serializable
mode when updating a single row locks the entire table. The concurrent transaction
has to wait until the first transaction completes its work. Alternatively, the first transac-
tion can obtain an exclusive lock on all data when you SELECT the data, as shown in
the previous section. Then any concurrent transaction also has to wait until these
locks are released.

 An alternative pragmatic optimization that significantly reduces the probability of
deadlocks is to order the UPDATE statements by primary key value: Hibernate should
always update the row with primary key 1 before updating row 2, no matter in what
order the data was loaded and modified by the application. You can enable this opti-
mization for the entire persistence unit with the configuration property hiber-
nate.order_updates. Hibernate then orders all UPDATE statements it executes in
ascending order by primary key value of the modified entity instances and collection
elements detected during flushing. (As mentioned earlier, make sure you fully under-
stand the transactional and locking behavior of your DBMS product. Hibernate inher-
its most of its transaction guarantees from the DBMS; for example, your MVCC
database product may avoid read locks but probably depends on exclusive locks for
writer isolation, and you may see deadlocks.)

 We didn’t have an opportunity to mention the EntityManager#lock() method. It
accepts an already-loaded persistent entity instance and a lock mode. It performs the
same locking you’ve seen with find() and a Query, except that it doesn’t load the
instance. Additionally, if a versioned entity is being locked pessimistically, the lock()
method performs an immediate version check on the database and potentially throws
an OptimisticLockException. If the database representation is no longer present,
Hibernate throws an EntityNotFoundException. Finally, the EntityMan-

ager#refresh() method also accepts a lock mode, with the same semantics.
 We’ve now covered concurrency control at the lowest level—the database—and

the optimistic and pessimistic locking features of JPA. We still have one more aspect of
concurrency to discuss: accessing data outside of a transaction.

11.3 Nontransactional data access
A JDBC Connection is by default in auto-commit mode. This mode is useful for execut-
ing ad hoc SQL.

 Imagine that you connect to your database with an SQL console and that you run a
few queries, and maybe even update and delete rows. This interactive data access is ad
hoc; most of the time you don’t have a plan or a sequence of statements that you con-
sider a unit of work. The default auto-commit mode on the database connection is
perfect for this kind of data access—after all, you don’t want to type begin transac-
tion and end transaction for every SQL statement you write and execute. In auto-
commit mode, a (short) database transaction begins and ends for each SQL statement
you send to the database. You’re working effectively in nontransactional mode,
Licensed to Thomas Snead <n.ordickan@gmail.com>

279Nontransactional data access
because there are no atomicity or isolation guarantees for your session with the SQL
console. (The only guarantee is that a single SQL statement is atomic.)

 An application, by definition, always executes a planned sequence of statements. It
seems reasonable that you therefore always create transaction boundaries to group
your statements into units that are atomic and isolated from each other. In JPA, how-
ever, special behavior is associated with auto-commit mode, and you may need it to
implement long-running conversations. You can access the database in auto-commit
mode and read data.

11.3.1 Reading data in auto-commit mode

Consider the following example, which loads an Item instance, changes its name, and
then rolls back that change by refreshing.

EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
item.setName("New Name");

assertEquals(
 em.createQuery("select i.name from Item i where i.id = :id)")
 .setParameter("id", ITEM_ID).getSingleResult(),
 "Original Name"
);

assertEquals(
 ((Item) em.createQuery("select i from Item i where i.id = :id)")
 .setParameter("id", ITEM_ID).getSingleResult()).getName(),
 "New Name"
);

// em.flush();

em.refresh(item);
assertEquals(item.getName(), "Original Name");

em.close();

B No transaction is active when you create the EntityManager. The persistence context is
now in a special unsynchronized mode; Hibernate won’t flush automatically.

C You can access the database to read data; this operation executes a SELECT, sent to the
database in auto-commit mode.

D Usually Hibernate flushes the persistence context when you execute a Query. But
because the context is unsynchronized, flushing doesn’t occur, and the query returns
the old, original database value. Queries with scalar results aren’t repeatable: you see
whatever values are in the database and given to Hibernate in the ResultSet. This
also isn’t a repeatable read if you’re in synchronized mode.

Listing 11.8 Reading data in auto-commit mode

PATH: /examples/src/test/java/org/jpwh/test/concurrency/NonTransactional.java

Unsynchronized modeB

Accesses databaseC

Returns original valueD

Returns already-
loaded instance

E

Throws exceptionF

Rolls back changeG
Licensed to Thomas Snead <n.ordickan@gmail.com>

280 CHAPTER 11 Transactions and concurrency
E Retrieving a managed entity instance involves a lookup during JDBC result-set mar-
shaling, in the current persistence context. The already-loaded Item instance with the
changed name is returned from the persistence context; values from the database are
ignored. This is a repeatable read of an entity instance, even without a system transac-
tion.

F If you try to flush the persistence context manually, to store the new Item#name,
Hibernate throws a javax.persistence.TransactionRequiredException. You can’t
execute an UPDATE in unsynchronized mode, because you wouldn’t be able to roll
back the change.

G You can roll back the change you made with the refresh() method. It loads the cur-
rent Item state from the database and overwrites the change you made in memory.

With an unsynchronized persistence context, you read data in auto-commit mode with
find(), getReference(), refresh(), or queries. You can load data on demand as well:
proxies are initialized if you access them, and collections are loaded if you start iterat-
ing through their elements. But if you try to flush the persistence context or lock data
with anything but LockModeType.NONE, a TransactionRequiredException will occur.

 So far, auto-commit mode doesn’t seem very useful. Indeed, many developers
often rely on auto-commit for the wrong reasons:

 Many small per-statement database transactions (that’s what auto-commit
means) won’t improve the performance of your application.

 You won’t improve the scalability of your application: a longer-running database
transaction, instead of many small transactions for every SQL statement, may
hold database locks for a longer time. This is a minor issue, because Hibernate
writes to the database as late as possible within a transaction (flush at commit),
so the database already holds write locks for a short time.

 You also have weaker isolation guarantees if the application modifies data con-
currently. Repeatable reads based on read locks are impossible with auto-com-
mit mode. (The persistence context cache helps here, naturally.)

 If your DBMS has MVCC (for example, Oracle, PostreSQL, Informix, and Fire-
bird), you likely want to use its capability for snapshot isolation to avoid unrepeat-
able and phantom reads. Each transaction gets its own personal snapshot of the
data; you only see a (database-internal) version of the data as it was before your
transaction started. With auto-commit mode, snapshot isolation makes no
sense, because there is no transaction scope.

 Your code will be more difficult to understand. Any reader of your code now
has to pay special attention to whether a persistence context is joined with a
transaction, or if it’s in unsynchronized mode. If you always group operations
within a system transaction, even if you only read data, everyone can follow this
simple rule, and the likelihood of difficult-to-find concurrency issues is
reduced.
Licensed to Thomas Snead <n.ordickan@gmail.com>

281Nontransactional data access
So, what are the benefits of an unsynchronized persistence context? If flushing
doesn’t happen automatically, you can prepare and queue modifications outside of a
transaction.

11.3.2 Queueing modifications

The following example stores a new Item instance with an unsynchronized Entity-
Manager:

EntityManager em = JPA.createEntityManager();

Item newItem = new Item("New Item");
em.persist(newItem)
assertNotNull(newItem.getId());

tx.begin();
if (!em.isJoinedToTransaction())
 em.joinTransaction();
tx.commit();
em.close();

B You can call persist() to save a transient entity instance with an unsynchronized per-
sistence context. Hibernate only fetches a new identifier value, typically by calling a
database sequence, and assigns it to the instance. The instance is now in persistent
state in the context, but the SQL INSERT hasn’t happened. Note that this is only possi-
ble with pre-insert identifier generators; see section 4.2.5.

C When you’re ready to store the changes, join the persistence context with a transac-
tion. Synchronization and flushing occur as usual, when the transaction commits.
Hibernate writes all queued operations to the database.

Merged changes of a detached entity instance can also be queued:

detachedItem.setName("New Name");
EntityManager em = JPA.createEntityManager();

Item mergedItem = em.merge(detachedItem);

tx.begin();
em.joinTransaction();
tx.commit();
em.close();

Hibernate executes a SELECT in auto-commit mode when you merge(). Hibernate
defers the UPDATE until a joined transaction commits.

 Queuing also works for removal of entity instances and DELETE operations:

PATH: /examples/src/test/java/org/jpwh/test/concurrency/NonTransactional.java

PATH: /examples/src/test/java/org/jpwh/test/concurrency/NonTransactional.java

Saves transient instanceB

Stores changesC

Flush!

Flush!
Licensed to Thomas Snead <n.ordickan@gmail.com>

282 CHAPTER 11 Transactions and concurrency

EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
em.remove(item);

tx.begin();
em.joinTransaction();
tx.commit();
em.close();

An unsynchronized persistence context therefore allows you to decouple persistence
operations from transactions. This special behavior of the EntityManager will be
essential later in the book, when we discuss application design. The ability to queue
data modifications, independent from transactions (and client/server requests), is a
major feature of the persistence context.

11.4 Summary
 You learned to use transactions, concurrency, isolation, and locking.
 Hibernate relies on a database’s concurrency-control mechanism but provides

better isolation guarantees in a transaction, thanks to automatic versioning and
the persistence context cache.

 We discussed how to set transaction boundaries programmatically and handle
exceptions.

 You explored optimistic concurrency control and explicit pessimistic locking.
 You saw how to work with auto-commit mode and an unsynchronized persis-

tence context outside of a transaction, and how to queue modification.

PATH: /examples/src/test/java/org/jpwh/test/concurrency/NonTransactional.java

Flush!

Hibernate’s MANUAL flush mode
Hibernate offers a Session#setFlushMode() method, with the additional Flush-
Mode.MANUAL. It’s a much more convenient switch that disables any automatic flush-
ing of the persistence context, even when a joined transaction commits. With this
mode, you have to call flush() explicitly to synchronize with the database. In JPA,
the idea was that a “transaction commit should always write any outstanding
changes,” so reading was separated from writing with the unsynchronized mode. If
you don’t agree with this and/or don’t want auto-committed statements, enable man-
ual flushing with the Session API. You can then have regular transaction boundaries
for all units of work, with repeatable reads and even snapshot isolation from your
MVCC database, but still queue changes in the persistence context for later execu-
tion and manual flush() before your transaction commits.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Fetch plans, strategies,
and profiles
In this chapter, we explore Hibernate’s solution for the fundamental ORM prob-
lem of navigation, as mentioned in section 1.2.5. We show you how to retrieve data
from the database and how you can optimize this loading.

 Hibernate provides the following ways to get data out of the database and into
memory:

 Retrieving an entity instance by identifier is the most convenient method
when the unique identifier value of an entity instance is known: for example,
entityManager.find(Item.class, 123).

 You can navigate the entity graph, starting from an already-loaded entity
instance, by accessing the associated instances through property accessor
methods such as someItem.getSeller().getAddress().getCity(), and so
on. Elements of mapped collections are also loaded on demand when you
start iterating through a collection. Hibernate automatically loads nodes of

In this chapter
 Lazy and eager loading

 Fetch plans, strategies, and profiles

 Optimizing SQL execution
283

Licensed to Thomas Snead <n.ordickan@gmail.com>

284 CHAPTER 12 Fetch plans, strategies, and profiles
the graph if the persistence context is still open. What and how data is loaded
when you call accessors and iterate through collections is the focus of this
chapter.

 You can use the Java Persistence Query Language (JPQL), a full object-oriented
query language based on strings such as select i from Item i where i.id = ?.

 The CriteriaQuery interface provides a type-safe and object-oriented way to
perform queries without string manipulation.

 You can write native SQL queries, call stored procedures, and let Hibernate take
care of mapping the JDBC result sets to instances of your domain model classes.

In your JPA applications, you’ll use a combination of these techniques, but we won’t
discuss each retrieval method in much detail in this chapter. By now you should be
familiar with the basic Java Persistence API for retrieval by identifier. We keep our
JPQL and CriteriaQuery examples as simple as possible, and you won’t need the SQL
query-mapping features. Because these query options are sophisticated, we’ll explore
them further in chapters 15 and 17.

This chapter covers what happens behind the scenes when you navigate the graph of
your domain model and Hibernate retrieves data on demand. In all the examples, we
show you the SQL executed by Hibernate in a comment right immediately after the
operation that triggered the SQL execution.

 What Hibernate loads depends on the fetch plan: you define the (sub)graph of the
network of objects that should be loaded. Then you pick the right fetch strategy, defin-
ing how the data should be loaded. You can store your selection of plan and strategy as
a fetch profile and reuse it.

 Defining fetch plans and what data should be loaded by Hibernate relies on two
fundamental techniques: lazy and eager loading of nodes in the network of objects.

12.1 Lazy and eager loading
At some point, you must decide what data should be loaded into memory from the
database. When you execute entityManager.find(Item.class, 123), what is avail-
able in memory and loaded into the persistence context? What happens if you use
EntityManager#getReference() instead?

 In your domain-model mapping, you define the global default fetch plan, with the
FetchType.LAZY and FetchType.EAGER options on associations and collections. This

Major new features in JPA 2
 You can manually check the initialization state of an entity or an entity prop-

erty with the new PersistenceUtil static helper class.
 You can create standardized declarative fetch plans with the new Entity-

Graph API.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#QueryLanguages
jpwh-2e-preview.xhtml#QueryLanguages
jpwh-2e-preview.xhtml#QueryLanguages
jpwh-2e-preview.xhtml#CustomizingSQL

285Lazy and eager loading
plan is the default setting for all operations involving your persistent domain model
classes. It’s always active when you load an entity instance by identifier and when you
navigate the entity graph by following associations and iterating through persistent
collections.

 Our recommended strategy is a lazy default fetch plan for all entities and collec-
tions. If you map all of your associations and collections with FetchType.LAZY, Hiber-
nate will only load the data you’re accessing at this time. While you navigate the graph
of your domain model instances, Hibernate will load data on demand, bit by bit. You
then override this behavior on a per-case basis when necessary.

 To implement lazy loading, Hibernate relies on runtime-generated entity place-
holders called proxies and on smart wrappers for collections.

12.1.1 Understanding entity proxies

Consider the getReference() method of the EntityManager API. In section 10.2.3,
you had a first look at this operation and how it may return a proxy. Let’s further
explore this important feature and find out how proxies work:

Item item = em.getReference(Item.class, ITEM_ID);

assertEquals(item.getId(), ITEM_ID);

This code doesn’t execute any SQL against the data-
base. All Hibernate does is create an Item proxy: it
looks (and smells) like the real thing, but it’s only a
placeholder. In the persistence context, in memory,
you now have this proxy available in persistent state, as
shown in figure 12.1.

 The proxy is an instance of a runtime-generated
subclass of Item, carrying the identifier value of the
entity instance it represents. This is why Hibernate (in
line with JPA) requires that entity classes have at least a
public or protected no-argument constructor (the class may have other constructors,
too). The entity class and its methods must not be final; otherwise, Hibernate can’t
produce a proxy. Note that the JPA specification doesn’t mention proxies; it’s up to
the JPA provider how lazy loading is implemented.

 If you call any method on the proxy that isn’t the “identifier getter,” you trigger ini-
tialization of the proxy and hit the database. If you call item.getName(), the SQL
SELECT to load the Item will be executed. The previous example called item.getId()
without triggering initialization because getId() is the identifier getter method in the
given mapping; the getId() method was annotated with @Id. If @Id was on a field,
then calling getId(), just like calling any other method, would initialize the proxy!

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

No SELECT

Calling the identifier getter (no field
access!) doesn’t trigger initialization.

Persistence context

Item
123item

Figure 12.1 The persistence
context contains an Item proxy.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#RetrievePersistent
jpwh-2e-preview.xhtml#RetrievePersistent
jpwh-2e-preview.xhtml#WritingPersistenceCapableClasses

286 CHAPTER 12 Fetch plans, strategies, and profiles

H

(Remember that we usually prefer mappings and access on fields, because this allows
you more freedom when designing accessor methods; see section 3.2.3. It’s up to you
whether calling getId() without initializing a proxy is more important.)

 With proxies, be careful how you compare classes. Because Hibernate generates
the proxy class, it has a funny-looking name, and it is not equal to Item.class:

assertNotEquals(item.getClass(), Item.class);

assertEquals(
 HibernateProxyHelper.getClassWithoutInitializingProxy(item),
 Item.class
);

If you really must get the actual type represented by a proxy, use the HibernateProxy-
Helper.

 JPA provides PersistenceUtil, which you can use to check the initialization state
of an entity or any of its attributes:

PersistenceUtil persistenceUtil = Persistence.getPersistenceUtil();
assertFalse(persistenceUtil.isLoaded(item));
assertFalse(persistenceUtil.isLoaded(item, "seller"));

assertFalse(Hibernate.isInitialized(item));
// assertFalse(Hibernate.isInitialized(item.getSeller()));

The static isLoaded() method also accepts the name of a property of the given entity
(proxy) instance, checking its initialization state. Hibernate offers an alternative API
with Hibernate.isInitialized(). If you call item.getSeller(), though, the item
proxy is initialized first!

Hibernate also offers a utility method for quick-and-dirty initialization of proxies:

Hibernate.initialize(item);
// select * from ITEM where ID = ?

assertFalse(Hibernate.isInitialized(item.getSeller()));

Hibernate.initialize(item.getSeller());
// select * from USERS where ID = ?

The first call hits the database and loads the Item data, populating the proxy with the
item’s name, price, and so on.

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

Class is runtime generated,
named something like
Item_$$_javassist_1

Would trigger
initialization of
item!

ibernate Feature

Make sure the
default EAGER of
@ManyToOne has
been overridden with
LAZY.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#WritingPersistenceCapableClasses
jpwh-2e-preview.xhtml#WritingPersistenceCapableClasses
jpwh-2e-preview.xhtml#SetsBagsListsMaps

287Lazy and eager loading
 The seller of the Item is an @ManyToOne association mapped with FetchType
.LAZY, so Hibernate creates a User proxy when the Item is loaded. You can check the
seller proxy state and load it manually, just like the Item. Remember that the JPA
default for @ManyToOne is FetchType.EAGER! You usually want to override this to get a
lazy default fetch plan, as first shown in section 7.3.1 and again here:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.LAZY)
 public User getSeller() {
 return seller;
 }
 // ...
}

With such a lazy fetch plan, you might run into a LazyInitializationException.
Consider the following code:

Item item = em.find(Item.class, ITEM_ID);

// select * from ITEM where ID = ?

em.detach(item);

em.detach(item.getSeller());

// em.close();

PersistenceUtil persistenceUtil = Persistence.getPersistenceUtil();

assertTrue(persistenceUtil.isLoaded(item));

assertFalse(persistenceUtil.isLoaded(item, "seller"));

assertEquals(item.getSeller().getId(), USER_ID);

//assertNotNull(item.getSeller().getUsername());

B An Item entity instance is loaded in the persistence context. Its seller isn’t initialized:
it’s a User proxy.

C You can manually detach the data from the persistence context or close the persis-
tence context and detach everything.

D The static PersistenceUtil helper works without a persistence context. You can
check at any time whether the data you want to access has been loaded.

E In detached state, you can call the identifier getter method of the User proxy. But
calling any other method on the proxy, such as getUsername(), will throw a Lazy-
InitializationException. Data can only be loaded on demand while the persistence
context manages the proxy, not in detached state.

PATH: /model/src/main/java/org/jpwh/model/fetching/proxy/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

Loads Item instanceB

Detaches dataC

D
PersistenceUtil

helper

Calls getterE
Throws an exception!
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#ManyToOne

288 CHAPTER 12 Fetch plans, strategies, and profiles
Hibernate proxies are useful beyond simple lazy loading. For example, you can store a
new Bid without loading any data into memory:

Item item = em.getReference(Item.class, ITEM_ID);
User user = em.getReference(User.class, USER_ID);

Bid newBid = new Bid(new BigDecimal("99.00"));
newBid.setItem(item);
newBid.setBidder(user);

em.persist(newBid);
// insert into BID values (?, ? ,? , ...)

The first two calls produce proxies of Item and User, respectively. Then the item and
bidder association properties of the transient Bid are set with the proxies. The
persist() call queues one SQL INSERT when the persistence context is flushed, and
no SELECT is necessary to create the new row in the BID table. All (foreign) key values
are available as identifier values of the Item and User proxy.

 Runtime proxy generation as provided by Hibernate is an excellent choice for
transparent lazy loading. Your domain model classes don’t have to implement any spe-
cial (super)type, as some older ORM solutions would require. No code generation or
post-processing of bytecode is needed either, simplifying your build procedure. But
you should be aware of some potentially negative aspects:

 Cases where runtime proxies aren’t completely transparent are polymorphic
associations that are tested with instanceof, a problem shown in section 6.8.1.

 With entity proxies, you have to be careful not to access fields directly when writ-
ing custom equals() and hashCode() methods, as discussed in section 10.3.2.

 Proxies can only be used to lazy-load entity associations. They can’t be used to
lazy load individual basic properties or embedded components, such as
Item#description or User#homeAddress. If you set the @Basic(fetch =

FetchType.LAZY) hint on such a property, Hibernate ignores it; the value is
eagerly loaded when the owning entity instance is loaded. Although possible
with bytecode instrumentation and interception, we consider this kind of opti-
mization to be rarely useful. Optimizing at the level of individual columns
selected in SQL is unnecessary if you aren’t working with (a) a significant

How does lazy loading of one-to-one associations work?
Lazy loading for one-to-one entity associations is sometimes confusing for new Hiber-
nate users. If you consider one-to-one associations based on shared primary keys
(see section 8.1.1), an association can be proxied only if it’s optional=false. For
example, an Address always has a reference to a User. If this association is nullable
and optional, Hibernate must first hit the database to find out whether it should apply
a proxy or a null—and the purpose of lazy loading is to not hit the database at all.
You can enable lazy loading of optional one-to-one associations through bytecode
instrumentation and interception, which we discuss later in this chapter.

There is no SQL SELECT
in this procedure, only
one INSERT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#PolymorphicManyToOne
jpwh-2e-preview.xhtml#EqualsHashcode
jpwh-2e-preview.xhtml#QueryLanguages
jpwh-2e-preview.xhtml#QueryLanguages
jpwh-2e-preview.xhtml#OneToOneSharedPrimaryKey
jpwh-2e-preview.xhtml#OneToOneSharedPrimaryKey

289Lazy and eager loading
number of optional/nullable columns or (b) columns containing large values
that have to be retrieved on demand because of the physical limitations of your
system. Large values are best represented with locator objects (LOBs) instead;
they provide lazy loading by definition (see the section “Binary and large value
types” in chapter 5).

Proxies enable lazy loading of entity instances. For persistent collections Hibernate
has a slightly different approach.

12.1.2 Lazy persistent collections

You map persistent collections with either @ElementCollection for a collection of ele-
ments of basic or embeddable type or with @OneToMany and @ManyToMany for many-
valued entity associations. These collections are, unlike @ManyToOne, lazy-loaded by
default. You don’t have to specify the FetchType.LAZY option on the mapping.

 When you load an Item, Hibernate doesn’t load its lazy collection of images right
away. The lazy bids one-to-many collection is also only loaded on demand, when
accessed and needed:

Item item = em.find(Item.class, ITEM_ID);
// select * from ITEM where ID = ?

Set<Bid> bids = item.getBids();
PersistenceUtil persistenceUtil = Persistence.getPersistenceUtil();
assertFalse(persistenceUtil.isLoaded(item, "bids"));

assertTrue(Set.class.isAssignableFrom(bids.getClass()));

assertNotEquals(bids.getClass(), HashSet.class);
assertEquals(bids.getClass(),

org.hibernate.collection.internal.PersistentSet.class);

The find() operation loads the Item entity
instance into the persistence context, as you
can see in figure 12.2. The Item instance has
a reference to an uninitialized User proxy:
the seller. It also has a reference to an
uninitialized Set of bids and an uninitialized
List of images.

 Hibernate implements lazy loading (and
dirty checking) of collections with its own spe-
cial implementations called collection wrappers.
Although the bids certainly look like a Set,
Hibernate replaced the implementation
with an org.hibernate.collection.internal

.PersistentSet while you weren’t looking.

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

Collection isn’t
initialized.

It’s a Set.

It’s not a HashSet.

Persistence context

User
345

Set
.
.

Item
123 bids

images

seller

List
.
.

item

Figure 12.2 Proxies and
collection wrappers represent the
boundary of the loaded graph.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#NamedQueries

290 CHAPTER 12 Fetch plans, strategies, and profiles

H

It’s not a HashSet, but it has the same behavior. That’s why it’s so important to program
with interfaces in your domain model and only rely on Set and not HashSet. Lists and
maps work the same way.

 These special collections can detect when you access them and load their data at
that time. As soon as you start iterating through the bids, the collection and all bids
made for the item are loaded:

Bid firstBid = bids.iterator().next();
// select * from BID where ITEM_ID = ?

// Alternative: Hibernate.initialize(bids);

Alternatively, just as for entity proxies, you can call the static utility method Hibernate
.initialize() to load a collection. It will be completely loaded; you can’t say “only
load the first two bids,” for example. For this, you’d have to write a query.

 For convenience, so you don’t have to write many trivial queries, Hibernate offers a
proprietary setting on collection mappings:

@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 @org.hibernate.annotations.LazyCollection(
 org.hibernate.annotations.LazyCollectionOption.EXTRA
)
 public Set<Bid> getBids() {
 return bids;
 }
 // ...
}

With LazyCollectionOption.EXTRA, the collection supports operations that don’t
trigger initialization. For example, you could ask for the collection’s size:

Item item = em.find(Item.class, ITEM_ID);
// select * from ITEM where ID = ?

assertEquals(item.getBids().size(), 3);
// select count(b) from BID b where b.ITEM_ID = ?

The size() operation triggers a SELECT COUNT() SQL query but doesn’t load the bids
into memory. On all extra lazy collections, similar queries are executed for the
isEmpty() and contains() operations. An extra lazy Set checks for duplicates with a
simple query when you call add(). An extra lazy List only loads one element if you call
get(index). For Map, extra lazy operations are containsKey() and containsValue().

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyProxyCollections.java

PATH: /model/src/main/java/org/jpwh/model/fetching/proxy/Item.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

291Lazy and eager loading

H

 Hibernate’s proxies and smart collections are one possible implementation of lazy
loading, with a good balance of features and cost. An alternative we’ve mentioned
before is interception.

12.1.3 Lazy loading with interception

The fundamental problem with lazy loading is that the JPA provider must know when
to load the seller of an Item or the collection of bids. Instead of runtime-generated
proxies and smart collections, many other JPA providers rely exclusively on interception
of method calls. For example, when you call someItem.getSeller(), the JPA provider
would intercept this call and load the User instance representing the seller.

 This approach requires special code in your Item class to implement the intercep-
tion: the getSeller() method or the seller field must be wrapped. Because you
don’t want to write this code by hand, typically you run a bytecode enhancer (bundled
with your JPA provider) after compiling your domain model classes. This enhancer
injects the necessary interception code into your compiled classes, manipulating the
fields and methods at the bytecode level.

 Let’s discuss lazy loading based on interception with a few examples. First, you
probably want to disable Hibernate’s proxy generation:

@Entity
@org.hibernate.annotations.Proxy(lazy = false)
public class User {
 // ...
}

Hibernate will now no longer generate a proxy for the User entity. If you call entity-
Manager.getReference(User.class, USER_ID), a SELECT is executed, just as for find():

User user = em.getReference(User.class, USER_ID);
// select * from USERS where ID = ?

assertTrue(Hibernate.isInitialized(user));

For entity associations targeting User, such as the seller of an Item, the Fetch-
Type.LAZY hint has no effect:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.LAZY)

PATH: /model/src/main/java/org/jpwh/model/fetching/interception/User.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyInterception.java

PATH: /model/src/main/java/org/jpwh/model/fetching/interception/Item.java

ibernate Feature

Proxies are disabled.
getReference() will return
an initialized instance.

Has no effect—
no User proxy.
Licensed to Thomas Snead <n.ordickan@gmail.com>

292 CHAPTER 12 Fetch plans, strategies, and profiles
 @org.hibernate.annotations.LazyToOne(
 org.hibernate.annotations.LazyToOneOption.NO_PROXY
)
 protected User seller;

 // ...
}

Instead, the proprietary LazyToOneOption.NO_PROXY setting tells Hibernate that the
bytecode enhancer must add interception code for the seller property. Without this
option, or if you don’t run the bytecode enhancer, this association would be eagerly
loaded and the field would be populated right away when the Item is loaded, because
proxies for the User entity have been disabled.

 If you run the bytecode enhancer, Hibernate intercepts access of the seller field
and triggers loading when you touch the field:

Item item = em.find(Item.class, ITEM_ID);
// select * from ITEM where ID = ?

assertEquals(item.getSeller().getId(), USER_ID);
// select * from USERS where ID = ?

This is less lazy than proxies. Remember that you could call User#getId() on a proxy
without initializing the instance, as explained in the previous sections. With intercep-
tion, any access of the seller field, and calling getSeller(), will trigger initialization.

 For lazy entity associations, proxies are usually a better choice than interception. A
more common use case for interception is properties of basic type, such a String or
byte[], with potentially large values. We might argue that LOBs (see “Binary and large
value types” in chapter 5) should be preferred for large strings or binary data, but you
might not want to have the java.sql.Blob or java.sql.Clob type in your domain
model. With interception and bytecode enhancement, you can load a simple String
or byte[] field on demand:

@Entity
public class Item {

 @Basic(fetch = FetchType.LAZY)
 protected String description;

 // ...
}

The Item#description will be lazy loaded if you run the bytecode enhancer on the
compiled class. If you don’t run the bytecode enhancer—for example, during devel-
opment—the String will be loaded together with the Item instance.

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyInterception.java

PATH: /model/src/main/java/org/jpwh/model/fetching/interception/Item.java

Requires bytecode
enhancement!

Even item.getSeller()
would trigger the
SELECT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

293Lazy and eager loading
 If you rely on interception, be aware that Hibernate will load all lazy fields of an
entity or embeddable class, even if only one has to be loaded:

Item item = em.find(Item.class, ITEM_ID);
// select NAME, AUCTIONEND, ... from ITEM where ID = ?

assertTrue(item.getDescription().length() > 0);
// select DESCRIPTION from ITEM where ID = ?
// select * from USERS where ID = ?

When Hibernate loads the description of the Item, it loads the seller and any other
intercepted field right away, too. There are no fetch groups in Hibernate at the time
of writing: it’s all or nothing.

 The downside of interception is the cost of running a bytecode enhancer every
time you build your domain model classes, and waiting for the instrumentation to
complete. You may decide to skip the instrumentation during development, if the
behavior of your application doesn’t depend on an item’s description load state.
Then, when building the testing and production package, you can execute the
enhancer.

We leave it to you to decide whether you want interception for lazy loading—in our
experience, good use cases are rare. Note that we haven’t talked about collection
wrappers when discussing interception: although you could enable interception for
collection fields, Hibernate would still use its smart collection wrappers. The reason is
that these collection wrappers are, unlike entity proxies, needed for other purposes
besides lazy loading. For example, Hibernate relies on them to track additions and
removals of collection elements when dirty checking. You can’t disable the collection
wrappers in your mappings; they’re always on. (Of course, you never have to map a
persistent collection; they’re a feature, not a requirement. See our earlier discussion
in section 7.1.) Persistent arrays, on the other hand, can only be lazily loaded with
field interception—they can’t be wrapped like collections.

PATH: /examples/src/test/java/org/jpwh/test/fetching/LazyInterception.java

Accessing one loads
all lazy properties
(description, seller,
and so on).

The new Hibernate 5 bytecode enhancer
Unfortunately, we can’t guarantee that the interception examples we show here will
work with the latest Hibernate 5 version. The Hibernate 5 bytecode enhancer has
been rewritten and now supports more than interception for lazy loading: the byte-
code enhancer can inject code into your domain model classes to speed up dirty
checking and automatically manage bidirectional entity associations. At the time of
writing, however, we couldn’t get this brand-new enhancer to work, and development
was ongoing. We refer you to the current Hibernate documentation for more informa-
tion about the enhancer feature and configuring it in your project using Maven or Gra-
dle plug-ins.
Licensed to Thomas Snead <n.ordickan@gmail.com>

294 CHAPTER 12 Fetch plans, strategies, and profiles
 You’ve now seen all available options for lazy loading in Hibernate. Next, we look
at the opposite of on-demand loading: the eager fetching of data.

12.1.4 Eager loading of associations and collections

We’ve recommended a lazy default fetch plan, with FetchType.LAZY on all your associ-
ation and collection mappings. Sometimes, although not often, you want the oppo-
site: to specify that a particular entity association or collection should always be
loaded. You want the guarantee that this data is available in memory without an addi-
tional database hit.

 More important, you want a guarantee that, for example, you can access the
seller of an Item once the Item instance is in detached state. When the persistence
context is closed, lazy loading is no longer available. If seller were an uninitialized
proxy, you’d get a LazyInitializationException when you accessed it in detached
state. For data to be available in detached state, you need to either load it manually
while the persistence context is still open or, if you always want it loaded, change your
fetch plan to be eager instead of lazy.

 Let’s assume that you always require loading of the seller and the bids of an
Item:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.EAGER)
 protected User seller;

 @OneToMany(mappedBy = "item", fetch = FetchType.EAGER)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

Unlike FetchType.LAZY, which is a hint the JPA provider can ignore, a Fetch-
Type.EAGER is a hard requirement. The provider has to guarantee that the data is
loaded and available in detached state; it can’t ignore the setting.

 Consider the collection mapping: is it really a good idea to say, “Whenever an item
is loaded into memory, load the bids of the item right away, too”? Even if you only
want to display the item’s name or find out when the auction ends, all bids will be
loaded into memory. Always eager-loading collections, with FetchType.EAGER as the
default fetch plan in the mapping, usually isn’t a great strategy. You’ll also see the Car-
tesian product problem appear if you eagerly load several collections, which we discuss
later in this chapter. It’s best if you leave collections as the default FetchType.LAZY.

 If you now find() an Item (or force the initialization of an Item proxy), both the
seller and all the bids are loaded as persistent instances into your persistence context:

PATH: /model/src/main/java/org/jpwh/model/fetching/eagerjoin/Item.java

The default

Not recommended
Licensed to Thomas Snead <n.ordickan@gmail.com>

295Lazy and eager loading

Item item = em.find(Item.class, ITEM_ID);
// select i.*, u.*, b.*
// from ITEM i
// left outer join USERS u on u.ID = i.SELLER_ID
// left outer join BID b on b.ITEM_ID = i.ID
// where i.ID = ?

em.detach(item);

assertEquals(item.getBids().size(), 3);
assertNotNull(item.getBids().iterator().next().getAmount());

assertEquals(item.getSeller().getUsername(), "johndoe");

For the find(), Hibernate executes a single SQL SELECT and JOINs three tables to
retrieve the data. You can see the contents of the persistence context in figure 12.3.
Note how the boundaries of the loaded graph are represented: the collection of
images hasn’t been loaded, and each Bid has a reference to an uninitialized User
proxy, the bidder. If you now detach the Item, you can access the loaded seller and
bids without causing a LazyInitializationException. If you try to access the images
or one of the bidder proxies, you’ll get an exception!

 In the following examples, we assume that your domain model has a lazy default
fetch plan. Hibernate will only load the data you explicitly request and the associa-
tions and collections you access.

 Next, we discuss how data should be loaded when you find an entity instance by
identity and when you navigate the network, using the pointers of your mapped asso-
ciations and collections. We’re interested in what SQL is executed and finding the
ideal fetch strategy.

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerJoin.java

Done fetching: no
more lazy loading

In detached
state, bids are
available …

… and so is the seller

Persistence context

User
345

Set
333,
444,
555

Item
123 bids

images

seller

List
.
.

item

Bid
333

Bid
444

Bid
555

bidder User
456

bidder

bidder User
678

Figure 12.3 The seller and the bids of an Item are loaded.
Licensed to Thomas Snead <n.ordickan@gmail.com>

296 CHAPTER 12 Fetch plans, strategies, and profiles
12.2 Selecting a fetch strategy
Hibernate executes SQL SELECT statements to load data into memory. If you load an
entity instance, one or more SELECT(s) are executed, depending on the number of
tables involved and the fetching strategy you’ve applied. Your goal is to minimize the
number of SQL statements and to simplify the SQL statements so that querying can be
as efficient as possible.

 Consider our recommended fetch plan from earlier in this chapter: every associa-
tion and collection should be loaded on demand, lazily. This default fetch plan will
most likely result in too many SQL statements, each loading only one small piece of
data. This will lead to n+1 selects problems, and we discuss this issue first. The alternative
fetch plan, using eager loading, will result in fewer SQL statements, because larger
chunks of data are loaded into memory with each SQL query. You might then see the
Cartesian product problem, as SQL result sets become too large.

 You need to find the middle ground between these two extremes: the ideal fetch-
ing strategy for each procedure and use case in your application. Like fetch plans, you
can set a global fetching strategy in your mappings: the default setting that is always
active. Then, for a particular procedure, you might override the default fetching strat-
egy with a custom JPQL, CriteriaQuery, or even SQL query.

 First, let’s discuss the fundamental problems you see, starting with the n+1 selects
issue.

12.2.1 The n+1 selects problem

This problem is easy to understand with some example code. Let’s assume that you
mapped a lazy fetch plan, so everything is loaded on demand. The following example
code checks whether the seller of each Item has a username:

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM

for (Item item : items) {
 assertNotNull(item.getSeller().getUsername());
 // select * from USERS where ID = ?
}

You see one SQL SELECT to load the Item entity instances. Then, while you iterate
through all the items, retrieving each User requires an additional SELECT. This
amounts to one query for the Item plus n queries depending on how many items you
have and whether a particular User is selling more than one Item. Obviously, this is a
very inefficient strategy if you know you’ll access the seller of each Item.

 You can see the same issue with lazily loaded collections. The following example
checks whether each Item has some bids:

PATH: /examples/src/test/java/org/jpwh/test/fetching/NPlusOneSelects.java

Each seller must be loaded
with an additional SELECT.
Licensed to Thomas Snead <n.ordickan@gmail.com>

297Selecting a fetch strategy

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM

for (Item item : items) {
 assertTrue(item.getBids().size() > 0);
 // select * from BID where ITEM_ID = ?
}

Again, if you know you’ll access each bids collection, loading only one at a time is
inefficient. If you have 100 items, you’ll execute 101 SQL queries!

 With what you know so far, you might be tempted to change the default fetch plan
in your mappings and put a FetchType.EAGER on your seller or bids associations.
But doing so can lead to our next topic: the Cartesian product problem.

12.2.2 The Cartesian product problem

If you look at your domain and data model and say, “Every time I need an Item, I also
need the seller of that Item,” you can map the association with FetchType.EAGER
instead of a lazy fetch plan. You want a guarantee that whenever an Item is loaded, the
seller will be loaded right away—you want that data to be available when the Item is
detached and the persistence context is closed:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.EAGER)
 protected User seller;

 // ...
}

To implement your eager fetch plan, Hibernate uses an SQL JOIN operation to load an
Item and a User instance in one SELECT:

 item = em.find(Item.class, ITEM_ID);
// select i.*, u.*
// from ITEM i
// left outer join USERS u on u.ID = i.SELLER_ID
// where i.ID = ?

The result set contains one row with data from the ITEM table combined with data
from the USERS table, as shown in figure 12.4.

PATH: /examples/src/test/java/org/jpwh/test/fetching/NPlusOneSelects.java

PATH: /model/src/main/java/org/jpwh/model/fetching/cartesianproduct/Item.java

Each bids collection has to be
loaded with an additional SELECT.

i.NAME

One

i.SELLER_ID

...

i.ID

1

u.ID

2

u.USERNAME

johndoe

... ...

2 ...

Figure 12.4 Hibernate joins
two tables to eagerly fetch
associated rows.
Licensed to Thomas Snead <n.ordickan@gmail.com>

298 CHAPTER 12 Fetch plans, strategies, and profiles
Eager fetching with the default JOIN strategy isn’t problematic for @ManyToOne and
@OneToOne associations. You can eagerly load, with one SQL query and JOINs, an Item,
its seller, the User’s Address, the City they live in, and so on. Even if you map all
these associations with FetchType.EAGER, the result set will have only one row. Now,
Hibernate has to stop following your FetchType.EAGER plan at some point. The num-
ber of tables joined depends on the global hibernate.max_fetch_depth configura-
tion property. By default, no limit is set. Reasonable values are small, usually between
1 and 5. You may even disable JOIN fetching of @ManyToOne and @OneToOne associa-
tions by setting the property to 0. If Hibernate reaches the limit, it will still eagerly
load the data according to your fetch plan, but with additional SELECT statements.
(Note that some database dialects may preset this property: for example, MySQL-
Dialect sets it to 2.)

 Eagerly loading collections with JOINs, on the other hand, can lead to serious per-
formance issues. If you also switched to FetchType.EAGER for the bids and images col-
lections, you’d run into the Cartesian product problem.

 This issue appears when you eagerly load two collections with one SQL query and a
JOIN operation. First, let’s create such a fetch plan and then look at the SQL problem:

@Entity
public class Item {

 @OneToMany(mappedBy = "item", fetch = FetchType.EAGER)
 protected Set<Bid> bids = new HashSet<>();

 @ElementCollection(fetch = FetchType.EAGER)
 @CollectionTable(name = "IMAGE")
 @Column(name = "FILENAME")
 protected Set<String> images = new HashSet<String>();

 // ...
}

It doesn’t matter whether both collections are @OneToMany, @ManyToMany, or @Element-
Collection. Eager fetching more than one collection at once with the SQL JOIN oper-
ator is the fundamental issue, no matter what the collection content is. If you load an
Item, Hibernate executes the problematic SQL statement:

Item item = em.find(Item.class, ITEM_ID);
// select i.*, b.*, img.*
// from ITEM i
// left outer join BID b on b.ITEM_ID = i.ID
// left outer join IMAGE img on img.ITEM_ID = i.ID
// where i.ID = ?

em.detach(item);

assertEquals(item.getImages().size(), 3);
assertEquals(item.getBids().size(), 3);

PATH: /model/src/main/java/org/jpwh/model/fetching/cartesianproduct/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/CartesianProduct.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

299Selecting a fetch strategy

H

As you can see, Hibernate obeyed your eager fetch plan, and you can access the bids
and images collections in detached state. The problem is how they were loaded, with
an SQL JOIN that results in a product. Look at the result set in figure 12.5.

 This result set contains many redundant data items, and only the shaded cells are
relevant for Hibernate. The Item has three bids and three images. The size of the
product depends on the size of the collections you’re retrieving: three times three is
nine rows total. Now imagine that you have an Item with 50 bids and 5 images—you’ll
see a result set with possibly 250 rows! You can create even larger SQL products when
you write your own queries with JPQL or CriteriaQuery: imagine what happens if you
load 500 items and eager-fetch dozens of bids and images with JOINs.

 Considerable processing time and memory are required on the database server to
create such results, which then must be transferred across the network. If you’re hop-
ing that the JDBC driver will compress the data on the wire somehow, you’re probably
expecting too much from database vendors. Hibernate immediately removes all dupli-
cates when it marshals the result set into persistent instances and collections; informa-
tion in cells that aren’t shaded in figure 12.5 will be ignored. Obviously, you can’t
remove these duplicates at the SQL level; the SQL DISTINCT operator doesn’t help
here.

 Instead of one SQL query with an extremely large result, three separate queries
would be faster to retrieve an entity instance and two collections at the same time.
Next, we focus on this kind of optimization and how you find and implement the best
fetch strategy. We start again with a default lazy fetch plan and try to solve the n+1
selects problem first.

12.2.3 Prefetching data in batches

If Hibernate fetches every entity association and collection only on demand, many
additional SQL SELECT statements may be necessary to complete a particular proce-
dure. As before, consider a routine that checks whether the seller of each Item has a

i.NAME

One

... b.ID

...

i.ID

1

b.AMOUNT

1 99.00

img.FILENAME

foo.jpg

One ...1 1 99.00 bar.jpg

One ...1 1 99.00 baz.jpg

One ...1 2 100.00 foo.jpg

One ...1 2 100.00 bar.jpg

One ...1 2 100.00 baz.jp

One ...1 3 101.00 foo.jpg

One ...1 3 101.00 bar.jpg

One ...1 3 101.00 baz.jpg
Figure 12.5 A product is the result of
two joins with many rows.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

300 CHAPTER 12 Fetch plans, strategies, and profiles
username. With lazy loading, this would require one SELECT to get all Item instances
and n more SELECTs to initialize the seller proxy of each Item.

 Hibernate offers algorithms that can prefetch data. The first algorithm we discuss
is batch fetching, and it works as follows: if Hibernate must initialize one User proxy, go
ahead and initialize several with the same SELECT. In other words, if you already know
that there are several Item instances in the persistence context and that they all have a
proxy applied to their seller association, you may as well initialize several proxies
instead of just one if you make the round trip to the database.

 Let’s see how this works. First, enable batch fetching of User instances with a pro-
prietary Hibernate annotation:

@Entity
@org.hibernate.annotations.BatchSize(size = 10)
@Table(name = "USERS")
public class User {
 // ...
}

This setting tells Hibernate that it may load up to 10 User proxies if one has to be
loaded, all with the same SELECT. Batch fetching is often called a blind-guess optimiza-
tion, because you don’t know how many uninitialized User proxies may be in a particu-
lar persistence context. You can’t say for sure that 10 is an ideal value—it’s a guess. You
know that instead of n+1 SQL queries, you’ll now see n+1/10 queries, a significant
reduction. Reasonable values are usually small, because you don’t want to load too
much data into memory either, especially if you aren’t sure you’ll need it.

 This is the optimized procedure, which checks the username of each seller:

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM

for (Item item : items) {
 assertNotNull(item.getSeller().getUsername());
 // select * from USERS where ID in (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
}

Note the SQL query that Hibernate executes while you iterate through the items.
When you call item.getSeller().getUserName() for the first time, Hibernate must
initialize the first User proxy. Instead of only loading a single row from the USERS
table, Hibernate retrieves several rows, and up to 10 User instances are loaded. Once
you access the eleventh seller, another 10 are loaded in one batch, and so on, until
the persistence context contains no uninitialized User proxies.

PATH: /model/src/main/java/org/jpwh/model/fetching/batch/User.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/Batch.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

301Selecting a fetch strategy

Batch fetching is also available for collections:

@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 @org.hibernate.annotations.BatchSize(size = 5)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

If you now force the initialization of one bids collection, up to five more Item#bids
collections, if they’re uninitialized in the current persistence context, are loaded right
away:

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM

for (Item item : items) {
 assertTrue(item.getBids().size() > 0);
 // select * from BID where ITEM_ID in (?, ?, ?, ?, ?)
}

PATH: /model/src/main/java/org/jpwh/model/fetching/batch/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/Batch.java

FAQ: What is the real batch-fetching algorithm?
Our explanation of batch loading was somewhat simplified, and you may see a slightly
different algorithm in practice. As an example, imagine a batch size of 32. At startup
time, Hibernate creates several batch loaders internally. Each loader knows how
many proxies it can initialize: 32, 16, 10, 9, 8, 7, …, 1. The goal is to minimize the
memory consumption for loader creation and to create enough loaders that every pos-
sible batch fetch can be produced. Another goal is to minimize the number of SQL
queries, obviously.

To initialize 31 proxies, Hibernate executes 3 batches (you probably expected 1,
because 32 > 31). The batch loaders that are applied are 16, 10, and 5, as automat-
ically selected by Hibernate. You can customize this batch-fetching algorithm with the
property hibernate.batch_fetch_style in your persistence unit configuration. The
default is LEGACY, which builds and selects several batch loaders on startup. Other
options are PADDED and DYNAMIC. With PADDED, Hibernate builds only one batch
loader SQL query on startup with placeholders for 32 arguments in the IN clause and
then repeats bound identifiers if fewer than 32 proxies have to be loaded. With
DYNAMIC, Hibernate dynamically builds the batch SQL statement at runtime, when it
knows the number of proxies to initialize.
Licensed to Thomas Snead <n.ordickan@gmail.com>

302 CHAPTER 12 Fetch plans, strategies, and profiles

H

When you call item.getBids().size() for the first time while iterating, a whole
batch of Bid collections are preloaded for the other Item instances.

 Batch fetching is a simple and often smart optimization that can significantly
reduce the number of SQL statements that would otherwise be necessary to initialize
all your proxies and collections. Although you may prefetch data you won’t need in
the end and consume more memory, the reduction in database round trips can make
a huge difference. Memory is cheap, but scaling database servers isn’t.

 Another prefetching algorithm that isn’t a blind guess uses subselects to initialize
many collections with a single statement.

12.2.4 Prefetching collections with subselects

A potentially better strategy for loading all bids of several Item instances is prefetch-
ing with a subselect. To enable this optimization, add a Hibernate annotation to your
collection mapping:

@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 @org.hibernate.annotations.Fetch(
 org.hibernate.annotations.FetchMode.SUBSELECT
)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

Hibernate now initializes all bids collections for all loaded Item instances as soon as
you force the initialization of one bids collection:

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM

for (Item item : items) {
 assertTrue(item.getBids().size() > 0);
 // select * from BID where ITEM_ID in (
 // select ID from ITEM
 //)
}

Hibernate remembers the original query used to load the items. It then embeds this
initial query (slightly modified) in a subselect, retrieving the collection of bids for
each Item.

PATH: /model/src/main/java/org/jpwh/model/fetching/subselect/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/Subselect.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

303Selecting a fetch strategy

H

 Prefetching using a subselect is a powerful optimization, but at the time of writing,
it was only available for lazy collections, not for entity proxies. Also note that the origi-
nal query that is rerun as a subselect is only remembered by Hibernate for a particular
persistence context. If you detach an Item instance without initializing the collection
of bids, and then merge it with a new persistence context and start iterating through
the collection, no prefetching of other collections occurs.

 Batch and subselect prefetching reduce the number of queries necessary for a par-
ticular procedure if you stick with a global lazy fetch plan in your mappings, helping
mitigate the n+1 selects problem. If instead your global fetch plan has eager loaded asso-
ciations and collections, you have to avoid the Cartesian product problem—for example,
by breaking down a JOIN query into several SELECTs.

12.2.5 Eager fetching with multiple SELECTs

When you’re trying to fetch several collections with one SQL query and JOINs, you run
into the Cartesian product problem, as explained earlier. Instead of a JOIN operation, you
can tell Hibernate to eagerly load data with additional SELECT queries and hence
avoid large results and SQL products with duplicates:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.EAGER)
 @org.hibernate.annotations.Fetch(
 org.hibernate.annotations.FetchMode.SELECT
)
 protected User seller;

 @OneToMany(mappedBy = "item", fetch = FetchType.EAGER)
 @org.hibernate.annotations.Fetch(
 org.hibernate.annotations.FetchMode.SELECT
)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

Now, when an Item is loaded, the seller and bids have to be loaded as well:

Item item = em.find(Item.class, ITEM_ID);
// select * from ITEM where ID = ?
// select * from USERS where ID = ?
// select * from BID where ITEM_ID = ?

em.detach(item);

PATH: /model/src/main/java/org/jpwh/model/fetching/eagerselect/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerSelect.java

ibernate Feature

Defaults
to JOIN
Licensed to Thomas Snead <n.ordickan@gmail.com>

304 CHAPTER 12 Fetch plans, strategies, and profiles
assertEquals(item.getBids().size(), 3);
assertNotNull(item.getBids().iterator().next().getAmount());
assertEquals(item.getSeller().getUsername(), "johndoe");

Hibernate uses one SELECT to load a row from the ITEM table. It then immediately exe-
cutes two more SELECTs: one loading a row from the USERS table (the seller) and the
other loading several rows from the BID table (the bids).

 The additional SELECT queries aren’t executed lazily; the find() method produces
several SQL queries. You can see how Hibernate followed the eager fetch plan: all data
is available in detached state.

 Still, all of these settings are global; they’re always active. The danger is that adjust-
ing one setting for one problematic case in your application might have negative side
effects on some other procedure. Maintaining this balance can be difficult, so our rec-
ommendation is to map every entity association and collection as FetchType.LAZY, as
mentioned before.

 A better approach is to dynamically use eager fetching and JOIN operations only
when needed, for a particular procedure.

12.2.6 Dynamic eager fetching

As in the previous sections, let’s say you have to check the username of each
Item#seller. With a lazy global fetch plan, load the data you need for this procedure
and apply a dynamic eager fetch strategy in a query:

List<Item> items =
 em.createQuery("select i from Item i join fetch i.seller")
 .getResultList();
// select i.*, u.*
// from ITEM i
// inner join USERS u on u.ID = i.SELLER_ID
// where i.ID = ?

em.close();

for (Item item : items) {
 assertNotNull(item.getSeller().getUsername());
}

The important keywords in this JPQL query are join fetch, telling Hibernate to use a
SQL JOIN (an INNER JOIN, actually) to retrieve the seller of each Item in the same
query. The same query can be expressed with the CriteriaQuery API instead of a
JPQL string:

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery criteria = cb.createQuery();

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerQuery.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerQuery.java

Detach all
Licensed to Thomas Snead <n.ordickan@gmail.com>

305Selecting a fetch strategy
Root<Item> i = criteria.from(Item.class);
i.fetch("seller");
criteria.select(i);

List<Item> items = em.createQuery(criteria).getResultList();

em.close();

for (Item item : items) {
 assertNotNull(item.getSeller().getUsername());
}

Dynamic eager join fetching also works for collections. Here you load all bids of each
Item:

List<Item> items =
 em.createQuery("select i from Item i left join fetch i.bids")
 .getResultList();
// select i.*, b.*
// from ITEM i
// left outer join BID b on b.ITEM_ID = i.ID
// where i.ID = ?

em.close();

for (Item item : items) {
 assertTrue(item.getBids().size() > 0);
}

Now the same with the CriteriaQuery API:

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery criteria = cb.createQuery();

Root<Item> i = criteria.from(Item.class);
i.fetch("bids", JoinType.LEFT);
criteria.select(i);

List<Item> items = em.createQuery(criteria).getResultList();

em.close();

for (Item item : items) {
 assertTrue(item.getBids().size() > 0);
}

Note that for collection fetching, a LEFT OUTER JOIN is necessary, because you also
want rows from the ITEM table if there are no bids. We’ll have much more to say about
fetching with JPQL and CriteriaQuery later in this book, in chapter 15. You’ll see
many more examples then of inner, outer, left, and right joins, so don’t worry too
much about these details now.

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerQuery.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/EagerQuery.java

Detach all

Detach all

Detach all
Licensed to Thomas Snead <n.ordickan@gmail.com>

306 CHAPTER 12 Fetch plans, strategies, and profiles

H

 Writing queries by hand isn’t the only available option if you want to override the
global fetch plan of your domain model dynamically. You can write fetch profiles declar-
atively.

12.3 Using fetch profiles
Fetch profiles complement the fetching options in the query languages and APIs.
They allow you to maintain your profile definitions in either XML or annotation meta-
data. Early Hibernate versions didn’t have support for special fetch profiles, but today
Hibernate supports the following:

 Fetch profiles—A proprietary API based on declaration of the profile with
@org.hibernate.annotations.FetchProfile and execution with Session

#enableFetchProfile(). This simple mechanism currently supports overriding
lazy-mapped entity associations and collections selectively, enabling a JOIN
eager fetching strategy for a particular unit of work.

 Entity graphs—Specified in JPA 2.1, you can declare a graph of entity attributes
and associations with the @EntityGraph annotation. This fetch plan, or a com-
bination of plans, can be enabled as a hint when executing EntityManager
#find() or queries (JPQL, criteria). The provided graph controls what should
be loaded; unfortunately it doesn’t control how it should be loaded.

It’s fair to say that there is room for improvement here, and we expect future versions
of Hibernate and JPA to offer a unified and more powerful API.

 Don’t forget that you can externalize JPQL and SQL statements and move them to
metadata (see section 14.4). A JPQL query is a declarative (named) fetch profile; what
you’re missing is the ability to overlay different plans easily on the same base query.
We’ve seen some creative solutions with string manipulation that are best avoided.
With criteria queries, on the other hand, you already have the full power of Java avail-
able to organize your query-building code. Then the value of entity graphs is being
able to reuse fetch plans across any kind of query.

 Let’s talk about Hibernate fetch profiles first and how you can override a global
lazy fetch plan for a particular unit of work.

12.3.1 Declaring Hibernate fetch profiles

Hibernate fetch profiles are global metadata: they’re declared for the entire persis-
tence unit. Although you could place the @FetchProfile annotation on a class, we
prefer it as package-level metadata in a package-info.java:

@org.hibernate.annotations.FetchProfiles({
 @FetchProfile(name = Item.PROFILE_JOIN_SELLER,
 fetchOverrides = @FetchProfile.FetchOverride(

PATH: /model/src/main/java/org/jpwh/model/fetching/profile/package-info.java

ibernate Feature

Profile nameB

OverrideC
Licensed to Thomas Snead <n.ordickan@gmail.com>

307Using fetch profiles
 entity = Item.class,
 association = "seller",
 mode = FetchMode.JOIN
)),

 @FetchProfile(name = Item.PROFILE_JOIN_BIDS,
 fetchOverrides = @FetchProfile.FetchOverride(
 entity = Item.class,
 association = "bids",
 mode = FetchMode.JOIN
))
})

B Each profile has a name. This is a simple string isolated in a constant.

C Each override in a profile names one entity association or collection.

D The only supported mode at the time of writing is JOIN.

The profiles can now be enabled for a unit of work:

Item item = em.find(Item.class, ITEM_ID);

em.clear();
em.unwrap(Session.class).enableFetchProfile(Item.PROFILE_JOIN_SELLER);
item = em.find(Item.class, ITEM_ID);

em.clear();
em.unwrap(Session.class).enableFetchProfile(Item.PROFILE_JOIN_BIDS);
item = em.find(Item.class, ITEM_ID);

B The Item#seller is mapped lazy, so the default fetch plan only retrieves the Item
instance.

C You need the Hibernate API to enable a profile. It’s then active for any operation in
that unit of work. The Item#seller is fetched with a join in the same SQL statement
whenever an Item is loaded with this EntityManager.

D You can overlay another profile on the same unit of work. Now the Item#seller and
the Item#bids collection are fetched with a join in the same SQL statement whenever
an Item is loaded.

Although basic, Hibernate fetch profiles can be an easy solution for fetching optimiza-
tion in smaller or simpler applications. With JPA 2.1, the introduction of entity graphs
enables similar functionality in a standard fashion.

12.3.2 Working with entity graphs

An entity graph is a declaration of entity nodes and attributes, overriding or augment-
ing the default fetch plan when you execute an EntityManager#find() or with a hint
on query operations. This is an example of a retrieval operation using an entity graph:

PATH: /examples/src/test/java/org/jpwh/test/fetching/Profile.java

JOIN modeD

Retrieves instanceB

CEnables profile

DOverlays second profile
Licensed to Thomas Snead <n.ordickan@gmail.com>

308 CHAPTER 12 Fetch plans, strategies, and profiles

Map<String, Object> properties = new HashMap<>();
properties.put(
 "javax.persistence.loadgraph",
 em.getEntityGraph(Item.class.getSimpleName())
);

Item item = em.find(Item.class, ITEM_ID, properties);
// select * from ITEM where ID = ?

The name of the entity graph you’re using is Item, and the hint for the find() opera-
tion indicates it should be the load graph. This means attributes that are specified by
attribute nodes of the entity graph are treated as FetchType.EAGER, and attributes
that aren’t specified are treated according to their specified or default FetchType in
the mapping.

 This is the declaration of this graph and the default fetch plan of the entity class:

@NamedEntityGraphs({
 @NamedEntityGraph
})
@Entity
public class Item {

 @NotNull
 @ManyToOne(fetch = FetchType.LAZY)
 protected User seller;

 @OneToMany(mappedBy = "item")
 protected Set<Bid> bids = new HashSet<>();

 @ElementCollection
 protected Set<String> images = new HashSet<>();

 // ...
}

Entity graphs in metadata have names and are associated with an entity class; they’re
usually declared in annotations on top of an entity class. You can put them in XML if
you like. If you don’t give an entity graph a name, it gets the simple name of its own-
ing entity class, which here is Item. If you don’t specify any attribute nodes in the
graph, like the empty entity graph in the last example, the defaults of the entity class
are used. In Item, all associations and collections are mapped lazy; this is the default
fetch plan. Hence, what you’ve done so far makes little difference, and the find()
operation without any hints will produce the same result: the Item instance is loaded,
and the seller, bids, and images aren’t.

 Alternatively, you can build an entity graph with an API:

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java

PATH: /model/src/main/java/org/jpwh/model/fetching/fetchloadgraph/Item.java

“Item”

Default “Item” entity graph
Licensed to Thomas Snead <n.ordickan@gmail.com>

309Using fetch profiles

EntityGraph<Item> itemGraph = em.createEntityGraph(Item.class);

Map<String, Object> properties = new HashMap<>();
properties.put("javax.persistence.loadgraph", itemGraph);

Item item = em.find(Item.class, ITEM_ID, properties);

This is again an empty entity graph with no attribute nodes, given directly to a
retrieval operation.

 Let’s say you want to write an entity graph that changes the lazy default of
Item#seller to eager fetching, when enabled:

@NamedEntityGraphs({
 @NamedEntityGraph(
 name = "ItemSeller",
 attributeNodes = {
 @NamedAttributeNode("seller")
 }
)
})
@Entity
public class Item {

 // ...
}

Now enable this graph by name when you want the Item and the seller eagerly
loaded:

Map<String, Object> properties = new HashMap<>();
properties.put(
 "javax.persistence.loadgraph",
 em.getEntityGraph("ItemSeller")
);

Item item = em.find(Item.class, ITEM_ID, properties);
// select i.*, u.*
// from ITEM i
// inner join USERS u on u.ID = i.SELLER_ID
// where i.ID = ?

If you don’t want to hardcode the graph in annotations, build it with the API instead:

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java

PATH: /model/src/main/java/org\jpwh/model/fetching/fetchloadgraph/Item.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

310 CHAPTER 12 Fetch plans, strategies, and profiles

EntityGraph<Item> itemGraph = em.createEntityGraph(Item.class);
itemGraph.addAttributeNodes(Item_.seller);

Map<String, Object> properties = new HashMap<>();
properties.put("javax.persistence.loadgraph", itemGraph);

Item item = em.find(Item.class, ITEM_ID, properties);
// select i.*, u.*
// from ITEM i
// inner join USERS u on u.ID = i.SELLER_ID
// where i.ID = ?

So far you’ve seen only properties for the find() operation. Entity graphs can also be
enabled for queries, as hints:

List<Item> items =
 em.createQuery("select i from Item i")
 .setHint("javax.persistence.loadgraph", itemGraph)
 .getResultList();
// select i.*, u.*
// from ITEM i
// left outer join USERS u on u.ID = i.SELLER_ID

Entity graphs can be complex. The following declaration shows how to work with reus-
able subgraph declarations:

@NamedEntityGraphs({
 @NamedEntityGraph(
 name = "BidBidderItemSellerBids",
 attributeNodes = {
 @NamedAttributeNode(value = "bidder"),
 @NamedAttributeNode(
 value = "item",
 subgraph = "ItemSellerBids"
)
 },
 subgraphs = {
 @NamedSubgraph(
 name = "ItemSellerBids",
 attributeNodes = {
 @NamedAttributeNode("seller"),
 @NamedAttributeNode("bids")
 })
 }
)
})
@Entity
public class Bid {
 // ...
}

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java

PATH: /model/src/main/java/org/jpwh/model/fetching/fetchloadgraph/Bid.java

Static
metamodel
Licensed to Thomas Snead <n.ordickan@gmail.com>

311Summary
This entity graph, when enabled as a load graph when retrieving Bid instances, also
triggers eager fetching of Bid#bidder, the Bid#item, and furthermore the Item
#seller and all Item#bids. Although you’re free to name your entity graphs any way
you like, we recommend that you develop a convention that everyone in your team
can follow, and move the strings to shared constants.

 With the entity graph API, the previous plan looks as follows:

EntityGraph<Bid> bidGraph = em.createEntityGraph(Bid.class);
bidGraph.addAttributeNodes(Bid_.bidder, Bid_.item);
Subgraph<Item> itemGraph = bidGraph.addSubgraph(Bid_.item);
itemGraph.addAttributeNodes(Item_.seller, Item_.bids);

Map<String, Object> properties = new HashMap<>();
properties.put("javax.persistence.loadgraph", bidGraph);

Bid bid = em.find(Bid.class, BID_ID, properties);

You’ve only seen entity graphs as load graphs so far. There is another option: you can
enable an entity graph as a fetch graph with the javax.persistence.fetchgraph hint. If
you execute a find() or query operation with a fetch graph, any attributes and collec-
tions not in your plan will be made FetchType.LAZY, and any nodes in your plan will be
FetchType.EAGER. This effectively ignores all FetchType settings in your entity attri-
bute and collection mappings, whereas the load graph feature was only augmenting.

 Two weak points of the JPA entity graph operations are worth mentioning, because
you’ll run into them quickly. First, you can only modify fetch plans, not the Hibernate
fetch strategy (batch/subselect/join/select). Second, declaring an entity graph in
annotations or XML isn’t fully type-safe: the attribute names are strings. The Entity-
Graph API at least is type-safe.

12.4 Summary
 A fetch profile combines a fetch plan (what data should be loaded) with a fetch

strategy (how the data should be loaded), encapsulated in reusable metadata or
code.

 You created a global fetch plan and defined which associations and collections
should be loaded into memory at all times. You defined the fetch plan based on
use cases, how to access associated entities and iterate through collections in
your application, and which data should be available in detached state.

 You learned to select the right fetching strategy for your fetch plan. Your goal is
to minimize the number of SQL statements and the complexity of each SQL
statement that must be executed. You especially want to avoid the n+1 selects and
Cartesian product issues we examined in detail, using various optimization
strategies.

 You explored Hibernate fetch profiles and entity graphs, the fetch profiles in
JPA.

PATH: /examples/src/test/java/org/jpwh/test/fetching/FetchLoadGraph.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

Filtering data
In this chapter, you see many different strategies for filtering data as it passes
through the Hibernate engine. When Hibernate loads data from the database, you
can transparently restrict the data seen by the application with a filter. When Hiber-
nate stores data in the database, you can listen to such an event and execute some
secondary routines: for example, write an audit log or assign a tenant identifier to
the record.

 We explore the following data-filtering features and APIs:

 In section 13.1, you learn to react to state changes of an entity instance and
cascade the state change to associated entities. For example, when a User is
saved, Hibernate can transitively and automatically save all related Billing-
Details. When an Item is deleted, Hibernate can delete all Bid instances
associated with that Item. You can enable this standard JPA feature with spe-
cial attributes in your entity association and collection mappings.

In this chapter
 Cascading state transitions

 Listening to and intercepting events

 Auditing and versioning with Hibernate Envers

 Filtering data dynamically
312

Licensed to Thomas Snead <n.ordickan@gmail.com>

313Cascading state transitions
 The Java Persistence standard includes life cycle callbacks and event listeners. An
event listener is a class you write with special methods, called by Hibernate
when an entity instance changes state: for example, after Hibernates loads it or
is about to delete it from the database. These callback methods can also be on
your entity classes and marked with special annotations. This gives you an
opportunity to execute custom side effects when a transition occurs. Hibernate
also has several proprietary extension points that allow interception of life cycle
events at a lower level within its engine, which we discuss in section 13.2.

 A common side effect is writing an audit log ; such a log typically contains infor-
mation about the data that was changed, when the change was made, and who
made the modification. A more sophisticated auditing system might require
storing several versions of data and temporal views ; you might want to ask Hiber-
nate to load data “as it was last week.” This being a complex problem, we intro-
duce Hibernate Envers in section 13.3, a subproject dedicated to versioning and
auditing in JPA applications.

 In section 13.4, you see that data filters are also available as a proprietary Hiber-
nate API. These filters add custom restrictions to SQL SELECT statements exe-
cuted by Hibernate. Hence, you can effectively define a custom limited view of
the data in the application tier. For example, you could apply a filter that
restricts loaded data by sales region, or any other authorization criteria.

 We start with cascading options for transitive state changes.

13.1 Cascading state transitions
When an entity instance changes state—for example, when it was transient and
becomes persistent—associated entity instances may also be included in this state transi-
tion. This cascading of state transitions isn’t enabled by default; each entity instance
has an independent life cycle. But for some associations between entities, you may
want to implement fine-grained life cycle dependencies.

 For example, in section 7.3, you created an association between the Item and Bid
entity classes. In this case, not only did you make the bids of an Item automatically
persistent when they were added to an Item, but they were also automatically deleted
when the owning Item was deleted. You effectively made Bid an entity class that was
dependent on another entity, Item.

 The cascading settings you enabled in this association mapping were Cascade-
Type.PERSIST and CascadeType.REMOVE. We also talked about the special switch

Major new feature in JPA 2
 Injection of dependencies through CDI is now supported in JPA entity event

listener classes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#Envers
jpwh-2e-preview.xhtml#Envers
jpwh-2e-preview.xhtml#MappingEntityAssociations
jpwh-2e-preview.xhtml#WorkDetachedState
jpwh-2e-preview.xhtml#WorkDetachedState
jpwh-2e-preview.xhtml#WorkDetachedState

314 CHAPTER 13 Filtering data
orphanRemoval and how cascading deletion at the database level (with the foreign key
ON DELETE option) affects your application.

 You should review this association mapping and its cascading settings; we won’t
repeat it here. In this section, we look at some other, rarely used cascading options.

13.1.1 Available cascading options

Table 13.1 summarizes all available cascading options in Hibernate. Note how each is
linked with an EntityManager or Session operation.

If you’re curious, you’ll find more cascading options defined in the org.hibernate
.annotations.CascadeType enumeration. Today, though, the only interesting option
is REPLICATE and the Session#replicate() operation. All other Session operations
have a standardized equivalent or alternative on the EntityManager API, so you can
ignore these settings.

 We’ve already covered the PERSIST and REMOVE options. Let’s look at transitive
detachment, merging, refreshing, and replication.

Table 13.1 Cascading options for entity association mappings

Option Description

CascadeType.PERSIST When an entity instance is stored with EntityManager
#persist(), at flush time any associated entity instance(s) are
also made persistent.

CascadeType.REMOVE When an entity instance is deleted with EntityManager
#remove(), at flush time any associated entity instance(s) are
also removed.

CascadeType.DETACH When an entity instance is evicted from the persistence context
with EntityManager#detach(), any associated entity
instance(s) are also detached.

CascadeType.MERGE When a transient or detached entity instance is merged into a per-
sistence context with EntityManager#merge(), any associ-
ated transient or detached entity instance(s) are also merged.

CascadeType.REFRESH When a persistent entity instance is refreshed with
EntityManager#refresh(), any associated persistent entity
instance(s) are also refreshed.

org.hibernate.annotations
.CascadeType.REPLICATE

When a detached entity instance is copied into a database with
Session#replicate(), any associated detached entity
instance(s) are also copied.

CascadeType.ALL Shorthand to enable all cascading options for the mapped associ-
ation.
Licensed to Thomas Snead <n.ordickan@gmail.com>

315Cascading state transitions
13.1.2 Transitive detachment and merging

Let’s say you want to retrieve an Item and its bids from the database and work with
this data in detached state. The Bid class maps this association with an @ManyToOne.
It’s bidirectional with this @OneToMany collection mapping in Item:

@Entity
public class Item {

 @OneToMany(
 mappedBy = "item",
 cascade = {CascadeType.DETACH, CascadeType.MERGE}
)
 protected Set<Bid> bids = new HashSet<Bid>();

 // ...
}

Transitive detachment and merging is enabled with the DETACH and MERGE cascade
types. Now you load the Item and initialize its bids collection:

Item item = em.find(Item.class, ITEM_ID);
assertEquals(item.getBids().size(), 2);
em.detach(item);

The EntityManager#detach() operation is cascaded: it evicts the Item instance from
the persistence context as well as all bids in the collection. If the bids aren’t loaded,
they aren’t detached. (Of course, you could have closed the persistence context, effec-
tively detaching all loaded entity instances.)

 In detached state, you change the Item#name, create a new Bid, and link it with the
Item:

item.setName("New Name");

Bid bid = new Bid(new BigDecimal("101.00"), item);
item.getBids().add(bid);

Because you’re working with detached entity state and collections, you have to pay
extra attention to identity and equality. As explained in section 10.3, you should over-
ride the equals() and hashCode() methods on the Bid entity class:

PATH: /model/src/main/java/org/jpwh/model/filtering/cascade/Item.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

Initializes bids
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#MappingInheritance
jpwh-2e-preview.xhtml#MappingInheritance
jpwh-2e-preview.xhtml#MappingInheritance

316 CHAPTER 13 Filtering data

@Entity
public class Bid {

 @Override
 public boolean equals(Object other) {
 if (this == other) return true;
 if (other == null) return false;
 if (!(other instanceof Bid)) return false;
 Bid that = (Bid) other;

 if (!this.getAmount().equals(that.getAmount()))
 return false;
 if (!this.getItem().getId().equals(that.getItem().getId()))
 return false;
 return true;
 }

 @Override
 public int hashCode() {
 int result = getAmount().hashCode();
 result = 31 * result + getItem().getId().hashCode();
 return result;
 }

 // ...
}

Two Bid instances are equal when they have the same amount and are linked with the
same Item.

 After you’re done with your modifications in detached state, the next step is to
store the changes. Using a new persistence context, merge the detached Item and let
Hibernate detect the changes:

Item mergedItem = em.merge(item);
// select i.*, b.*
// from ITEM i
// left outer join BID b on i.ID = b.ITEM_ID
// where i.ID = ?

for (Bid b : mergedItem.getBids()) {
 assertNotNull(b.getId());
}

em.flush();
// update ITEM set NAME = ? where ID = ?
// insert into BID values (?, ?, ?, ...)

B Hibernate merges the detached item. First it checks whether the persistence context
already contains an Item with the given identifier value. In this case, there isn’t any, so
the Item is loaded from the database. Hibernate is smart enough to know that it will

PATH: /model/src/main/java/org/jpwh/model/filtering/cascade/Bid.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

Merges itemB

Bid has identifier valueC

Detects name changeD
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#StatefulServer
jpwh-2e-preview.xhtml#HibernateCriteria

317Cascading state transitions
also need the bids during merging, so it fetches them right away in the same SQL
query. Hibernate then copies the detached item values onto the loaded instance,
which it returns to you in persistent state. The same procedure is applied to every Bid,
and Hibernate will detect that one of the bids is new.

C Hibernate made the new Bid persistent during merging. It now has an identifier value
assigned.

D When you flush the persistence context, Hibernate detects that the name of the Item
changed during merging. The new Bid will also be stored.

Cascaded merging with collections is a powerful feature; consider how much code you
would have to write without Hibernate to implement this functionality.

Our next example is less sophisticated, enabling cascaded refreshing of related entities.

13.1.3 Cascading refresh

The User entity class has a one-to-many relationship with BillingDetails: each user of
the application may have several credit cards, bank accounts, and so on. If you aren’t
familiar with the BillingDetails class, review the mappings in chapter 6.

 You can map the relationship between User and BillingDetails as a unidirec-
tional one-to-many entity association (there is no @ManyToOne):

@Entity
@Table(name = "USERS")
public class User {

 @OneToMany(cascade = {CascadeType.PERSIST, CascadeType.REFRESH})
 @JoinColumn(name = "USER_ID", nullable = false)
 protected Set<BillingDetails> billingDetails = new HashSet<>();

 // ...
}

PATH: /model/src/main/java/org/jpwh/model/filtering/cascade/User.java

Eagerly fetching associations when merging
In the previous example, we said that Hibernate is smart enough to load the
Item#bids collection when you merge a detached Item. Hibernate always loads
entity associations eagerly with a JOIN when merging, if CascadeType.MERGE is
enabled for the association. This is smart in the previous case, where the Item#bids
were initialized, detached, and modified. Hibernate loading the collection when merg-
ing with a JOIN is therefore necessary and optimal. But if you merge an Item instance
with an uninitialized bids collection or an uninitialized seller proxy, Hibernate will
fetch the collection and proxy with a JOIN when merging. The merge initializes these
associations on the managed Item it returns. CascadeType.MERGE causes Hiber-
nate to ignore and effectively override any FetchType.LAZY mapping (as allowed by
the JPA specification). This behavior may not be ideal in some cases, and at the time
of writing, it isn’t configurable.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#Replicate
jpwh-2e-preview.xhtml#Replicate

318 CHAPTER 13 Filtering data
The cascading options enabled for this association are PERSIST and REFRESH. The
PERSIST option simplifies storing billing details; they become persistent when you add
an instance of BillingDetails to the collection of an already persistent User.

 In section 18.3, we’ll discuss an architecture where the persistence context may be
open for a long time, leading to managed entity instances in the context becoming
stale. Therefore, in some long-running conversations, you’ll want to reload them from
the database. The REFRESH cascading option ensures that when you reload the state of
a User instance, Hibernate will also refresh the state of each BillingDetails instance
linked to the User:

User user = em.find(User.class, USER_ID);

assertEquals(user.getBillingDetails().size(), 2);
for (BillingDetails bd : user.getBillingDetails()) {
 assertEquals(bd.getOwner(), "John Doe");
}

// Someone modifies the billing information in the database!

em.refresh(user);
// select * from CREDITCARD join BILLINGDETAILS where ID = ?
// select * from BANKACCOUNT join BILLINGDETAILS where ID = ?
// select * from USERS
// left outer join BILLINGDETAILS
// left outer join CREDITCARD
// left outer JOIN BANKACCOUNT
// where ID = ?

for (BillingDetails bd : user.getBillingDetails()) {
 assertEquals(bd.getOwner(), "Doe John");
}

B An instance of User is loaded from the database.

C Its lazy billingDetails collection is initialized when you iterate through the ele-
ments or when you call size().

D When you refresh() the managed User instance, Hibernate cascades the operation to
the managed BillingDetails and refreshes each with an SQL SELECT. If none of these
instances remain in the database, Hibernate throws an EntityNotFoundException.
Then, Hibernate refreshes the User instance and eagerly loads the entire billing-
Details collection to discover any new BillingDetails.

This is a case where Hibernate isn’t as smart as it could be. First it executes an SQL
SELECT for each BillingDetails instance in the persistence context and referenced
by the collection. Then it loads the entire collection again to find any added Billing-
Details. Hibernate could obviously do this with one SELECT.

 The last cascading option is for the Hibernate-only replicate() operation.

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

Loads UserB

Initializes
collectionC

Refreshes
BillingDetailsD
Licensed to Thomas Snead <n.ordickan@gmail.com>

319Cascading state transitions
13.1.4 Cascading replication

You first saw replication in section 10.2.7. This nonstandard operation is available on
the Hibernate Session API. The main use case is copying data from one database into
another.

 Consider this many-to-one entity association mapping between Item and User:

@Entity
public class Item {

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "SELLER_ID", nullable = false)
 @org.hibernate.annotations.Cascade(
 org.hibernate.annotations.CascadeType.REPLICATE
)
 protected User seller;

 // ...
}

Here, you enable the REPLICATE cascading option with a Hibernate annotation. Next,
you load an Item and its seller from the source database:

tx.begin();
EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);

assertNotNull(item.getSeller().getUsername());

tx.commit();
em.close();

After you close the persistence context, the Item and the User entity instances are in
detached state. Next, you connect to the database and write the detached data:

tx.begin();
EntityManager otherDatabase = // ... get EntityManager

otherDatabase.unwrap(Session.class)
 .replicate(item, ReplicationMode.OVERWRITE);
// select ID from ITEM where ID = ?
// select ID from USERS where ID = ?

tx.commit();
// update ITEM set NAME = ?, SELLER_ID = ?, ... where ID = ?
// update USERS set USERNAME = ?, ... where ID = ?
otherDatabase.close();

PATH: /model/src/main/java/org/jpwh/model/filtering/cascade/Item.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Cascade.java

Initializes lazy Item#seller
Licensed to Thomas Snead <n.ordickan@gmail.com>

320 CHAPTER 13 Filtering data
When you call replicate() on the detached Item, Hibernate executes SQL SELECT
statements to find out whether the Item and its seller are already present in the data-
base. Then, on commit, when the persistence context is flushed, Hibernate writes the
values of the Item and the seller into the target database. In the previous example,
these rows were already present, so you see an UPDATE of each, overwriting the values
in the database. If the target database doesn’t contain the Item or User, two INSERTs
are made.

 The last cascading option we’re going to discuss is a global setting, enabling transi-
tive persistence for all entity associations.

13.1.5 Enabling global transitive persistence

An object persistence layer is said to implement persistence by reachability if any instance
becomes persistent whenever the application creates a reference to the instance from
another instance that is already persistent. In the purest form of persistence by reach-
ability, the database has some top-level or root object from which all persistent objects
are reachable. Ideally, an instance should become transient and be deleted from the
database if it isn’t reachable via references from the root persistent object.

 Neither Hibernate nor any other ORM solutions implement this. In fact, there is
no analogue of the root persistent object in any SQL database, and no persistent gar-
bage collector can detect unreferenced instances. Object-oriented (network) data
stores may implement a garbage-collection algorithm, similar to the one implemented
for in-memory objects by the JVM; but this option isn’t available in the ORM world, and
scanning all tables for unreferenced rows won’t perform acceptably.

 Still, there is some value in the concept of persistence by reachability. It helps you
make transient instances persistent and propagate their state to the database without
many calls to the persistence manager.

 You can enable cascaded persistence for all entity associations in your orm.xml
mapping metadata, as a default setting of the persistence unit:

<persistence-unit-metadata>
 <persistence-unit-defaults>
 <cascade-persist/>
 </persistence-unit-defaults>
</persistence-unit-metadata>

Hibernate now considers all entity associations in the domain model mapped by this
persistence unit as CascadeType.PERSIST. Whenever you create a reference from an
already persistent entity instance to a transient entity instance, Hibernate automati-
cally makes that transient instance persistent.

 Cascading options are effectively predefined reactions to life cycle events in the
persistence engine. If you need to implement a custom procedure when data is stored
or loaded, you can implement your own event listeners and interceptors.

PATH: /model/src/main/resources/filtering/DefaultCascadePersist.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

321Listening to and intercepting events

e

13.2 Listening to and intercepting events
In this section, we discuss three different APIs for custom event listeners and persis-
tence life cycle interceptors available in JPA and Hibernate. You can

 Use the standard JPA life cycle callback methods and event listeners.
 Write a proprietary org.hibernate.Interceptor and activate it on a Session.
 Use extension points of the Hibernate core engine with the org.hiber-

nate.event SPI.

Let’s start with the standard JPA callbacks. They offer easy access to persist, load, and
remove life cycle events.

13.2.1 JPA event listeners and callbacks

Let’s say you want to send a notification email to a system administrator whenever a
new entity instance is stored. First, write a life cycle event listener with a callback
method, annotated with @PostPersist, as shown in the following listing.

public class PersistEntityListener {

 @PostPersist
 public void notifyAdmin(Object entityInstance) {

 User currentUser = CurrentUser.INSTANCE.get();
 Mail mail = Mail.INSTANCE;

 mail.send(
 "Entity instance persisted by "
 + currentUser.getUsername()
 + ": "
 + entityInstance
);
 }

}

B An entity listener class must have either no constructor or a public no-argument con-
structor. It doesn’t have to implement any special interfaces. An entity listener is state-
less; the JPA engine automatically creates and destroys it.

C You may annotate any method of an entity listener class as a callback method for per-
sistence life cycle events. The notifyAdmin() method is invoked after a new entity
instance is stored in the database.

D Because event listener classes are stateless, it can be difficult to get more contextual infor-
mation when you need it. Here, you want the currently logged-in user and access to the
email system to send a notification. A primitive solution is to use thread-local variables
and singletons; you can find the source for CurrentUser and Mail in the example code.

Listing 13.1 Notifying an admin when an entity instance was stored

PATH: /model/src/main/java/org/jpwh/model/filtering/callback/
PersistEntityListener.java

Entity listener constructorB

Makes
notfyAdmin()
a callback
methodCGets user

info and
mail access D
Licensed to Thomas Snead <n.ordickan@gmail.com>

322 CHAPTER 13 Filtering data
A callback method of an entity listener class has a single Object parameter: the entity
instance involved in the state change. If you only enable the callback for a particular
entity type, you may declare the argument as that specific type. The callback method
may have any kind of access; it doesn’t have to be public. It must not be static or final
and return nothing. If a callback method throws an unchecked RuntimeException,
Hibernate will abort the operation and mark the current transaction for rollback. If a
callback method declares and throws a checked Exception, Hibernate will wrap and
treat it as a RuntimeException.

You may only use each callback annotation once in an entity listener class; that is, only
one method may be annotated @PostPersist. See table 13.2 for a summary of all
available callback annotations.

Table 13.2 Life cycle callback annotations

Annotation Description

@PostLoad Triggered after an entity instance is loaded into the persistence con-
text, either by identifier lookup, through navigation and proxy/collec-
tion initialization, or with a query. Also called after refreshing an
already-persistent instance.

@PrePersist Called immediately when persist() is called on an entity
instance. Also called for merge() when an entity is discovered as
transient, after the transient state is copied onto a persistent
instance. Also called for associated entities if you enable
CascadeType.PERSIST.

@PostPersist Called after the database operation for making an entity instance
persistent is executed and an identifier value is assigned. This may
be at the time when persist() or merge() is invoked, or later
when the persistence context is flushed if your identifier generator
is pre-insert (see section 4.2.5). Also called for associated entities
if you enable CascadeType.PERSIST.

@PreUpdate, @PostUpdate Executed before and after the persistence context is synchronized
with the database: that is, before and after flushing. Triggered only
when the state of the entity requires synchronization (for example,
because it’s considered dirty).

Injection in event listener classes
You often need access to contextual information and APIs when implementing an
event listener. The previous example needs the currently logged-in user and an email
API. A simple solution based on thread-locals and singletons might not be sufficient
in larger and more complex applications. JPA also standardizes integration with CDI,
so an entity listener class may rely on injection and the @Inject annotation to access
dependencies. The CDI container provides the contextual information when the lis-
tener class is called. Note that even with CDI, you can’t inject the current Entity-
Manager to access the database in an event listener. We discuss a different solution
for accessing the database in a (Hibernate) event listener later in this chapter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#GeneratorStrategies
jpwh-2e-preview.xhtml#GeneratorStrategies

323Listening to and intercepting events
An entity listener class must be enabled for any entity you’d like to intercept, such as
this Item:

@Entity
@EntityListeners(
 PersistEntityListener.class
)
public class Item {

 // ...
}

The @EntityListeners annotation accepts an array of listener classes, if you have sev-
eral interceptors. If several listeners define callback methods for the same event,
Hibernate invokes the listeners in the declared order. Alternatively, you can bind lis-
tener classes to an entity in XML metadata with the <entity-listener> sub-element
of <entity>.

 You don’t have to write a separate entity listener class to intercept life cycle events.
You can, for example, implement the notifyAdmin() method on the User entity class:

@Entity
@Table(name = "USERS")
public class User {

 @PostPersist
 public void notifyAdmin(){
 User currentUser = CurrentUser.INSTANCE.get();
 Mail mail = Mail.INSTANCE;
 mail.send(
 "Entity instance persisted by "
 + currentUser.getUsername()
 + ": "
 + this
);
 }

 // ...
}

@PreRemove, @PostRemove Triggered when remove() is called or the entity instance is
removed by cascading, and after deletion of the record in the data-
base when the persistence context is flushed.

PATH: /model/src/main/java/org/jpwh/model/filtering/callback/Item.java

PATH: /model/src/main/java/org/jpwh/model/filtering/callback/User.java

Table 13.2 Life cycle callback annotations (continued)

Annotation Description
Licensed to Thomas Snead <n.ordickan@gmail.com>

324 CHAPTER 13 Filtering data
Note that callback methods on an entity class don’t have any arguments: the “current”
entity involved in the state changes is this. Duplicate callbacks for the same event
aren’t allowed in a single class. But you can intercept the same event with callback
methods in several listener classes or in a listener and an entity class.

 You can also add callback methods on an entity superclass for the entire hierarchy.
If, for a particular entity subclass, you want to disable the superclass’s callbacks, anno-
tate the subclass with @ExcludeSuperclassListeners or map it in XML metadata with
<exclude-superclass-listeners>.

 You can declare default entity listener classes, enabled for all entities in your persis-
tence unit, in XML metadata:

<persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener
 class="org.jpwh.model.filtering.callback.PersistEntityListener"/>
 </entity-listeners>
 </persistence-unit-defaults>
</persistence-unit-metadata>

If you want to disable a default entity listener for a particular entity, either map it with
<exclude-default-listeners> in XML metadata or mark it with the @Exclude-
DefaultListeners annotation:

@Entity
@Table(name = "USERS")
@ExcludeDefaultListeners
public class User {

 // ...
}

Be aware that enabling entity listeners is additive. If you enable and/or bind entity lis-
teners in XML metadata and annotations, Hibernate will call them all in the following
order:

1 Default listeners for the persistence unit, in the order as declared in XML meta-
data.

2 Listeners declared on an entity with @EntityListeners, in the given order.
3 Callback methods declared in entity superclasses are first, starting with the most

generic superclass. Callback methods on the entity class are last.

JPA event listeners and callbacks provide a rudimentary framework for reacting to life
cycle events with your own procedures. Hibernate also has a more fine-grained and
powerful alternative API: org.hibernate.Interceptor.

PATH: /model/src/main/resources/filtering/EventListeners.xml

PATH: /model/src/main/java/org/jpwh/model/filtering/callback/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

325Listening to and intercepting events
13.2.2 Implementing Hibernate interceptors

Let’s assume that you want to write an audit log of data modifications in a separate
database table. For example, you may record information about creation and update
events for each Item. The audit log includes the user, the date and time of the event,
what type of event occurred, and the identifier of the Item that was changed.

 Audit logs are often handled using database triggers. On the other hand, it’s some-
times better for the application to take responsibility, especially if portability between
different databases is required.

 You need several elements to implement audit logging. First, you have to mark the
entity classes for which you want to enable audit logging. Next, you define what infor-
mation to log, such as the user, date, time, and type of modification. Finally, you tie it
all together with an org.hibernate.Interceptor that automatically creates the audit
trail.

 First, create a marker interface, Auditable:

public interface Auditable {
 public Long getId();
}

This interface requires that a persistent entity class expose its identifier with a getter
method; you need this property to log the audit trail. Enabling audit logging for a par-
ticular persistent class is then trivial. You add it to the class declaration, such as for
Item:

@Entity
public class Item implements Auditable {

 // ...
}

Now, create a new persistent entity class, AuditLogRecord, with the information you
want to log in your audit database table:

@Entity
public class AuditLogRecord {

 @Id
 @GeneratedValue(generator = "ID_GENERATOR")
 protected Long id;

 @NotNull
 protected String message;

PATH: /model/src/main/java/org/jpwh/model/filtering/interceptor/Auditable.java

PATH: /model/src/main/java/org/jpwh/model/filtering/interceptor/Item.java

PATH: /model/src/main/java/org/jpwh/model/filtering/interceptor/
AuditLogRecord.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

326 CHAPTER 13 Filtering data
 @NotNull
 protected Long entityId;

 @NotNull
 protected Class entityClass;

 @NotNull
 protected Long userId;

 @NotNull
 @Temporal(TemporalType.TIMESTAMP)
 protected Date createdOn = new Date();

 // ...
}

You want to store an instance of AuditLogRecord whenever Hibernate inserts or
updates an Item in the database. A Hibernate interceptor can handle this automati-
cally. Instead of implementing all methods in org.hibernate.Interceptor, extend
the EmptyInterceptor and override only the methods you need, as shown next.

public class AuditLogInterceptor extends EmptyInterceptor {

 protected Session currentSession;
 protected Long currentUserId;
 protected Set<Auditable> inserts = new HashSet<Auditable>();
 protected Set<Auditable> updates = new HashSet<Auditable>();

 public void setCurrentSession(Session session) {
 this.currentSession = session;
 }

 public void setCurrentUserId(Long currentUserId) {
 this.currentUserId = currentUserId;
 }

 public boolean onSave(Object entity, Serializable id,
 Object[] state, String[] propertyNames,
 Type[] types)
 throws CallbackException {

 if (entity instanceof Auditable)
 inserts.add((Auditable)entity);

 return false;
 }

 public boolean onFlushDirty(Object entity, Serializable id,
 Object[] currentState,
 Object[] previousState,
 String[] propertyNames, Type[] types)
 throws CallbackException {

 if (entity instanceof Auditable)
 updates.add((Auditable)entity);

Listing 13.2 Hibernate interceptor logging modification events

PATH: /examples/src/test/java/org/jpwh/test/filtering/AuditLogInterceptor.java

Accesses databaseB

Called
when
instance is
made
persistent

C

You didn’t
modify the

state.
Called if instance is dirty D
Licensed to Thomas Snead <n.ordickan@gmail.com>

327Listening to and intercepting events

a

 return false;
 }

 // ...
}

B You need to access the database to write the audit log, so this interceptor needs a
Hibernate Session. You also want to store the identifier of the currently logged-in
user in each audit log record. The inserts and updates instance variables are collec-
tions where this interceptor will hold its internal state.

C This method is called when an entity instance is made persistent.

D This method is called when an entity instance is detected as dirty during flushing of
the persistence context.

The interceptor collects the modified Auditable instances in inserts and updates.
Note that in onSave(), there may not be an identifier value assigned to the given
entity instance. Hibernate guarantees to set entity identifiers during flushing, so the
actual audit log trail is written in the postFlush() callback, which isn’t shown in list-
ing 13.2:

public class AuditLogInterceptor extends EmptyInterceptor {

 // ...

 public void postFlush(Iterator iterator) throws CallbackException {

 Session tempSession =
 currentSession.sessionWithOptions()
 .transactionContext()
 .connection()
 .openSession();

 try {
 for (Auditable entity : inserts) {
 tempSession.persist(
 new AuditLogRecord("insert", entity, currentUserId)
);
 }
 for (Auditable entity : updates) {
 tempSession.persist(
 new AuditLogRecord("update", entity, currentUserId)
);
 }

 tempSession.flush();
 } finally {
 tempSession.close();
 inserts.clear();
 updates.clear();
 }
 }
}

PATH: /examples/src/test/java/org/jpwh/test/filtering/AuditLogInterceptor.java

You didn’t modify the currentState.

B

Writes
udit log
records Creates

temporary
SessionC

Stores
AuditLogRecords

D

Closes temporary SessionE
Licensed to Thomas Snead <n.ordickan@gmail.com>

328 CHAPTER 13 Filtering data
B This method is called after flushing of the persistence context is complete. Here, you
write the audit log records for all insertions and updates you collected earlier.

C You can’t access the original persistence context: the Session that is currently execut-
ing this interceptor. The Session is in a fragile state during interceptor calls. Hiber-
nate lets you create a new Session that inherits some information from the original
Session with the sessionWithOptions() method. The new temporary Session works
with the same transaction and database connection as the original Session.

D You store a new AuditLogRecord for each insertion and update using the temporary
Session.

E You flush and close the temporary Session independently from the original Session.

You’re now ready to enable this interceptor with a Hibernate property when creating
an EntityManager:

EntityManagerFactory emf = JPA.getEntityManagerFactory();

Map<String, String> properties = new HashMap<String, String>();
properties.put(
 org.hibernate.jpa.AvailableSettings.SESSION_INTERCEPTOR,
 AuditLogInterceptor.class.getName()
);

EntityManager em = emf.createEntityManager(properties);

This EntityManager now has an enabled AuditLogInterceptor, but the interceptor
must also be configured with the current Session and logged-in user identifier. This
involves some typecasts to access the Hibernate API:

Session session = em.unwrap(Session.class);
AuditLogInterceptor interceptor =
 (AuditLogInterceptor) ((SessionImplementor) session).getInterceptor();
interceptor.setCurrentSession(session);
interceptor.setCurrentUserId(CURRENT_USER_ID);

PATH: /examples/src/test/java/org/jpwh/test/filtering/AuditLogging.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/AuditLogging.java

Enabling default interceptors
If you want to enable an interceptor by default for any EntityManager, you can set
the property hibernate.ejb.interceptor in your persistence.xml to a class that
implements org.hibernate.Interceptor. Note that unlike a session-scoped inter-
ceptor, Hibernate shares this default interceptor, so it must be thread-safe! The
example AuditLogInterceptor is not thread-safe.
Licensed to Thomas Snead <n.ordickan@gmail.com>

329Listening to and intercepting events
The EntityManager is now ready for use, and an audit trail will be written whenever
you store or modify an Item instance with it.

 Hibernate interceptors are flexible, and, unlike JPA event listeners and callback
methods, you have access to much more contextual information when an event
occurs. Having said that, Hibernate allows you to hook even deeper into its core with
the extensible event system it’s based on.

13.2.3 The core event system

The Hibernate core engine is based on a model of events and listeners. For example,
if Hibernate needs to save an entity instance, it triggers an event. Whoever listens to
this kind of event can catch it and handle saving the data. Hibernate therefore imple-
ments all of its core functionality as a set of default listeners, which can handle all
Hibernate events.

 Hibernate is open by design: you can write and enable your own listeners for
Hibernate events. You can either replace the existing default listeners or extend them
and execute a side effect or additional procedure. Replacing the event listeners is
rare; doing so implies that your own listener implementation can take care of a piece
of Hibernate core functionality.

 Essentially, all the methods of the Session interface (and its narrower cousin, the
EntityManager) correlate to an event. The find() and load() methods trigger a
LoadEvent, and by default this event is processed with the DefaultLoadEvent-
Listener.

 A custom listener should implement the appropriate interface for the event it
wants to process and/or extend one of the convenience base classes provided by
Hibernate, or any of the default event listeners. Here’s an example of a custom load
event listener.

public class SecurityLoadListener extends DefaultLoadEventListener {

 public void onLoad(LoadEvent event, LoadEventListener.LoadType loadType)
 throws HibernateException {

 boolean authorized =
 MySecurity.isAuthorized(
 event.getEntityClassName(), event.getEntityId()
);

 if (!authorized)
 throw new MySecurityException("Unauthorized access");

 super.onLoad(event, loadType);
 }

}

Listing 13.3 Custom load event listener

PATH: /examples/src/test/java/org/jpwh/test/filtering/SecurityLoadListener.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

330 CHAPTER 13 Filtering data
This listener performs custom authorization code. A listener should be considered
effectively a singleton, meaning it’s shared between persistence contexts and thus
shouldn’t save any transaction-related state as instance variables. For a list of all events
and listener interfaces in native Hibernate, see the API Javadoc of the org.hibernate
.event package.

 You enable listeners for each core event in your persistence.xml, in a <persistence-
unit>:

<properties>
 <property name="hibernate.ejb.event.load"
 value="org.jpwh.test.filtering.SecurityLoadListener"/>
</properties>

The property name of the configuration setting always starts with hibernate
.ejb.event, followed by the type of event you want to listen to. You can find a list of
all event types in org.hibernate.event.spi.EventType. The value of the property
can be a comma-separated list of listener class names; Hibernate will call each listener
in the specified order.

 You rarely have to extend the Hibernate core event system with your own function-
ality. Most of the time, an org.hibernate.Interceptor is flexible enough. It helps to
have more options and to be able to replace any piece of the Hibernate core engine in
a modular fashion.

 The audit-logging implementation you saw in the previous section was very simple.
If you need to log more information for auditing, such as the actual changed property
values of an entity, consider Hibernate Envers.

13.3 Auditing and versioning with Hibernate Envers
Envers is a project of the Hibernate suite dedicated to audit logging and keeping mul-
tiple versions of data in the database. This is similar to version control systems you may
already be familiar with, such as Subversion and Git.

 With Envers enabled, a copy of your data is automatically stored in separate data-
base tables when you add, modify, or delete data in the main tables of the application.
Envers internally uses the Hibernate event SPI you saw in the previous section. Envers
listens to Hibernate events, and when Hibernate stores changes in the database,
Envers creates a copy of the data and logs a revision in its own tables.

 Envers groups all data modifications in a unit of work—that is, in a transaction—
as a change set with a revision number. You can write queries with the Envers API
to retrieve historical data given a revision number or timestamp: for example, “find
all Item instances as they were last Friday.” First you have to enable Envers in your
application.

PATH: /model/src/main/resources/META-INF/persistence.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

331Auditing and versioning with Hibernate Envers
13.3.1 Enabling audit logging

Envers is available without further configuration as soon as you put its JAR file on your
classpath (or, as shown in the example code of this book, include it as a Maven depen-
dency). You enable audit logging selectively for an entity class with the @org.hibernate
.envers.Audited annotation.

@Entity
@org.hibernate.envers.Audited
public class Item {

 @NotNull
 protected String name;

 @OneToMany(mappedBy = "item")
 @org.hibernate.envers.NotAudited
 protected Set<Bid> bids = new HashSet<Bid>();

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "SELLER_ID", nullable = false)
 protected User seller;

 // ...
}

You’ve now enabled audit logging for Item instances and all properties of the entity.
To disable audit logging for a particular property, annotate it with @NotAudited. In
this case, Envers ignores the bids but audits the seller. You also have to enable audit-
ing with @Audited on the User class.

 Hibernate will now generate (or expect) additional database tables to hold histori-
cal data for each Item and User. Figure 13.1 shows the schema for these tables.

 The ITEM_AUD and USERS_AUD tables are where the modification history of Item
and User instances is stored. When you modify data and commit a transaction, Hiber-
nate inserts a new revision number with a timestamp into the REVINFO table. Then, for

Listing 13.4 Enabling audit logging for the Item entity

PATH: /model/src/main/java/org/jpwh/model/filtering/envers/Item.java

ID << PK >>
USERNAME

<< Table >>
USERSID << PK >>

NAME
SELLER_ID << FK >>

<< Table >>
ITEM

REV << PK >>
REVTSTMP

<< Table >>
REVINFOID << PK >>

NAME
SELLER_ID
REV << PK >> << FK >>
REVTYPE

<< Table >>
ITEM_AUD

ID << PK >>
USERNAME
REV << PK >> << FK >>
REVTYPE

<< Table >>
USERS_AUD

Figure 13.1 Audit logging tables for the Item and User entities
Licensed to Thomas Snead <n.ordickan@gmail.com>

332 CHAPTER 13 Filtering data
each modified and audited entity instance involved in the change set, a copy of its
data is stored in the audit tables. Foreign keys on revision number columns link the
change set together. The REVTYPE column holds the type of change: whether the
entity instance was inserted, updated, or deleted in the transaction. Envers never auto-
matically removes any revision information or historical data; even after you remove()
an Item instance, you still have its previous versions stored in ITEM_AUD.

 Let’s run through some transactions to see how this works.

13.3.2 Creating an audit trail

In the following code examples, you see several transactions involving an Item and its
seller, a User. You create and store an Item and User, then modify both, and then
finally delete the Item.

 You should already be familiar with this code. Envers automatically creates an audit
trail when you work with the EntityManager:

tx.begin();
EntityManager em = JPA.createEntityManager();

User user = new User("johndoe");
em.persist(user);

Item item = new Item("Foo", user);
em.persist(item);

tx.commit();
em.close();

tx.begin();
EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
item.setName("Bar");
item.getSeller().setUsername("doejohn");

tx.commit();
em.close();

tx.begin();
EntityManager em = JPA.createEntityManager();

Item item = em.find(Item.class, ITEM_ID);
em.remove(item);

tx.commit();
em.close();

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

333Auditing and versioning with Hibernate Envers

Fin
chan

s

time
Envers transparently writes the audit trail for this sequence of transactions by logging
three change sets. To access this historical data, you first have to obtain the number of
the revision, representing the change set you’d like to access.

13.3.3 Finding revisions

With the Envers AuditReader API, you can find the revision number of each change set:

AuditReader auditReader = AuditReaderFactory.get(em);

Number revisionCreate =

 auditReader.getRevisionNumberForDate(TIMESTAMP_CREATE);
Number revisionUpdate =

 auditReader.getRevisionNumberForDate(TIMESTAMP_UPDATE);
Number revisionDelete =
 auditReader.getRevisionNumberForDate(TIMESTAMP_DELETE);

List<Number> itemRevisions = auditReader.getRevisions(Item.class, ITEM_ID);

assertEquals(itemRevisions.size(), 3);

for (Number itemRevision : itemRevisions) {

 Date itemRevisionTimestamp = auditReader.getRevisionDate(itemRevision);

 // ...

}

List<Number> userRevisions = auditReader.getRevisions(User.class, USER_ID);
assertEquals(userRevisions.size(), 2);

B The main Envers API is AuditReader. It can be accessed with an EntityManager.

C Given a timestamp, you can find the revision number of a change set made before or
on that timestamp.

D If you don’t have a timestamp, you can get all revision numbers in which a particular
audited entity instance was involved. This operation finds all change sets where the
given Item was created, modified, or deleted. In our example, we created, modified,
and then deleted the Item. Hence, we have three revisions.

E If you have a revision number, you can get the timestamp when Envers logged the
change set.

F We created and modified the User, so there are two revisions.

In listing 13.5, we assumed that either you know the (approximate) timestamp for a
transaction or you have the identifier value of an entity so you can obtain its revisions.
If you have neither, you may want to explore the audit log with queries. This is also use-
ful if you have to show a list of all change sets in the user interface of your application.

Listing 13.5 Obtaining the revision numbers of change sets

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

AuditReader APIB
Gets
revision
numberC

ds
ge

ets

D

Gets
stamp E

FCounts revisions
Licensed to Thomas Snead <n.ordickan@gmail.com>

334 CHAPTER 13 Filtering data

re
d

Retu
audi

insta
 The following code discovers all revisions of the Item entity class and loads each
Item version and the audit log information for that change set:

AuditQuery query = auditReader.createQuery()
 .forRevisionsOfEntity(Item.class, false, false);

List<Object[]> result = query.getResultList();
for (Object[] tuple : result) {

 Item item = (Item) tuple[0];
 DefaultRevisionEntity revision = (DefaultRevisionEntity)tuple[1];
 RevisionType revisionType = (RevisionType)tuple[2];

 if (revision.getId() == 1) {
 assertEquals(revisionType, RevisionType.ADD);
 assertEquals(item.getName(), "Foo");
 } else if (revision.getId() == 2) {
 assertEquals(revisionType, RevisionType.MOD);
 assertEquals(item.getName(), "Bar");
 } else if (revision.getId() == 3) {
 assertEquals(revisionType, RevisionType.DEL);
 assertNull(item);
 }
}

B If you don’t know modification timestamps or revision numbers, you can write a query
with forRevisionsOfEntity() to obtain all audit trail details of a particular entity.

C This query returns the audit trail details as a List of Object[].

D Each result tuple contains the entity instance for a particular revision, the revision
details (including revision number and timestamp), as well as the revision type.

E The revision type indicates why Envers created the revision, because the entity
instance was inserted, modified, or deleted in the database.

Revision numbers are sequentially incremented; a higher revision number is always a
more recent version of an entity instance. You now have revision numbers for the
three change sets in the audit trail, giving you access to historical data.

13.3.4 Accessing historical data

With a revision number, you can access different versions of the Item and its seller.

Item item = auditReader.find(Item.class, ITEM_ID, revisionCreate);
assertEquals(item.getName(), "Foo");
assertEquals(item.getSeller().getUsername(), "johndoe");

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

Listing 13.6 Loading historical versions of entity instances

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

Query to get audit
trail detailsB

Gets audit
trail details C

Gets
vision
etails D

Gets revision typeE

rns
ted
nce B
Licensed to Thomas Snead <n.ordickan@gmail.com>

335Auditing and versioning with Hibernate Envers

Item modifiedItem = auditReader.find(Item.class,

 ITEM_ID, revisionUpdate);
assertEquals(modifiedItem.getName(), "Bar");
assertEquals(modifiedItem.getSeller().getUsername(), "doejohn");

Item deletedItem = auditReader.find(Item.class,

 ITEM_ID, revisionDelete);
assertNull(deletedItem);

User user = auditReader.find(User.class,

 USER_ID, revisionDelete);
assertEquals(user.getUsername(), "doejohn");

B The find() method returns an audited entity instance version, given a revision. This
operation loads the Item as it was after creation.

C This operation loads the Item after it was updated. Note how the modified seller of
this change set is also retrieved automatically.

D In this revision, the Item was deleted, so find() returns null.

E The example didn’t modify the User in this revision, so Envers returns its closest his-
torical revision.

The AuditReader#find() operation retrieves only a single entity instance, like
EntityManager#find(). But the returned entity instances are not in persistent state:
the persistence context doesn’t manage them. If you modify an older version of Item,
Hibernate won’t update the database. Consider the entity instances returned by the
AuditReader API to be detached, or read-only.

 AuditReader also has an API for execution of arbitrary queries, similar to the
native Hibernate Criteria API (see section 16.3).

AuditQuery query = auditReader.createQuery()
 .forEntitiesAtRevision(Item.class, revisionUpdate);

query.add(
 AuditEntity.property("name").like("Ba", MatchMode.START)
);

query.add(
 AuditEntity.relatedId("seller").eq(USER_ID)
);

query.addOrder(
 AuditEntity.property("name").desc()
);

query.setFirstResult(0);
query.setMaxResults(10);

assertEquals(query.getResultList().size(), 1);
Item result = (Item)query.getResultList().get(0);
assertEquals(result.getSeller().getUsername(), "doejohn");

Listing 13.7 Querying historical entity instances

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

Loads updated ItemC

Handles deleted ItemD

Returns closest revisionE

Return Items from
particular revisionB

Adds
restrictionC

Adds restrictionD

Orders resultsE

PaginatesF
Licensed to Thomas Snead <n.ordickan@gmail.com>

336 CHAPTER 13 Filtering data
B This query returns Item instances restricted to a particular revision and change set.

C You can add further restrictions to the query; here the Item#name must start with “Ba”.

D Restrictions can include entity associations: for example, you’re looking for the revi-
sion of an Item sold by a particular User.

E You can order query results.

F You can paginate through large results.

Envers supports projection. The following query retrieves only the Item#name of a par-
ticular version:

AuditQuery query = auditReader.createQuery()
 .forEntitiesAtRevision(Item.class, revisionUpdate);

query.addProjection(
 AuditEntity.property("name")
);

assertEquals(query.getResultList().size(), 1);
String result = (String)query.getSingleResult();
assertEquals(result, "Bar");

Finally, you may want to roll back an entity instance to an older version. This can be
accomplished with the Session#replicate() operation and overwriting an existing
row. The following example loads the User instance from the first change set and then
overwrites the current User in the database with the older version:

User user = auditReader.find(User.class, USER_ID, revisionCreate);

em.unwrap(Session.class)
 .replicate(user, ReplicationMode.OVERWRITE);
em.flush();
em.clear();

user = em.find(User.class, USER_ID);
assertEquals(user.getUsername(), "johndoe");

Envers will also track this change as an update in the audit log; it’s just another new
revision of the User instance.

 Temporal data is a complex subject, and we encourage you to read the Envers ref-
erence documentation for more information. Adding details to the audit log, such as
the user who made a change, isn’t difficult. The documentation also shows how you
can configure different tracking strategies and customize the database schema used by
Envers.

 Next, imagine that you don’t want to see all the data in your database. For exam-
ple, the currently logged-in application user may not have the rights to see everything.

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/Envers.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

337Dynamic data filters
Usually, you add a condition to your queries and restrict the result dynamically. This
becomes difficult if you have to handle a concern such as security, because you’d have
to customize most of the queries in your application. You can centralize and isolate
these restrictions with Hibernate’s dynamic data filters.

13.4 Dynamic data filters
The first use case for dynamic data filtering relates to data security. A User in Caveat-
Emptor may have a ranking property, which is a simple integer:

@Entity
@Table(name = "USERS")
public class User {

 @NotNull
 protected int rank = 0;

 // ...
}

Now assume that users can only bid on items that other users offer with an equal or
lower rank. In business terms, you have several groups of users that are defined by an
arbitrary rank (a number), and users can trade only with people who have the same or
lower rank.

 To implement this requirement, you’d have to customize all queries that load Item
instances from the database. You’d check whether the Item#seller you want to load
has an equal or lower rank than the currently logged-in user. Hibernate can do this
work for you with a dynamic filter.

13.4.1 Defining dynamic filters

First, you define your filter with a name and the dynamic runtime parameters it
accepts. You can place the Hibernate annotation for this definition on any entity class
of your domain model or in a package-info.java metadata file:

@org.hibernate.annotations.FilterDef(
 name = "limitByUserRank",
 parameters = {
 @org.hibernate.annotations.ParamDef(
 name = "currentUserRank", type = "int"
)
 }
)

This example names this filter limitByUserRank; note that filter names must be unique
in a persistence unit. It accepts one runtime argument of type int. If you have several
filter definitions, declare them within @org.hibernate.annotations.FilterDefs.

PATH: /model/src/main/java/org/jpwh/model/filtering/dynamic/User.java

PATH: /model/src/main/java/org/jpwh/model/filtering/dynamic/package-info.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

338 CHAPTER 13 Filtering data
 The filter is inactive now; nothing indicates that it’s supposed to apply to Item
instances. You must apply and implement the filter on the classes or collections you
want to filter.

13.4.2 Applying the filter

You want to apply the defined filter on the Item class so that no items are visible if the
logged-in user doesn’t have the necessary rank:

@Entity
@org.hibernate.annotations.Filter(
 name = "limitByUserRank",
 condition =
 ":currentUserRank >= (" +
 "select u.RANK from USERS u " +
 "where u.ID = SELLER_ID" +
 ")"
)
public class Item {

 // ...
}

The condition is an SQL expression that’s passed through directly to the database sys-
tem, so you can use any SQL operator or function. It must evaluate to true if a record
should pass the filter. In this example, you use a subquery to obtain the rank of the
seller of the item. Unqualified columns, such as SELLER_ID, refer to the table mapped
to the entity class. If the currently logged-in user’s rank isn’t greater than or equal to
the rank returned by the subquery, the Item instance is filtered out. You can apply sev-
eral filters by grouping them in an @org.hibernate.annotations.Filters.

 A defined and applied filter, if enabled for a particular unit of work, filters out any
Item instance that doesn’t pass the condition. Let’s enable it.

13.4.3 Enabling the filter

You’ve defined a data filter and applied it to a persistent entity class. It’s still not filter-
ing anything—it must be enabled and parameterized in the application for a particu-
lar unit of work, with the Session API:

org.hibernate.Filter filter = em.unwrap(Session.class)
 .enableFilter("limitByUserRank");

filter.setParameter("currentUserRank", 0);

You enable the filter by name; the method returns a Filter on which you set the runtime
arguments dynamically. You must set the parameters you’ve defined; here it’s set to rank
0. This example then filters out Items sold by a User with a higher rank in this Session.

PATH: /model/src/main/java/org/jpwh/model/filtering/dynamic/Item.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/DynamicFilter.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

339Dynamic data filters
 Other useful methods of the Filter are getFilterDefinition() (which allows
you to iterate through the parameter names and types) and validate() (which
throws a HibernateException if you forget to set a parameter). You can also set a list
of arguments with setParameterList(); this is mostly useful if your SQL restriction
contains an expression with a quantifier operator (the IN operator, for example).

 Now, every JPQL or criteria query that you execute on the filtered persistence con-
text restricts the returned Item instances:

List<Item> items = em.createQuery("select i from Item i").getResultList();
// select * from ITEM where 0 >=
// (select u.RANK from USERS u where u.ID = SELLER_ID)

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery criteria = cb.createQuery();
criteria.select(criteria.from(Item.class));
List<Item> items = em.createQuery(criteria).getResultList();
// select * from ITEM where 0 >=
// (select u.RANK from USERS u where u.ID = SELLER_ID)

Note how Hibernate dynamically appends the SQL restriction conditions to the state-
ment generated.

 When you first experiment with dynamic filters, you’ll most likely run into an issue
with retrieval by identifier. You might expect that em.find(Item.class, ITEM_ID) will
be filtered as well. This is not the case, though: Hibernate doesn’t apply filters to
retrieval by identifier operations. One of the reasons is that data-filter conditions are
SQL fragments, and lookup by identifier may be resolved completely in memory, in
the first-level persistence context cache. Similar reasoning applies to filtering of many-
to-one or one-to-one associations. If a many-to-one association was filtered (for example, by
returning null if you called anItem.getSeller()), the multiplicity of the association
would change! You won’t know if the item has a seller or if you aren’t allowed to see it.

 But you can dynamically filter collection access. Remember that persistent collec-
tions are shorthand for a query.

13.4.4 Filtering collection access

Until now, calling someCategory.getItems() has returned all Item instances that are
referenced by that Category. This can be restricted with a filter applied to a collection:

@Entity
public class Category {

 @OneToMany(mappedBy = "category")

PATH: /examples/src/test/java/org/jpwh/test/filtering/DynamicFilter.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/DynamicFilter.java

PATH: /model/src/main/java/org/jpwh/model/filtering/dynamic/Category.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

340 CHAPTER 13 Filtering data
 @org.hibernate.annotations.Filter(
 name = "limitByUserRank",
 condition =
 ":currentUserRank >= (" +
 "select u.RANK from USERS u " +
 "where u.ID = SELLER_ID" +
 ")"
)
 protected Set<Item> items = new HashSet<Item>();

 // ...
}

If you now enable the filter in a Session, all iteration through a collection of
Category#items is filtered:

filter.setParameter("currentUserRank", 0);
Category category = em.find(Category.class, CATEGORY_ID);
assertEquals(category.getItems().size(), 1);

If the current user’s rank is 0, only one Item is loaded when you access the collection.
Now, with a rank of 100, you see more data:

filter.setParameter("currentUserRank", 100);
category = em.find(Category.class, CATEGORY_ID);
assertEquals(category.getItems().size(), 2);

You probably noticed that the SQL condition for both filter applications is the same. If
the SQL restriction is the same for all filter applications, you can set it as the default
condition when you define the filter, so you don’t have to repeat it:

@org.hibernate.annotations.FilterDef(
 name = "limitByUserRankDefault",
 defaultCondition=
 ":currentUserRank >= (" +
 "select u.RANK from USERS u " +
 "where u.ID = SELLER_ID" +
 ")",
 parameters = {
 @org.hibernate.annotations.ParamDef(
 name = "currentUserRank", type = "int"
)
 }
)

PATH: /examples/src/test/java/org/jpwh/test/filtering/DynamicFilter.java

PATH: /examples/src/test/java/org/jpwh/test/filtering/DynamicFilter.java

PATH: /model/src/main/java/org/jpwh/model/filtering/dynamic/package-info.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

341Summary
There are many other excellent use cases for dynamic data filters. You’ve seen a
restriction of data access given an arbitrary security-related condition. This can be the
user rank, a particular group the user must belong to, or a role the user has been
assigned. Data might be stored with a regional code (for example, all business con-
tacts of a sales team). Or perhaps each salesperson works only on data that covers
their region.

13.5 Summary
 Cascading state transitions are predefined reactions to life cycle events in the

persistence engine.
 You learned about listening to and intercepting events. You implement event

listeners and interceptors to add custom logic when Hibernate loads and stores
data. We introduced JPA’s event listener callbacks and Hibernate’s Interceptor
extension point, as well as the Hibernate core event system.

 You can use Hibernate Envers for audit logging and keeping multiple versions
of data in the database (like the version control systems). Using Envers, a copy
of your data is automatically stored in separate database tables when you add,
modify, or delete data in application tables. Envers groups all data modifica-
tions as a change set, in a transaction, with a revision number. You can then
query Envers to retrieve historical data.

 Using dynamic data filters, Hibernate can automatically append arbitrary SQL
restrictions to queries it generates.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 4

Writing queries

In part 4, we introduce data-query features and cover query languages and
APIs in detail. Not all chapters in this part are written in a tutorial style; we
expect you’ll browse this part of the book frequently when building an applica-
tion and looking up a solution for a particular query problem.

 Starting in chapter 14, we’ll talk about creating and executing queries using
the basic query APIs, preparing and executing queries, and optimizing query
execution. Continuing in chapter 15, we’ll cover the query languages, writing
JPQL and criteria queries, retrieving data efficiently with joins, and reporting
queries and subselects. Chapter 16 dives deeper into advanced query options:
transforming query results, filtering collections, and query-by-criteria with the
Hibernate API. Finally, chapter 17 describes customization techniques like fall-
ing back to JDBC, mapping SQL query results, customizing CRUD operations,
and calling stored procedures.

 After reading this part, you’ll be able to get any data you want out of your
database using various querying techniques, customizing access as needed.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Creating and
executing queries
If you’ve been using handwritten SQL for a number of years, you may be concerned
that ORM will take away some of the expressiveness and flexibility you’re used to.
This isn’t the case with Hibernate and Java Persistence.

 With Hibernate’s and Java Persistence’s powerful query facilities, you can
express almost everything you commonly (or even uncommonly) need to express
in SQL, but in object-oriented terms—using classes and properties of classes. More-
over, you can always fall back to SQL strings and let Hibernate do the heavy lifting
of handling the query result. For additional SQL resources, consult our reference
section.

In this chapter
 The basic query APIs

 Creating and preparing queries

 Optimizing query execution
345

Licensed to Thomas Snead <n.ordickan@gmail.com>

346 CHAPTER 14 Creating and executing queries

In this chapter, we show you how to create and execute queries with JPA and the
Hibernate API. The queries are as simple as possible so you can focus on the creation
and execution API without unfamiliar languages possibly distracting. The next chap-
ter will cover query languages.

 Common to all APIs, a query must be prepared in application code before execu-
tion. There are three distinct steps:

1 Create the query, with any arbitrary selection, restriction, and projection of data
that you want to retrieve.

2 Prepare the query: bind runtime arguments to query parameters, set hints, and
set paging options. You can reuse the query with changing settings.

3 Execute the prepared query against the database and retrieve the data. You can
control how the query is executed and how data should be retrieved into mem-
ory (all at once or piecemeal, for example).

Depending on the query options you use, your starting point for query creation is
either the EntityManager or the native Session API. First up is creating the query.

14.1 Creating queries
JPA represents a query with a javax.persistence.Query or javax.persistence
.TypedQuery instance. You create queries with the EntityManager#createQuery()
method and its variants. You can write the query in the Java Persistence Query Lan-
guage (JPQL), construct it with the CriteriaBuilder and CriteriaQuery APIs, or use
plain SQL. (There is also javax.persistence.StoredProcedureQuery, covered in
section 17.4.)

 Hibernate has its own, older API to represent queries: org.hibernate.Query and
org.hibernate.SQLQuery. We talk more about these in a moment. Let’s start with the
JPA standard interfaces and query languages.

Major new features in JPA 2
 A type-safe criteria API for the programmatic creation of queries is now available.
 You can now declare up front the type of a query result with the new Typed-

Query interface.
 You can programmatically save a Query (JPQL, criteria, or native SQL) for later

use as a named query.
 In addition to being able to set query parameters, hints, maximum results,

and flush and lock modes, JPA 2 extends the Query API with various getter
methods for obtaining the current settings.

 JPA now standardizes several query hints (timeout, cache usage).
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#FetchJoins
jpwh-2e-preview.xhtml#CustomizingSQL

347Creating queries
14.1.1 The JPA query interfaces

Say you want to retrieve all Item entity instances from the database. With JPQL, this
simple query string looks quite a bit like the SQL you know:

Query query = em.createQuery("select i from Item i");

The JPA provider returns a fresh Query; so far, Hibernate hasn’t sent any SQL to the
database. Remember that further preparation and execution of the query are separate
steps.

 JPQL is compact and will be familiar to anyone with SQL experience. Instead of
table and column names, JPQL relies on entity class and property names. Except for
these class and property names, JPQL is case-insensitive, so it doesn’t matter whether
you write SeLEct or select.

 JPQL (and SQL) query strings can be simple Java literals in your code, as you saw in
the previous example. Alternatively, especially in larger applications, you can move
the query strings out of your data-access code and into annotations or XML. A query is
then accessed by name with EntityManager#createNamedQuery(). We discuss exter-
nalized queries separately later in this chapter; there are many options to consider.

 A significant disadvantage of JPQL surfaces as problems during refactoring of the
domain model: if you rename the Item class, your JPQL query will break. (Some IDEs
can detect and refactor JPQL strings, though.)

You can make query construction with CriteriaBuilder and CriteriaQuery APIs
completely type-safe. JPA also calls this query by criteria:

CriteriaBuilder cb = em.getCriteriaBuilder();
// Also available on EntityManagerFactory:
// CriteriaBuilder cb = entityManagerFactory.getCriteriaBuilder();

CriteriaQuery criteria = cb.createQuery();
criteria.select(criteria.from(Item.class));

Query query = em.createQuery(criteria);

First you get a CriteriaBuilder from your EntityManager by calling getCriteria-
Builder(). If you don’t have an EntityManager ready, perhaps because you want to

JPA and query languages: HQL vs. JPQL
Before JPA existed (and even today, in some documentation), the query language in
Hibernate was called HQL. The differences between JPQL and HQL are insignificant
now. Whenever you provide a query string to any query interface in Hibernate, either
with the EntityManager or Session, it’s a JPQL/HQL string. The same engine
parses the query internally. The fundamental syntax and semantics are the same,
although Hibernate, as always, supports some special constructs that aren’t stan-
dardized in JPA. We’ll tell you when a particular keyword or clause in an example only
works in Hibernate. To simplify your life, think JPQL whenever you see HQL.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#PersistenceContextCache

348 CHAPTER 14 Creating and executing queries
create the query independently from a particular persistence context, you may obtain
the CriteriaBuilder from the usually globally shared EntityManagerFactory.

 You then use the builder to create any number of CriteriaQuery instances. Each
CriteriaQuery has at least one root class specified with from(); in the last example,
that’s Item.class. This is called selection; we’ll talk more about it in the next chapter.
The shown query returns all Item instances from the database.

 The CriteriaQuery API will appear seamless in your application, without string
manipulation. It’s the best choice when you can’t fully specify the query at develop-
ment time and the application must create it dynamically at runtime. Imagine that
you have to implement a search mask in your application, with many check boxes,
input fields, and switches the user can enable. You must dynamically create a database
query from the user’s chosen search options. With JPQL and string concatenation,
such code would be difficult to write and maintain.

 You can write strongly typed CriteriaQuery calls, without strings, using the static
JPA metamodel. This means your queries will be safe and included in refactoring oper-
ations, as already shown in the section “Using a static metamodel” in chapter 3.

If you need to use features specific to your database product, your only choice is native
SQL. You can directly execute SQL in JPA and let Hibernate handle the result for you,
with the EntityManager#createNativeQuery() method:

Query query = em.createNativeQuery(
 "select * from ITEM", Item.class
);

After execution of this SQL query, Hibernate reads the java.sql.ResultSet and cre-
ates a List of managed Item entity instances. Of course, all columns necessary to con-
struct an Item must be available in the result, and an error is thrown if your SQL query
doesn’t return them properly.

 In practice, the majority of the queries in your application will be trivial—easily
expressed in JPQL or with a CriteriaQuery. Then, possibly during optimization, you’ll
find a handful of complex and performance-critical queries. You may have to use spe-
cial and proprietary SQL keywords to control the optimizer of your DBMS product.
Most developers then write SQL instead of JPQL and move such complex queries into
an XML file, where, with the help of a DBA, you change them independently from Java
code. Hibernate can still handle the query result for you; hence you integrate SQL
into your JPA application. There is nothing wrong with using SQL in Hibernate; don’t

Creating a detached criteria query
You always need an EntityManager or EntityManagerFactory to get the JPA
CriteriaBuilder. With the older native org.hibernate.Criteria API, you
only need access to the root entity class to create a detached query, as shown in
section 16.3.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#HibernateCriteria
jpwh-2e-preview.xhtml#HibernateCriteria

349Creating queries

H

let some kind of ORM “purity” get in your way. When you have a special case, don’t try
to hide it, but rather expose and document it properly so the next engineer will
understand what’s going on.

 In certain cases, it’s useful to specify the type of data returned from a query.

14.1.2 Typed query results

Let’s say you want to retrieve only a single Item with a query, given its identifier value:

Query query = em.createQuery(
 "select i from Item i where i.id = :id"
).setParameter("id", ITEM_ID);

Item result = (Item) query.getSingleResult();

In this example, you see a preview of parameter binding and query execution. The
important bit is the return value of the getSingleResult() method. It’s
java.lang.Object, and you have to cast it to an Item.

 If you provide the class of your return value when creating the query, you can skip
the cast. This is the job of the javax.persistence.TypedQuery interface:

TypedQuery<Item> query = em.createQuery(
 "select i from Item i where i.id = :id", Item.class
).setParameter("id", ITEM_ID);

Item result = query.getSingleResult();

Query by criteria also supports the TypedQuery interface:

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Item> criteria = cb.createQuery(Item.class);
Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(cb.equal(i.get("id"), ITEM_ID));

TypedQuery<Item> query = em.createQuery(criteria);

Item result = query.getSingleResult();

Note that this CriteriaQuery isn’t completely type-safe: the Item#id property is
addressed with a string in get("id"). In chapter 3’s “Using a static metamodel,” you
saw how you can make such queries completely type-safe with static metamodel classes.

 Hibernate is older than even the first version of JPA, so it also has its own query APIs.

14.1.3 Hibernate’s query interfaces

Hibernate’s own query representations are org.hibernate.Query and org.hibernate
.SQLQuery. As usual, they offer more than is standardized in JPA, at the cost of porta-
bility. They’re also much older than JPA, so there is some feature duplication.

No cast needed

No cast needed

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#BulkBatch

350 CHAPTER 14 Creating and executing queries
 Your starting point for Hibernate’s query API is the Session:

Session session = em.unwrap(Session.class);
org.hibernate.Query query = session.createQuery("select i from Item i");
// Proprietary API: query.setResultTransformer(...);

You write the query string in standard JPQL. Compared with javax.persis-
tence.Query, the org.hibernate.Query API has some additional proprietary methods
that are only available in Hibernate. You see more of the API later in this and the fol-
lowing chapters.

 Hibernate also has its own SQL result-mapping facility, with org.hiber-

nate.SQLQuery:

Session session = em.unwrap(Session.class);

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select {i.*} from ITEM {i}"
).addEntity("i", Item.class);

This example relies on placeholders in the SQL string to map columns of the
java.sql.ResultSet to entity properties. We’ll talk more about integration of SQL
queries with this proprietary and the standard JPA result mapping in section 17.2.

 Hibernate also has an older, proprietary org.hibernate.Criteria query API:

Session session = em.unwrap(Session.class);

org.hibernate.Criteria query = session.createCriteria(Item.class);
query.add(org.hibernate.criterion.Restrictions.eq("id", ITEM_ID));

Item result = (Item) query.uniqueResult();

You can also access the proprietary Hibernate query API given a javax.persis-
tence.Query, by unwrapping an org.hibernate.jpa.HibernateQuery first:

javax.persistence.Query query = em.createQuery(
 // ...
);

org.hibernate.Query hibernateQuery =
 query.unwrap(org.hibernate.jpa.HibernateQuery.class)
 .getHibernateQuery();

hibernateQuery.getQueryString();
hibernateQuery.getReturnAliases();
// ... other proprietary API calls

We focus on the standard API and later show you some rarely needed advanced
options only available with Hibernate’s API, such as scrolling with cursors and query by
example.

 After writing your query, and before executing it, you typically want to further pre-
pare the query by setting parameters applicable to a particular execution.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#Caching

351Preparing queries
14.2 Preparing queries
A query has several aspects: it defines what data should be loaded from the database
and the restrictions that apply, such as the identifier of an Item or the name of a User.
When you write a query, you shouldn’t code these arguments into the query string
using string concatenation. You should use parameter placeholders instead and then
bind the argument values before execution. This allows you to reuse the query with
different argument values while keeping you’re safe from SQL injection attacks.

 Depending on your user interface, you frequently also need paging. You limit the
number of rows returned from the database by your query. For example, you may
want to return only result rows 1 to 20 because you can only show so much data on
each screen, then a bit later you want rows 21 to 40, and so on.

 Let’s start with parameter binding.

14.2.1 Protecting against SQL injection attacks

Without runtime parameter binding, you’re forced to write bad code:

String searchString = getValueEnteredByUser();

Query query = em.createQuery(
 "select i from Item i where i.name = '" + searchString + "'"
);

You should never write code like this, because a malicious user could craft a search string
to execute code on the database you didn’t expect or want—that is, by entering the
value of searchString in a search dialog box as foo' and callSomeStoredProcedure()
and 'bar' = 'bar.

 As you can see, the original searchString is no longer a simple search for a string
but also executes a stored procedure in the database! The quote characters aren’t
escaped; hence the call to the stored procedure is another valid expression in the
query. If you write a query like this, you open a major security hole in your application
by allowing the execution of arbitrary code on your database. This is an SQL injection
attack. Never pass unchecked values from user input to the database! Fortunately, a
simple mechanism prevents this mistake.

 The JDBC API includes functionality for safely binding values to SQL parameters. It
knows exactly what characters in the parameter value to escape so the previous vulner-
ability doesn’t exist. For example, the database driver escapes the single-quote charac-
ters in the given searchString and no longer treats them as control characters but as
a part of the search string value. Furthermore, when you use parameters, the database
can efficiently cache precompiled prepared statements, improving performance
significantly.

 There are two approaches to parameter binding: named and positional parameters.
JPA support both options, but you can’t use both at the same time for a particular
query.

Never do this!
Licensed to Thomas Snead <n.ordickan@gmail.com>

352 CHAPTER 14 Creating and executing queries
14.2.2 Binding named parameters

With named parameters, you can rewrite the query in the previous section as follows:

String searchString = // ...

Query query = em.createQuery(
 "select i from Item i where i.name = :itemName"
).setParameter("itemName", searchString);

The colon followed by a parameter name indicates a named parameter, here item-
Name. In a second step, you bind a value to the itemName parameter. This code is
cleaner, much safer, and performs better, because you can reuse a single compiled
SQL statement if only parameter values change.

 You can get a Set of Parameters from a Query, either to obtain more information
about each parameter (such as name or required Java type) or to verify that you’ve
bound all parameters properly before execution:

for (Parameter<?> parameter : query.getParameters()) {
 assertTrue(query.isBound(parameter));
}

The setParameter() method is a generic operation that can bind all types of argu-
ments. It only needs a little help for temporal types:

Date tomorrowDate = // ...

Query query = em.createQuery(
 "select i from Item i where i.auctionEnd > :endDate"
).setParameter("endDate", tomorrowDate, TemporalType.TIMESTAMP);

Hibernate needs to know whether you want only the date or time or the full time-
stamp bound.

 For convenience, an entity instance can also be passed to the setParameter()
method:

Item someItem = // ...

Query query = em.createQuery(
 "select b from Bid b where b.item = :item"
).setParameter("item", someItem);

Hibernate binds the identifier value of the given Item. You later see that b.item is a
shortcut for b.item.id.

 For criteria queries, there is a long way and a short way to bind parameters:

String searchString = // ...

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery criteria = cb.createQuery();
Root<Item> i = criteria.from(Item.class);

Query query = em.createQuery(
Licensed to Thomas Snead <n.ordickan@gmail.com>

353Preparing queries
 criteria.select(i).where(
 cb.equal(
 i.get("name"),
 cb.parameter(String.class, "itemName")
)
)
).setParameter("itemName", searchString);

Here you put the itemName parameter placeholder of type String into the Criteria-
Query and then bind a value to it as usual with the Query#setParameter() method.

 Alternatively, with a ParameterExpression, you don’t have to name the place-
holder, and the binding of the argument is type-safe (you can’t bind an Integer to a
ParameterExpression<String>):

String searchString = // ...

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery criteria = cb.createQuery(Item.class);
Root<Item> i = criteria.from(Item.class);

ParameterExpression<String> itemNameParameter =
 cb.parameter(String.class);

Query query = em.createQuery(
 criteria.select(i).where(
 cb.equal(
 i.get("name"),
 itemNameParameter
)
)
).setParameter(itemNameParameter, searchString);

A rarely used and less safe option for value binding is positional query parameters.

14.2.3 Using positional parameters

If you prefer, you can use positional parameters instead of named parameters:

Query query = em.createQuery(
 "select i from Item i where i.name like ?1 and i.auctionEnd > ?2"
);
query.setParameter(1, searchString);
query.setParameter(2, tomorrowDate, TemporalType.TIMESTAMP);

In this example, the positional parameter markers are indexed ?1 and ?2. You may
know this type of parameter placeholder from JDBC, but without the numbers and
only the question marks. JPA requires that you enumerate the placeholders, starting
with 1.

NOTE In Hibernate both styles work, so be careful! Hibernate will warn you
about a brittle query if you use JDBC-style positional parameters with only
question marks.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#CustomizingSQL

354 CHAPTER 14 Creating and executing queries
Our recommendation is to avoid positional parameters. They may be more conve-
nient if you build complex queries programmatically, but the CriteriaQuery API is a
much better alternative for that purpose.

 After binding parameters to your query, you may want to enable pagination if you
can’t display all results at once.

14.2.4 Paging through large result sets

A commonly used technique to process large result sets is paging. Users may see the
result of their search request (for example, for specific items) as a page. This page
shows a limited subset (say, 10 items) at a time, and users can navigate to the next and
previous pages manually to view the rest of the result.

 The Query interface supports paging of the query result. In this query, the
requested page starts in the middle of the result set:

Query query = em.createQuery("select i from Item i");
query.setFirstResult(40).setMaxResults(10);

Starting from the fortieth row, you retrieve the next 10 rows. The call to setFirstRe-
sults(40) starts the result set at row 40. The call to setMaxResults(10) limits the
query result set to 10 rows returned by the database. Because there is no standard way
to express paging in SQL, Hibernate knows the tricks to make this work efficiently on
your particular DBMS.

 It’s crucially important to remember that paging operates at the SQL level, on
result rows. Limiting a result to 10 rows isn’t necessarily the same as limiting the result
to 10 instances of Item! In section 15.4.5, you’ll see some queries with dynamic fetching
that can’t be combined with row-based paging at the SQL level, and we’ll discuss this
issue again.

 You can even add this flexible paging option to an SQL query:

Query query = em.createNativeQuery("select * from ITEM");
query.setFirstResult(40).setMaxResults(10);

Hibernate will rewrite your SQL query to include the necessary keywords and clauses
for limiting the number of returned rows to the page you specified.

 In practice, you frequently combine paging with a special count-query. If you show
a page of items, you also let the user know the total count of items. In addition, you
need this information to decide whether there are more pages to show and whether
the user can click to the next page. This usually requires two slightly different queries:
for example, select i from Item i combined with setMaxResults() and setFirst-
Result() would retrieve a page of items, and select count(i) from Item i would
retrieve the total number of items available.

Licensed to Thomas Snead <n.ordickan@gmail.com>

355Executing queries

H

 Maintaining two almost identical queries is overhead you should avoid. A popular
trick is to write only one query but execute it with a database cursor first to get the
total result count:

Query query = em.createQuery("select i from Item i");

org.hibernate.Query hibernateQuery =
 query.unwrap(org.hibernate.jpa.HibernateQuery.class).getHibernateQuery();

org.hibernate.ScrollableResults cursor =
 hibernateQuery.scroll(org.hibernate.ScrollMode.SCROLL_INSENSITIVE);

cursor.last();
int count = cursor.getRowNumber()+1;

cursor.close();

query.setFirstResult(40).setMaxResults(10);

B Unwrap the Hibernate API to use scrollable cursors.

C Execute the query with a database cursor; this doesn’t retrieve the result set into
memory.

D Jump to the last row of the result in the database, and then get the row number.
Because row numbers are zero-based, add 1 to get the total count of rows.

E You must close the database cursor.

F Execute the query again, and retrieve an arbitrary page of data.

There is one significant problem with this convenient strategy: your JDBC driver
and/or DBMS may not support database cursors. Even worse, cursors seem to work,
but the data is silently retrieved into application memory; the cursor isn’t operating
directly on the database. Oracle and MySQL drivers are known to be problematic, and
we have more to say about scrolling and cursors in the next section. Later in this book,
in section 19.2, we’ll further discuss paging strategies in an application environment.

 Your query is now ready for execution.

14.3 Executing queries
Once you’ve created and prepared a Query, you’re ready to execute it and retrieve the
result into memory. Retrieving the entire result set into memory in one go is the most
common way to execute a query; we call this listing. Some other options are available
that we also discuss next, such as scrolling and iterating.

14.3.1 Listing all results

The getResultList() method executes the Query and returns the results as a
java.util.List:

ibernate Feature

Unwraps
API

B Executes
query

with
cursor

C

Counts rowsD

Closes cursorE

Gets arbitrary data F
Licensed to Thomas Snead <n.ordickan@gmail.com>

356 CHAPTER 14 Creating and executing queries
Query query = em.createQuery("select i from Item i");
List<Item> items = query.getResultList();

Hibernate executes one or several SQL SELECT statements immediately, depending on
your fetch plan. If you map any associations or collections with FetchType.EAGER,
Hibernate must fetch them in addition to the data you want retrieved with your query.
All data is loaded into memory, and any entity instances that Hibernate retrieves are
in persistent state and managed by the persistence context.

 Of course, the persistence context doesn’t manage scalar projection results. The
following query returns a List of Strings:

Query query = em.createQuery("select i.name from Item i");
List<String> itemNames = query.getResultList();

With some queries, you know the result is only a single result—for example, if you
want only the highest Bid or only one Item.

14.3.2 Getting a single result

You may execute a query that returns a single result with the getSingleResult()
method:

TypedQuery<Item> query = em.createQuery(
 "select i from Item i where i.id = :id", Item.class
).setParameter("id", ITEM_ID);

Item item = query.getSingleResult();

The call to getSingleResult() returns an Item instance. This also works for scalar
results:

TypedQuery<String> query = em.createQuery(
 "select i.name from Item i where i.id = :id", String.class
).setParameter("id", ITEM_ID);

String itemName = query.getSingleResult();

Now, the ugly bits: if there are no results, getSingleResult() throws a NoResult-
Exception. This query tries to find an item with a nonexistent identifier:

try {
 TypedQuery<Item> query = em.createQuery(
 "select i from Item i where i.id = :id", Item.class
).setParameter("id", 1234l);

 Item item = query.getSingleResult();
 // ...

} catch (NoResultException ex) {
 // ...
}

Licensed to Thomas Snead <n.ordickan@gmail.com>

357Executing queries

H

You’d expect a null for this type of perfectly benign query. This is rather tragic,
because it forces you to guard this code with a try/catch block. In fact, it forces you
to always wrap a call of getSingleResult(), because you can’t know whether the
row(s) will be present.

 If there’s more than one result, getSingleResult() throws a NonUniqueResultEx-
ception. This usually happens with this kind of query:

try {
 Query query = em.createQuery(
 "select i from Item i where name like '%a%'"
);

 Item item = (Item) query.getSingleResult();
 // ...

} catch (NonUniqueResultException ex) {
 // ...
}

Retrieving all results into memory is the most common way to execute a query. Hiber-
nate supports some other methods that you may find interesting if you want to opti-
mize a query’s memory consumption and execution behavior.

14.3.3 Scrolling with database cursors

Plain JDBC provides a feature called scrollable result sets. This technique uses a cursor
that the database management system holds. The cursor points to a particular row in
the result of a query, and the application can move the cursor forward and backward.
You can even directly jump to a row with the cursor.

 One of the situations where you should scroll through the results of a query
instead of loading them all into memory involves result sets that are too large to fit
into memory. Usually you try to restrict the result further by tightening the conditions
in the query. Sometimes this isn’t possible, maybe because you need all the data but
want to retrieve it in several steps. We’ll show such a batch-processing routine in sec-
tion 20.1.

 JPA doesn’t standardize scrolling through results with database cursors, so you
need the org.hibernate.ScrollableResults interface available on the proprietary
org.hibernate.Query:

Session session = em.unwrap(Session.class);

org.hibernate.Query query = session.createQuery(
 "select i from Item i order by i.id asc"
);

org.hibernate.ScrollableResults cursor =
 query.scroll(org.hibernate.ScrollMode.SCROLL_INSENSITIVE);

cursor.setRowNumber(2);

ibernate Feature

Creates queryB

Opens cursorC

Jumps to third rowD
Licensed to Thomas Snead <n.ordickan@gmail.com>

358 CHAPTER 14 Creating and executing queries

H

Item item = (Item) cursor.get(0);

cursor.close();

Start by creating an org.hibernate.Query B and opening a cursor C. You then
ignore the first two result rows, jump to the third row D, and get that row's first “col-
umn” value E. There are no columns in JPQL, so this is the first projection element:
here, i in the select clause. More examples of projection are available in the next
chapter. Always close the cursor F before you end the database transaction!

 As mentioned earlier in this chapter, you can also unwrap() the Hibernate query
API from a regular javax.persistence.Query you’ve constructed with Criteria-
Builder. A proprietary org.hibernate.Criteria query can also be executed with
scrolling instead of list(); the returned ScrollableResults cursor works the same.

 The ScrollMode constants of the Hibernate API are equivalent to the constants in
plain JDBC. In the previous example, ScrollMode.SCROLL_INSENSITIVE means the
cursor isn’t sensitive to changes made in the database, effectively guaranteeing that no
dirty reads, unrepeatable reads, or phantom reads can slip into your result set while
you scroll. Other available modes are SCROLL_SENSITIVE and FORWARD_ONLY. A sensi-
tive cursor exposes you to committed modified data while the cursor is open; and with
a forward-only cursor, you can’t jump to an absolute position in the result. Note that
the Hibernate persistence context cache still provides repeatable read for entity
instances even with a sensitive cursor, so this setting can only affect modified scalar val-
ues you project in the result set.

 Be aware that some JDBC drivers don’t support scrolling with database cursors
properly, although it might seem to work. With MySQL drivers, for example, the driv-
ers always retrieve the entire result set of a query into memory immediately; hence you
only scroll through the result set in application memory. To get real row-by-row
streaming of the result, you have to set the JDBC fetch size of the query to Integer
.MIN_VALUE (as explained in section 14.5.4) and only use ScrollMode.FORWARD_ONLY.
Check the behavior and documentation of your DBMS and JDBC driver before using
cursors.

 An important limitation of scrolling with a database cursor is that it can’t be com-
bined with dynamic fetching with the join fetch clause in JPQL. Join fetching works
with potentially several rows at a time, so you can’t retrieve data row by row. Hibernate
will throw an exception if you try to scroll() a query with dynamic fetch clauses.

 Another alternative to retrieving all data at once is iteration.

14.3.4 Iterating through a result

Let’s say you know that most of the entity instances your query will retrieve are already
present in memory. They may be in the persistence context or in the second-level

Gets column valueE

Closes cursorF

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

359Naming and externalizing queries
shared cache (see section 20.2). In such a case, it might make sense to iterate the query
result with the proprietary org.hibernate.Query API:

Session session = em.unwrap(Session.class);

org.hibernate.Query query = session.createQuery(
 "select i from Item i"
);

Iterator<Item> it = query.iterate(); // select ID from ITEM
while (it.hasNext()) {
 Item next = it.next(); // select * from ITEM where ID = ?
 // ...
}

Hibernate.close(it);

When you call query.iterate(), Hibernate executes your query and sends an SQL
SELECT to the database. But Hibernate slightly modifies the query and, instead of
retrieving all columns from the ITEM table, only retrieves the identifier/primary key
values.

 Then, every time you call next() on the Iterator, an additional SQL query is trig-
gered and the rest of the ITEM row is loaded. Obviously, this will cause an n+1 selects
problem unless Hibernate can avoid the additional queries on next(). This will be the
case if Hibernate can find the item’s data in either the persistence context cache or
the second-level cache.

 The Iterator returned by iterate() must be closed. Hibernate closes it automat-
ically when the EntityManager or Session is closed. If your iteration procedure
exceeds the maximum number of open cursors in your database, you can close the
Iterator manually with Hibernate.close(iterator).

 Iteration is rarely useful, considering that in the example all auction items would
have to be in the caches to make this routine perform well. Like scrolling with a cur-
sor, you can’t combine it with dynamic fetching and join fetch clauses; Hibernate
will throw an exception if you try.

 So far, the code examples have all embedded query string literals in Java code. This
isn’t unreasonable for simple queries, but when you begin considering complex que-
ries that must be split over multiple lines, it gets a bit unwieldy. Instead, you can give
each query a name and move it into annotations or XML files.

14.4 Naming and externalizing queries
Externalizing query strings lets you store all queries related to a particular persistent
class (or a set of classes) with the other metadata for that class. Alternatively, you can
bundle your queries into an XML file, independent of any Java class. This technique is
often preferred in larger applications; hundreds of queries are easier to maintain in a
few well-known places rather than scattered throughout the code base in various classes
accessing the database. You reference and access an externalized query by its name.

Iterator must be closed, either when
the Session is closed or manually
Licensed to Thomas Snead <n.ordickan@gmail.com>

360 CHAPTER 14 Creating and executing queries
14.4.1 Calling a named query

The EntityManager#getNamedQuery() method obtains a Query instance for a named
query:

Query query = em.createNamedQuery("findItems");

You can also obtain a TypedQuery instance for a named query:

TypedQuery<Item> query = em.createNamedQuery("findItemById", Item.class);

Hibernate’s query API also supports accessing named queries:

org.hibernate.Query query = session.getNamedQuery("findItems");

Named queries are global—that is, the name of a query is a unique identifier for a
particular persistence unit or org.hibernate.SessionFactory. How and where
they’re defined, in XML files or annotations, is no concern of your application code.
On startup, Hibernate loads named JPQL queries from XML files and/or annotations
and parses them to validate their syntax. (This is useful during development, but you
may want to disable this validation in production, for a faster bootstrap, with the per-
sistence unit configuration property hibernate.query.startup_check.)

 Even the query language you use to write a named query doesn’t matter. It can be
JPQL or SQL.

14.4.2 Defining queries in XML metadata

You can place a named query in any JPA <entity-mappings> element in your orm.xml
metadata. In larger applications, we recommend isolating and separating all named
queries into their own file. Alternatively, you may want the same XML mapping file to
define the queries and a particular class.

 The <named-query> element defines a named JPQL query:

<entity-mappings
 version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence/orm
 http://xmlns.jcp.org/xml/ns/persistence/orm_2_1.xsd">

 <named-query name="findItems">
 <query><![CDATA[
 select i from Item i
]]></query>
 </named-query>

</entity-mappings>

PATH: /model/src/main/resources/querying/ExternalizedQueries.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

361Naming and externalizing queries

H

You should wrap the query text into a CDATA instruction so any characters in your
query string that may accidentally be considered XML (such as the less than operator)
don’t confuse the XML parser. We omit CDATA from most other examples for clarity.

 Named queries don’t have to be written in JPQL. They may even be native SQL que-
ries—and your Java code doesn’t need to know the difference:

<named-native-query name="findItemsSQL"
 result-class="org.jpwh.model.querying.Item">
 <query>select * from ITEM</query>
</named-native-query>

This is useful if you think you may want to optimize your queries later by fine-tuning
the SQL. It’s also a good solution if you have to port a legacy application to JPA/Hiber-
nate, where SQL code can be isolated from the hand-coded JDBC routines. With
named queries, you can easily port the queries one by one to mapping files.

 Hibernate also has its own, nonstandard facility for externalized queries in Hiber-
nate XML metadata files:

<?xml version="1.0"?>
<hibernate-mapping xmlns="http://www.hibernate.org/xsd/orm/hbm">

 <query name="findItemsOrderByAuctionEndHibernate">
 select i from Item i order by i.auctionEnd asc
 </query>

 <sql-query name="findItemsSQLHibernate">
 <return class="org.jpwh.model.querying.Item"/>
 select * from ITEM order by NAME asc
 </sql-query>

</hibernate-mapping>

You’ll see more examples of externalized and especially custom SQL queries later in
chapter 17.

 If you don’t like XML files, you can bundle and name your queries in Java annota-
tion metadata.

14.4.3 Defining queries with annotations

JPA supports named queries with the @NamedQuery and @NamedNativeQuery annota-
tions. You can only place these annotations on a mapped class. Note that the query
name must again be globally unique in all cases; no class or package name is automat-
ically prefixed to the query name:

PATH: /model/src/main/resources/querying/ExternalizedQueries.xml

PATH: /model/src/main/resources/querying/ExternalizedQueries.hbm.xml

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

362 CHAPTER 14 Creating and executing queries

H

@NamedQueries({
 @NamedQuery(
 name = "findItemById",
 query = "select i from Item i where i.id = :id"
)
})
@Entity
public class Item {
 // ...
}

The class is annotated with an @NamedQueries containing an array of @NamedQuery. A
single query can be declared directly; you don’t need to wrap it in @NamedQueries. If
you have an SQL instead of a JPQL query, use the @NamedNativeQuery annotation.
There are many options to consider for mapping SQL result sets, so we’ll show you
how this works later, in a dedicated section in chapter 17.

 Unfortunately, JPA’s named query annotations only work when they’re on a
mapped class. You can’t put them into a package-info.java metadata file. Hibernate
has some proprietary annotations for that purpose:

@org.hibernate.annotations.NamedQueries({
 @org.hibernate.annotations.NamedQuery(
 name = "findItemsOrderByName",
 query = "select i from Item i order by i.name asc"
)
})

package org.jpwh.model.querying;

If neither XML files nor annotations seem to be the right place for defining your
named queries, you might want to construct them programmatically.

14.4.4 Defining named queries programmatically

You can “save” a Query as a named query with the EntityManagerFactory#addNamed-
Query() method:

Query findItemsQuery = em.createQuery("select i from Item i");
em.getEntityManagerFactory().addNamedQuery(
 "savedFindItemsQuery", findItemsQuery
);

Query query =

em.createNamedQuery("savedFindItemsQuery");

PATH: /model/src/main/java/org/jpwh/model/querying/package-info.java

ibernate Feature

Later, with the same
EntityManagerFactory
Licensed to Thomas Snead <n.ordickan@gmail.com>

363Query hints
This registers your query with the persistence unit, the EntityManagerFactory, and
make it reusable as a named query. The saved Query doesn’t have to be a JPQL state-
ment; you can also save a criteria or native SQL query. Typically, you register your que-
ries once, on startup of your application.

 We leave it to you to decide whether you want to use the named query feature. But
we consider query strings in the application code (unless they’re in annotations) to be
the second choice; you should always externalize query strings if possible. In practice,
XML files are probably the most versatile option.

 Finally, for some queries, you may need extra settings and hints.

14.5 Query hints
In this section, we introduce some additional query options from the JPA standard
and some proprietary Hibernate settings. As the name implies, you probably won’t
need them right away, so you can skip this section if you like and read it later as a ref-
erence.

 All the examples use the same query, shown here:

String queryString = "select i from Item i";

In general, you can set a hint on a Query with the setHint() method. All the other
query APIs, such as TypedQuery and StoredProcedureQuery, also have this method. If
the persistence provider doesn’t support a hint, the provider will ignore it silently.

 JPA standardizes the hints shown in table 14.1.

Table 14.1 Standardized JPA query hints

Name Value Description

javax.persistence.query.
timeout

(Milliseconds) Sets the timeout for query execution. This
hint is also available as a constant on
org.hibernate.annotations.Query-
Hints.TIMEOUT_JPA.

javax.persistence.cache.
retrieveMode

USE | BYPASS Controls whether Hibernate tries to read data
from the second-level shared cache when
marshaling a query result, or bypasses the
cache and only reads data from the query
result.

javax.persistence.cache.
storeMode

USE | BYPASS
|REFRESH

Controls whether Hibernate stores data in
the second-level shared cache when marshal-
ing a query result.
Licensed to Thomas Snead <n.ordickan@gmail.com>

364 CHAPTER 14 Creating and executing queries

H

 Hibernate has its own vendor-specific hints for queries, also available as constants
on org.hibernate.annotations.QueryHints; see table 14.2.

Second-level shared caching (especially query caching) is a complex issue, so we’ll
dedicate section 20.2 to it. You should read that section before enabling the shared
cache: setting caching to “enabled” for a query will have no effect.

 Some of the other hints also deserve a longer explanation.

14.5.1 Setting a timeout

You can control how long to let a query run by setting a timeout:

Query query = em.createQuery(queryString)
 .setHint("javax.persistence.query.timeout", 60000);

With Hibernate, this method has the same semantics and consequences as the set-
QueryTimeout() method on the JDBC Statement API.

 Note that a JDBC driver doesn’t necessarily cancel the query precisely when the
timeout occurs. The JDBC specification says, “Once the data source has had an oppor-
tunity to process the request to terminate the running command, a SQLException will
be thrown to the client ….” Hence, there is room for interpretation as to when exactly
the data source has an opportunity to terminate the command. It might only be after
the execution completes. You may want to test this with your DBMS product and driver.

 You can also specify this timeout hint as a global default property in persis-
tence.xml as a property when creating the EntityManagerFactory or as a named

Table 14.2 Hibernate query hints

Name Value Description

org.hibernate.flushMode org.hibernate.FlushMode
(Enum)

Controls whether and when the
persistence context should be
flushed before execution of the
query

org.hibernate.readOnly true | false Enables or disables dirty check-
ing for the managed entity
instances returned by the query

org.hibernate.fetchSize (JDBC fetch size) Calls the JDBC
PreparedStatement#set-
FetchSize() method before
executing the query, an optimiza-
tion hint for the database driver

org.hibernate.comment (SQL comment string) A comment to prepend to the
SQL, useful for (database)
logging

ibernate Feature

1 minute
Licensed to Thomas Snead <n.ordickan@gmail.com>

365Query hints
query option. The Query#setHint() method then overrides this global default for a
particular query.

14.5.2 Setting the flush mode

Let’s assume that you make modifications to persistent entity instances before execut-
ing a query. For example, you modify the name of managed Item instances. These
modifications are only present in memory, so Hibernate by default flushes the persis-
tence context and all changes to the database before executing your query. This guar-
antees that the query runs on current data and that no conflict between the query
result and the in-memory instances can occur.

 This may be impractical at times, if you execute a sequence that consists of many
query-modify-query-modify operations, and each query is retrieving a different data
set than the one before. In other words, you sometimes know you don’t need to flush
your modifications to the database before executing a query, because conflicting
results aren’t a problem. Note that the persistence context provides repeatable read
for entity instances, so only scalar results of a query are a problem anyway.

 You can disable flushing of the persistence context before a query with the
org.hibernate.flushMode hint on a Query and the value org.hibernate.Flush-
Mode.COMMIT. Fortunately, JPA has a standard setFlushMode() method on the Entity-
Manager and Query API, and FlushModeType.COMMIT is also standardized. So, if you
want to disable flushing only before a particular query, use the standard API:

Query query = em.createQuery(queryString)
 .setFlushMode(FlushModeType.COMMIT);

With the flush mode set to COMMIT, Hibernate won’t flush the persistence context
before executing the query. The default is AUTO.

14.5.3 Setting read-only mode

In section 10.2.8, we talked about how you can reduce memory consumption and pre-
vent long dirty-checking cycles. You can tell Hibernate that it should consider all
entity instances returned by a query as read-only (although not detached) with a hint:

Query query = em.createQuery(queryString)
 .setHint(
 org.hibernate.annotations.QueryHints.READ_ONLY,
 true
);

All Item instances returned by this query are in persistent state, but Hibernate doesn’t
enable snapshot for automatic dirty checking in the persistence context. Hibernate
doesn’t persist any modifications automatically unless you disable read-only mode
with session.setReadOnly(item, false).
Licensed to Thomas Snead <n.ordickan@gmail.com>

366 CHAPTER 14 Creating and executing queries
14.5.4 Setting a fetch size

The fetch size is an optimization hint for the database driver:

Query query = em.createQuery(queryString)
 .setHint(
 org.hibernate.annotations.QueryHints.FETCH_SIZE,
 50
);

This hint may not result in any performance improvement if the driver doesn’t imple-
ment this functionality. If it does, it can improve the communication between the
JDBC client and the database by retrieving many rows in one batch when the client
(Hibernate) operates on a query result (that is, on a ResultSet).

14.5.5 Setting an SQL comment

When you optimize an application, you often have to read complex SQL logs. We
highly recommend that you enable the property hibernate.use_sql_comments in
your persistence.xml configuration. Hibernate will then add an auto-generated com-
ment to each SQL statement it writes to the logs.

 You can set a custom comment for a particular Query with a hint:

Query query = em.createQuery(queryString)
 .setHint(
 org.hibernate.annotations.QueryHints.COMMENT,
 "Custom SQL comment"
);

The hints you’ve been setting so far are all related to Hibernate or JDBC handling.
Many developers (and DBAs) consider a query hint to be something completely differ-
ent. In SQL, a query hint is an instruction in the SQL statement for the optimizer of
the DBMS. For example, if the developer or DBA thinks the execution plan selected by
the database optimizer for a particular SQL statement isn’t the fastest, they use a hint
to force a different execution plan. Hibernate and Java Persistence don’t support arbi-
trary SQL hints with an API; you’ll have to fall back to native SQL and write your own
SQL statement—you can of course execute that statement with the provided APIs.

 On the other hand, with some DBMS products, you can control the optimizer with
an SQL comment at the beginning of an SQL statement. In that case, use the comment
hint as shown in the last example.

 In all previous examples, you’ve set the query hint directly on the Query instance. If
you have externalized and named queries, you must set hints in annotations or XML.

14.5.6 Named query hints

All the query hints set earlier with setHint() can also be set in XML metadata in a
<named-query> or <named-native-query> element:

Licensed to Thomas Snead <n.ordickan@gmail.com>

367Query hints

H

<entity-mappings
 version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence/orm
 http://xmlns.jcp.org/xml/ns/persistence/orm_2_1.xsd">

 <named-query name="findItems">
 <query><![CDATA[
 select i from Item i
]]></query>
 <hint name="javax.persistence.query.timeout" value="60000"/>
 <hint name="org.hibernate.comment" value="Custom SQL comment"/>
 </named-query>

</entity-mappings>

You can set hints on named queries defined in annotations:

@NamedQueries({
 @NamedQuery(
 name = "findItemByName",
 query = "select i from Item i where i.name like :name",
 hints = {
 @QueryHint(
 name = org.hibernate.annotations.QueryHints.TIMEOUT_JPA,
 value = "60000"),
 @QueryHint(
 name = org.hibernate.annotations.QueryHints.COMMENT,
 value = "Custom SQL comment")
 }
)
})

Hints can be set on named queries in Hibernate annotations in a package-info.java
file:

@org.hibernate.annotations.NamedQueries({
 @org.hibernate.annotations.NamedQuery(
 name = "findItemBuyNowPriceGreaterThan",
 query = "select i from Item i where i.buyNowPrice > :price",
 timeout = 60,
 comment = "Custom SQL comment"
)
})

package org.jpwh.model.querying;

ibernate Feature

Seconds!
Licensed to Thomas Snead <n.ordickan@gmail.com>

368 CHAPTER 14 Creating and executing queries

H

In addition, of course, hints can be set on named queries externalized into a Hiber-
nate XML metadata file:

<?xml version="1.0"?>
<hibernate-mapping xmlns="http://www.hibernate.org/xsd/orm/hbm">

 <query name="findItemsOrderByAuctionEndHibernateWithHints"
 cache-mode="ignore"
 comment="Custom SQL comment"
 fetch-size="50"
 read-only="true"
 timeout="60">
 select i from Item i order by i.auctionEnd asc
 </query>

</hibernate-mapping>

14.6 Summary
 You learned how to create and execute queries. To create queries, you use the

JPA query interfaces and process typed query results. You also saw Hibernate’s
own query interfaces.

 You then looked at how to prepare queries, taking care to protect against SQL
injection attacks. You learned how to use bound and positional parameters, and
you paged through large result sets.

 Instead of embedding JPQL in Java sources, you can name and externalize que-
ries. You saw how to call a named query and different ways to define queries: in
XML metadata, with annotations, and programmatically.

 We discussed the query hints you can give Hibernate: setting a timeout, flush
mode, read-only mode, fetch size, and SQL comment. As with JPQL, you saw
how to name and externalize query hints.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

The query languages
Queries are the most interesting part of writing good data access code. A complex
query may require a long time to get right, and its impact on the performance of
the application can be tremendous. On the other hand, writing queries becomes
much easier with more experience, and what seemed difficult at first is only a mat-
ter of knowing the available query languages.

 This chapter covers the query languages available in JPA: JPQL and the criteria
query API. We always show the same query example with both languages/API,
where the result of the queries is equivalent.

In this chapter
 Writing JPQL and criteria queries

 Retrieving data efficiently with joins

 Reporting queries and subselects
369

Licensed to Thomas Snead <n.ordickan@gmail.com>

370 CHAPTER 15 The query languages

We expect that you won’t read this chapter just once but will rely on it as a reference
to look up the correct syntax for a particular query when coding your application.
Hence, our writing style is less verbose, with many small code examples for different
use cases. We also sometimes simplify parts of the CaveatEmptor application for better
readability. For example, instead of referring to MonetaryAmount, we use a simple
BigDecimal amount in comparisons.

 Let’s start with some query terminology. You apply selection to define where the data
should be retrieved from, restriction to match records to a given criteria, and projection
to select the data you want returned from a query. You’ll find this chapter organized
in this manner.

 When we talk about queries in this chapter, we usually mean SELECT statements:
operations that retrieve data from the database. JPA also supports UPDATE, DELETE, and
even INSERT ... SELECT statements in JPQL, criteria, and SQL flavors, which we’ll dis-
cuss in section 20.1. We won’t repeat those bulk operations here and will focus on
SELECT statements. We start with some basic selection examples.

15.1 Selection
First, when we say selection, we don’t mean the SELECT clause of a query. We aren’t talk-
ing about the SELECT statement as such, either. We are referring to selecting a relation
variable—or, in SQL terms, the FROM clause. It declares where data for your query
should come from: simplifying, which tables you “select” for a query. Alternatively,
with classes instead of table names in JPQL:

from Item

The following query (just a FROM clause) retrieves all Item entity instances. Hibernate
generates the following SQL:

select i.ID, i.NAME, ... from ITEM i

The equivalent criteria query can be built with the from() method, passing in the
entity name:

CriteriaQuery criteria = cb.createQuery(Item.class);
criteria.from(Item.class);

Major new features in JPA 2
 There is now support for CASE, NULLIF, and COALESCE operators, with the

same semantics as their SQL counterparts.
 You can downcast with the TREAT operator in restrictions and selections.
 You can call arbitrary SQL database functions in restrictions and projections.
 You can append additional join conditions for outer joins with the new ON

keyword.
 You can use joins in subselect FROM clauses.
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#FetchPlanStrategy

371Selection

H

Hibernate understands queries with only a FROM clause or criterion. Unfortunately,
the JPQL and criteria queries we’ve just shown aren’t portable; they aren’t JPA-compli-
ant. The JPA specification requires that a JPQL query have a SELECT clause and that
portable criteria queries call the select() method.

 This requires assignment of aliases and query roots, our next topic.

15.1.1 Assigning aliases and query roots

Adding a SELECT clause to a JPQL query requires assignment of an alias to the queried
class in the FROM clause, such that you can reference it in other parts of the query:

select i from Item as i

The following query is now JPA-compliant. The as keyword is always optional. The fol-
lowing is equivalent:

select i from Item i

You assign the alias i to queried instances of the Item class. Think of this as being a bit
like the temporary variable declaration in the following Java code:

for(Iterator i = result.iterator(); i.hasNext();) {
 Item item = (Item) i.next();
 // ...
}

Aliases in queries aren’t case-sensitive, so select iTm from Item itm works. We prefer
to keep aliases short and simple, though; they only need to be unique within a query
(or subquery).

 Portable criteria queries must call the select() method:

CriteriaQuery criteria = cb.createQuery();
Root<Item> i = criteria.from(Item.class);
criteria.select(i);

We’ll skip the cb.createQuery() line in most other criteria examples; it’s always the
same. Whenever you see a criteria variable, it was produced with Criteria-
Builder#createQuery(). The previous chapter explains how to obtain a Criteria-
Builder.

 The Root of a criteria query always references an entity. Later we show you queries
with several roots. You can abbreviate this query by inlining the Root:

criteria.select(criteria.from(Item.class));

Alternatively, you may look up the entity type dynamically with the Metamodel API:

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

372 CHAPTER 15 The query languages

H

EntityType entityType = getEntityType(
 em.getMetamodel(), "Item"
);

criteria.select(criteria.from(entityType));

The getEntityType() method is our own trivial addition: It iterates through
Metamodel#getEntities(), looking for a match with the given entity name.

 The Item entity doesn’t have subclasses, so let’s look at polymorphic selection next.

15.1.2 Polymorphic queries

JPQL, as an object-oriented query language, supports polymorphic queries—queries for
instances of a class and all instances of its subclasses, respectively. Consider the follow-
ing queries:

select bd from BillingDetails bd

criteria.select(criteria.from(BillingDetails.class));

These queries return all instances of the type BillingDetails, which is an abstract
class. In this case, each instance is of a subtype of BillingDetails: CreditCard or
BankAccount. If you want only instances of a particular subclass, you may use this:

select cc from CreditCard cc

criteria.select(criteria.from(CreditCard.class));

The class named in the FROM clause doesn’t even need to be a mapped persistent class;
any class will do. The following query returns all persistent objects:

select o from java.lang.Object o

Yes, you can select all the tables of your database with such a query and retrieve all
data into memory! This also works for arbitrary interfaces—for example, selecting all
serializable types:

select s from java.io.Serializable s

The bad news is that JPA doesn’t standardize polymorphic JPQL queries with arbitrary
interfaces. They work in Hibernate, but portable applications should only reference
mapped entity classes in the FROM clause (such as BillingDetails or CreditCard).
The from() method in the criteria query API only accepts mapped entity types.

 You can perform non-polymorphic queries by restricting the scope of selected types
with the TYPE function. If you only want instances of a particular subclass, you may use

select bd from BillingDetails bd where type(bd) = CreditCard

Root<BillingDetails> bd = criteria.from(BillingDetails.class);
criteria.select(bd).where(

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

373Restriction
 cb.equal(bd.type(), CreditCard.class)
);

If you need to parameterize such a query, add an IN clause and a named parameter:

select bd from BillingDetails bd where type(bd) in :types

Root<BillingDetails> bd = criteria.from(BillingDetails.class);
criteria.select(bd).where(
 bd.type().in(cb.parameter(List.class, "types"))
);

You bind the argument to the parameter by providing a List of types you’d like to match:

Query query = // ...
query.setParameter("types", Arrays.asList(CreditCard.class,

BankAccount.class));

If you want all instances of a particular subclass except a given class, use the following:

select bd from BillingDetails bd where not type(bd) = BankAccount

Root<BillingDetails> bd = criteria.from(BillingDetails.class);
criteria.select(bd).where(
 cb.not(cb.equal(bd.type(), BankAccount.class))
);

Polymorphism applies not only to explicitly named classes but also to polymorphic
associations, as you’ll see later in this chapter.

 You’re now done with the first step of writing a query, the selection. You picked the
tables from which to query data. Next, you’d probably like to limit the rows you want
to retrieve with a restriction.

15.2 Restriction
Usually, you don’t want to retrieve all instances of a class from the database. You must
be able to express constraints on the data returned by the query. We call this restriction.
The WHERE clause declares restriction conditions in SQL and JPQL, and the where()
method is the equivalent in the criteria query API.

 This is a typical WHERE clause that restricts the results to all Item instances with a
given name:

select i from Item i where i.name = 'Foo'

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.equal(i.get("name"), "Foo")
);

The query expresses the constraint in terms of a property, name, of the Item class.
 The SQL generated by these queries is

select i.ID, i.NAME, ... from ITEM i where i.NAME = 'Foo'
Licensed to Thomas Snead <n.ordickan@gmail.com>

374 CHAPTER 15 The query languages
You can include string literals in your statements and conditions, with single quotes.
For date, time, and timestamp literals, use the JDBC escape syntax: ... where

i.auctionEnd = {d '2013-26-06'}. Note that your JDBC driver and DBMS define
how to parse this literal and what other variations they support. Remember our advice
from the previous chapter: don’t concatenate unfiltered user input into your query
string—use parameter binding. Other common literals in JPQL are true and false:

select u from User u where u.activated = true

Root<User> u = criteria.from(User.class);
criteria.select(u).where(
 cb.equal(u.get("activated"), true)
);

SQL (JPQL and criteria queries) expresses restrictions with ternary logic. The WHERE
clause is a logical expression that evaluates to true, false, or null.

Let’s walk through the most common comparison operators in logical expressions,
including ternary operators.

15.2.1 Comparison expressions

JPQL and the criteria API support the same basic comparison operators as SQL. Here
are a few examples that should look familiar if you know SQL.

 The following query returns all bids with amounts in a given range:

select b from Bid b where b.amount between 99 and 110

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.between(
 b.<BigDecimal>get("amount"),
 new BigDecimal("99"), new BigDecimal("110")
)
);

The criteria query may look a bit strange; you probably haven’t seen generics in the
middle of expressions often in Java. The Root#get() method produces a Path<X> of an
entity attribute. To preserve type safety, you must specify the attribute type of that Path,

What is ternary logic?
A row is included in an SQL query result if and only if the WHERE clause evaluates to
true. In Java, nonNullObject == null evaluates to false, and null == null eval-
uates to true. In SQL, NOT_NULL_COLUMN = null and null = null both evaluate to
null, not true. Thus, SQL needs special operators, IS NULL and IS NOT NULL, to
test whether a value is null. Ternary logic is a way of handling expressions you may
apply to nullable column values. Treating null not as a special marker but as a regular
value is an SQL extension of the familiar binary logic of the relational model. Hibernate
has to support this ternary logic with ternary operators in JPQL and criteria queries.

Type of path
required

Must be the
same type
Licensed to Thomas Snead <n.ordickan@gmail.com>

375Restriction
as in <BigDecimal>get("amount"). The other two arguments of the between() method
then must be of the same type, or the comparison wouldn’t make sense or compile.

 The following query returns all bids with amounts greater than the given value:

select b from Bid b where b.amount > 100

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.gt(
 b.<BigDecimal>get("amount"),
 new BigDecimal("100")
)
);

The gt() method only accepts arguments of Number type, such as BigDecimal or
Integer. If you need to compare values of other types, for example a Date, use
greaterThan() instead:

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.greaterThan(
 i.<Date>get("auctionEnd"),
 tomorrowDate
)
);

The following query returns all users with the user names “johndoe” and “janeroe”:

select u from User u where u.username in ('johndoe', 'janeroe')

Root<User> u = criteria.from(User.class);
criteria.select(u).where(
 cb.<String>in(u.<String>get("username"))
 .value("johndoe")
 .value("janeroe")
);

For restrictions with enums, use the fully qualified literal:

select i from Item i
 where i.auctionType = org.jpwh.model.querying.AuctionType.HIGHEST_BID

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.equal(
 i.<AuctionType>get("auctionType"),
 AuctionType.HIGHEST_BID
)
);

Because SQL relies on ternary logic, testing for null values requires special care. You
use the IS [NOT] NULL operators in JPQL and isNull() and isNotNull() in the crite-
ria query API.

gt() only works with Number;
use greaterThan() otherwise.
Licensed to Thomas Snead <n.ordickan@gmail.com>

376 CHAPTER 15 The query languages
 Here are IS NULL and isNull() in action, getting items without a buy-now price:

select i from Item i where i.buyNowPrice is null

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.isNull(i.get("buyNowPrice"))
);

Using IS NOT NULL and isNotNull(), you return items with a buy-now price:

select i from Item i where i.buyNowPrice is not null

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.isNotNull(i.get("buyNowPrice"))
);

The LIKE operator allows wildcard searches, where the wildcard symbols are % and _,
as in SQL:

select u from User u where u.username like 'john%'

Root<User> u = criteria.from(User.class);
criteria.select(u).where(
 cb.like(u.<String>get("username"), "john%")
);

The expression john% restricts the result to users with a username starting with “john”.
You may also negate the LIKE operator, for example, in a substring match expression:

select u from User u where u.username not like 'john%'

Root<User> u = criteria.from(User.class);
criteria.select(u).where(
 cb.like(u.<String>get("username"), "john%").not()
);

You can match any substring by surrounding the search string with percentage
characters:

select u from User u where u.username like '%oe%'

Root<User> u = criteria.from(User.class);
criteria.select(u).where(
 cb.like(u.<String>get("username"), "%oe%")
);

The percentage symbol stands for any sequence of characters; the underscore can be
used to wildcard a single character. You can escape with a character of your choice if
you want a literal percentage or underscore:

Licensed to Thomas Snead <n.ordickan@gmail.com>

377Restriction

H

select i from Item i
 where i.name like 'Name_with_underscores' escape :escapeChar
query.setParameter("escapeChar", "\\");

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.like(i.<String>get("name"), "Name_with_underscores", '\\')
);

These queries return all items with Name_with_underscores. In Java strings, the char-
acter \ is the escape character, so you must escape it, which explains the double-back-
slash in the example.

 JPA also supports arithmetic expressions:

select b from Bid b where (b.amount / 2) - 0.5 > 49

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.gt(
 cb.diff(
 cb.quot(b.<BigDecimal>get("amount"), 2),
 0.5
),
 49
)
);

Logical operators (and parentheses for grouping) combine expressions:

select i from Item i
 where (i.name like 'Fo%' and i.buyNowPrice is not null)
 or i.name = 'Bar'/

Root<Item> i = criteria.from(Item.class);

Predicate predicate = cb.and(
 cb.like(i.<String>get("name"), "Fo%"),
 cb.isNotNull(i.get("buyNowPrice"))
);

predicate = cb.or(
 predicate,
 cb.equal(i.<String>get("name"), "Bar")
);

criteria.select(i).where(predicate);

If instead you combine all predicates with the logical AND, we prefer this fluent criteria
query API style:

Root<Item> i = criteria.from(Item.class);

criteria.select(i).where(

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

378 CHAPTER 15 The query languages
 cb.like(i.<String>get("name"), "Fo%"),
 // AND
 cb.isNotNull(i.get("buyNowPrice"))
 // AND ...
);

We summarize all operators, including some we haven’t shown so far, and their prece-
dence from top to bottom, in table 15.1.

You’ve already seen how binary comparison expressions have the same semantics as
their SQL counterparts and how to group and combine them with logical operators.
Let’s discuss collection handling.

15.2.2 Expressions with collections

All expressions in the previous sections had only single-valued path expressions:
user.username, item.buyNowPrice, and so on. You can also write path expressions
that end in collections, and apply some operators and functions.

 For example, let’s assume you want to restrict your query result to Category
instances that have an element in their items collection:

Table 15.1 JPQL operator precedence

JPQL operator Criteria query API Description

. N/A Navigation path expression operator

+, -
neg()

Unary positive or negative signing (all
unsigned numeric values are consid-
ered positive)

*, / prod(), quot() Multiplication and division of numeric
values

+, - sum(), diff() Addition and subtraction of numeric
values

=, <>, <, >, >=, < equal(), notEqual(),
lessThan(), lt(),
greaterThan(), gt(),
greaterThanEqual(),
ge(), lessThan(), lt()

Binary comparison operators with SQL
semantics

[NOT] BETWEEN, [NOT]
LIKE, [NOT] IN, IS
[NOT] NULL

between(), like(), in(),
isNull(), isNotNull()

Binary comparison operators with SQL
semantics

IS [NOT] EMPTY, [NOT]
MEMBER [OF]

isEmpty(),
isNotEmpty(),
isMember(),
isNotMember()

Binary operators for persistent collec-
tions

NOT, AND, OR not(), and(), or() Logical operators for ordering of
expression evaluation
Licensed to Thomas Snead <n.ordickan@gmail.com>

379Restriction
select c from Category c
 where c.items is not empty

Root<Category> c = criteria.from(Category.class);
criteria.select(c).where(
 cb.isNotEmpty(c.<Collection>get("items"))
);

The c.items path expression in the JPQL query terminates in a collection property:
the items of a Category. Note that it’s always illegal to continue a path expression
after a collection-valued property: you can’t write c.items.buyNowPrice.

 You can restrict the result depending on the size of the collection, with the size()
function:

select c from Category c
 where size(c.items) > 1

Root<Category> c = criteria.from(Category.class);
criteria.select(c).where(
 cb.gt(
 cb.size(c.<Collection>get("items")),
 1
)
);

You can also express that you require a particular element to be present in a collection:

select c from Category c
 where :item member of c.items

Root<Category> c = criteria.from(Category.class);
criteria.select(c).where(
 cb.isMember(
 cb.parameter(Item.class, "item"),
 c.<Collection<Item>>get("items")
)
);

For persistent maps, the special operators key(), value(), and entry() are available.
Let’s say you have a persistent map of Image embeddables for each Item, as shown in
section 7.2.4. The filename of each Image is the map key. The following query
retrieves all Image instances with a .jpg suffix in the filename:

select value(img)
 from Item i join i.images img
 where key(img) like '%.jpg'

The value() operator returns the values of the Map, and the key() operator returns
the key set of the Map. If you want to return Map.Entry instances, use the entry()
operator.

 Let’s look at other available functions next, not limited to collections.
Licensed to Thomas Snead <n.ordickan@gmail.com>

380 CHAPTER 15 The query languages
15.2.3 Calling functions

An extremely powerful feature of the query languages is the ability to call functions in
the WHERE clause. The following queries call the lower() function for case-insensitive
searching:

select i from Item i where lower(i.name) like 'ba%'

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(
 cb.like(cb.lower(i.<String>get("name")), "ba%")
);

Look at the summary of all available functions in table 15.2. For criteria queries, the
equivalent methods are in CriteriaBuilder, with slightly different name formatting
(using camelCase and no underscores).

Table 15.2 JPA query functions (overloaded methods not listed)

Function Applicability

upper(s), lower(s) String values; returns a string value.

concat(s, s) String values; returns a string value.

current_date, current_time,
current_timestamp

Returns the date and/or time of the database management
system machine.

substring(s, offset, length) String values (offset starts at 1); returns a string value.

trim(
[[both|leading|trailing]
char [from]] s)

Trims spaces on both sides of s if no char or other specifica-
tion is given; returns a string value.

length(s) String value; returns a numeric value.

locate(search, s, offset) Returns the position of search in s starting to search at
offset; returns a numeric value.

abs(n), sqrt(n),
mod(dividend, divisor)

Numeric values; returns an absolute of same type as input,
square root as Double, and the remainder of a division as an
Integer.

treat(x as Type) Downcast in restrictions; for example, retrieve all users with
credit cards expiring in 2013: select u from User u
where treat(u.billingDetails as
CreditCard).expYear = '2013'. (Note that this isn’t
necessary in Hibernate. It automatically downcasts if a sub-
class property path is used.)

size(c) Collection expressions; returns an Integer, or 0 if empty.

index(orderedCollection) Expression for collections mapped with @OrderColumn;
returns an Integer value corresponding to the position of its
argument in the list. For example, select i.name from
Category c join c.items i where index(i) = 0
returns the name of the first item in each category.
Licensed to Thomas Snead <n.ordickan@gmail.com>

381Restriction

H

H

Hibernate offers additional functions for JPQL, as shown in table 15.3. There is no
equivalent for these functions in the standard JPA criteria API.

Most of these Hibernate-only functions translate into SQL counterparts you’ve proba-
bly seen before. You can also call SQL functions supported by your DBMS that aren’t
listed here.

 With Hibernate, any function call in the WHERE clause of a JPQL statement that isn’t
known to Hibernate is passed directly to the database as an SQL function call. For exam-
ple, the following query returns all items with an auction period longer than one day:

select i from Item i
 where
 datediff('DAY', i.createdOn, i.auctionEnd)
 > 1

Here you call the proprietary datediff() function of the H2 database system, it
returns the difference in days between the creation date and the auction end date of
an Item. This syntax only works in Hibernate though; in JPA, the standardized invoca-
tion syntax for calling arbitrary SQL functions is

select i from Item i
 where
 function('DATEDIFF', 'DAY', i.createdOn, i.auctionEnd)
 > 1

The first argument of function() is the name of the SQL function you want to call in
single quotes. Then, you append any additional operands for the actual function; you
may have none or many. This is the same criteria query:

Root<Item> i = criteria.from(Item.class);
criteria.select(i).where(

Table 15.3 Hibernate query functions

Function Description

bit_length(s) Returns the number of bits in s

second(d), minute(d), hour(d),
day(d), month(d), year(d)

Extracts the time and date from a temporal
argument

minelement(c), maxelement(c),
minindex(c), maxindex(c),
elements(c), indices(c)

Returns an element or index of an indexed
collections (maps, lists, arrays)

str(x) Casts the argument to a character string

ibernate Feature

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

382 CHAPTER 15 The query languages
 cb.gt(
 cb.function(
 "DATEDIFF",
 Integer.class,
 cb.literal("DAY"),
 i.get("createdOn"),
 i.get("auctionEnd")
),
 1
)
);

The Integer.class argument is the return type of the datediff() function and is
irrelevant here because you aren’t returning the result of the function call in a
restriction.

 A function call in the SELECT clause would return the value to the Java layer; you
can also invoke arbitrary SQL database functions in the SELECT clause. Before we talk
about this clause and projection, let’s see how results can be ordered.

15.2.4 Ordering query results

All query languages provide some mechanism for ordering query results. JPQL pro-
vides an ORDER BY clause, similar to SQL.

 The following query returns all users, ordered by username, ascending by default:

select u from User u order by u.username

You specify ascending or descending order with the asc and desc keywords:

select u from User u order by u.username desc

With the criteria query API, you must specify ascending and descending order with
asc() or desc():

Root<User> u = criteria.from(User.class);
criteria.select(u).orderBy(
 cb.desc(u.get("username"))
);

You may order by multiple properties:

select u from User u order by u.activated desc, u.username asc

Root<User> u = criteria.from(User.class);
criteria.select(u).orderBy(
 cb.desc(u.get("activated")),
 cb.asc(u.get("username"))
);
Licensed to Thomas Snead <n.ordickan@gmail.com>

383Projection

H

The JPA specification only allows properties/paths in the ORDER BY clause if the
SELECT clause projects the same properties/paths. The following queries may be non-
portable but work in Hibernate:

select i.name from Item i order by i.buyNowPrice asc

select i from Item i order by i.seller.username desc

Be careful with implicit inner joins in path expressions and ORDER BY: The last query
returns only Item instances that have a seller. This may be unexpected, as the same
query without the ORDER BY clause would retrieve all Item instances. (Ignoring for a
moment that in our model the Item always has a seller, this issue is visible with
optional references.) You’ll find a more detailed discussion of inner joins and path
expressions later in this chapter.

 You now know how to write the FROM, WHERE, and ORDER BY clauses. You know how
to select the entities you want to retrieve instances of and the necessary expressions
and operations to restrict and order the result. All you need now is the ability to proj-
ect the data of this result to what you need in your application.

15.3 Projection
In simple terms, selection and restriction in a query is the process of declaring which
tables and rows you want to query. Projection is defining the “columns” you want
returned to the application: the data you need. The SELECT clause in JPQL performs
projections.

15.3.1 Projection of entities and scalar values

For example, consider the following queries:

select i, b from Item i, Bid b

Root<Item> i = criteria.from(Item.class);
Root<Bid> b = criteria.from(Bid.class);
criteria.select(cb.tuple(i, b));

Order of nulls
If the column you’re ordering by can be NULL, rows with NULL may be first or last in
the query result. This behavior depends on your DBMS, so for portable applications
you should specify whether NULL should be first or last with the clause ORDER BY ...
NULLS FIRST|LAST. Hibernate supports this clause in JPQL, however, this isn’t stan-
dardized in JPA. Alternatively, you can set a default order with the persistence unit
configuration property hibernate.order_by.default_null_ordering set to none
(the default), first, or last.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

384 CHAPTER 15 The query languages
/* Convenient alternative:
criteria.multiselect(
 criteria.from(Item.class),
 criteria.from(Bid.class)
);
*/

As promised earlier, this criteria query shows how you can add several Roots by calling
the from() method several times. To add several elements to your projection, either
call the tuple() method of CriteriaBuilder, or the shortcut multiselect().

 You’re creating a Cartesian product of all Item and Bid instances. The queries
return ordered pairs of Item and Bid entity instances:

List<Object[]> result = query.getResultList();

Set<Item> items = new HashSet();
Set<Bid> bids = new HashSet();

for (Object[] row : result) {
 assertTrue(row[0] instanceof Item);
 items.add((Item) row[0]);

 assertTrue(row[1] instanceof Bid);
 bids.add((Bid)row[1]);
}

assertEquals(items.size(), 3);
assertEquals(bids.size(), 4);
assertEquals(result.size(), 12);

The query returns a List of Object[] B. At index 0 is the Item C, and at index 1 is
the Bid D.

 Because this is a product, the result contains every possible combination of Item
and Bid rows found in the two underlying tables. Obviously, this query isn’t useful, but
you shouldn’t be surprised to receive a collection of Object[] as a query result. Hiber-
nate manages all Item and Bid entity instances in persistent state, in the persistence
context. Note how the HashSets filter out duplicate Item and Bid instances.

 Alternatively, with the Tuple API, in criteria queries you get typed access to the
result list. Start by calling createTupleQuery() to create a CriteriaQuery<Tuple>.
Then, refine the query definition by adding aliases for the entity classes:

CriteriaQuery<Tuple> criteria = cb.createTupleQuery();

// Or: CriteriaQuery<Tuple> criteria = cb.createQuery(Tuple.class);

criteria.multiselect(
 criteria.from(Item.class).alias("i"),
 criteria.from(Bid.class).alias("b")
);

TypedQuery<Tuple> query = em.createQuery(criteria);
List<Tuple> result = query.getResultList();

Returns List of Object[]B

Index 0C

Index 1D

Cartesian product

Aliases optional
Licensed to Thomas Snead <n.ordickan@gmail.com>

385Projection
The Tuple API offers several ways to access the result, by index, by alias, or untyped
meta access:

for (Tuple tuple : result) {
 Item item = tuple.get(0, Item.class);
 Bid bid = tuple.get(1, Bid.class);

 item = tuple.get("i", Item.class);
 bid = tuple.get("b", Bid.class);

 for (TupleElement<?> element : tuple.getElements()) {
 Class clazz = element.getJavaType();
 String alias = element.getAlias();
 Object value = tuple.get(element);
 }
}

The following projection also returns a collection of Object[]s:

select u.id, u.username, u.homeAddress from User u

Root<User> u = criteria.from(User.class);
criteria.multiselect(
 u.get("id"), u.get("username"), u.get("homeAddress")
);

The Object[]s returned by this query contain a Long at index 0, a String at index 1,
and an Address at index 2. The first two are scalar values; the third is an embedded
class instance. None are managed entity instances! Therefore, these values aren’t in
any persistent state, like an entity instance would be. They aren’t transactional and
obviously aren’t checked automatically for dirty state. We say that all of these values
are transient. This is the kind of query you need to write for a simple reporting screen,
showing all user names and their home addresses.

 You have now seen path expressions several times: using dot-notation, you can refer-
ence properties of an entity, such as User#username with u.username. For a nested
embedded property, for example, you can write the path u.homeAddress.city.zip-
code. These are single-valued path expressions, because they don’t terminate in a
mapped collection property.

 A more convenient alternative than Object[] or Tuple, especially for report que-
ries, is dynamic instantiation in projections, which is next.

15.3.2 Using dynamic instantiation

Let’s say you have a reporting screen in your application where you need to show
some data in a list. You want to show all auction items and when each auction ends.
You don’t want to load managed Item entity instances, because no data will be modi-
fied: you only read data.

 First, write a class called ItemSummary with a constructor that takes a Long for the
item’s identifier, a String for the item’s name, and a Date for the item’s auction end
timestamp:

Indexed

Alias

Meta

Returns a List
of Object[]
Licensed to Thomas Snead <n.ordickan@gmail.com>

386 CHAPTER 15 The query languages
public class ItemSummary {

 public ItemSummary(Long itemId, String name, Date auctionEnd) {
 // ...
 }

 // ...
}

We sometimes call these kinds of classes data transfer objects (DTOs), because their main
purpose is to shuttle data around in the application. The ItemSummary class isn’t
mapped to the database, and you can add arbitrary methods (getter, setter, printing of
values) as needed by your reporting user interface.

 Hibernate can directly return instances of ItemSummary from a query with the new
keyword in JPQL and the construct() method in criteria:

select new org.jpwh.model.querying.ItemSummary(
 i.id, i.name, i.auctionEnd
) from Item i

Root<Item> i = criteria.from(Item.class);
criteria.select(
 cb.construct(
 ItemSummary.class,
 i.get("id"), i.get("name"), i.get("auctionEnd")
)
);

In the result list of this query, each element is an instance of ItemSummary. Note that
in JPQL, you must use a fully qualified class name, which means including the package
name. Also note that nesting constructor calls isn’t supported: you can’t write new
ItemSummary(..., new UserSummary(...)).

 Dynamic instantiation isn’t limited to non-persistent data transfer classes like
ItemSummary. You can construct a new Item or a User in a query, which is a mapped
entity class. The only important rule is that the class must have a matching constructor
for your projection. But if you construct entity instances dynamically, they won’t be in
persistent state when returned from the query! They will be in transient or detached
state, depending on whether you set the identifier value. One use case for this feature
is simple data duplication: Retrieve a “new” transient Item with some values copied
into the constructor from the database, set some other values in the application, and
then store it in the database with persist().

 If your DTO class doesn’t have the right constructor, and you want to populate it
from a query result through setter methods or fields, apply a ResultTransformer, as
shown in in section 16.1.3. Later, we have more examples of aggregation and grouping.

 Next, we’re going to look at an issue with projection that is frequently confusing
for many engineers: handling duplicates.

Must have the
right constructor
Licensed to Thomas Snead <n.ordickan@gmail.com>

387Projection
15.3.3 Getting distinct results

When you create a projection in a query, the elements of the result aren’t guaranteed
to be unique. For example, item names aren’t unique, so the following query may
return the same name more than once:

select i.name from Item i

CriteriaQuery<String> criteria = cb.createQuery(String.class);

criteria.select(
 criteria.from(Item.class).<String>get("name")
);

It’s difficult to see how it could be meaningful to have two identical rows in a query
result, so if you think duplicates are likely, you normally apply the DISTINCT keyword
or distinct() method:

select distinct i.name from Item i

CriteriaQuery<String> criteria = cb.createQuery(String.class);

criteria.select(
 criteria.from(Item.class).<String>get("name")
);
criteria.distinct(true);

This eliminates duplicates from the returned list of Item descriptions and translates
directly into the SQL DISTINCT operator. The filtering occurs at the database level.
Later in this chapter, we show you that this isn’t always the case.

 Earlier, you saw function calls in restrictions, in the WHERE clause. You can also call
functions in projections, to modify the returned data within the query.

15.3.4 Calling functions in projections

The following queries return a custom String with the concat() function in the projection:

select concat(concat(i.name, ': '), i.auctionEnd) from Item i

Root<Item> i = criteria.from(Item.class);
criteria.select(
 cb.concat(
 cb.concat(i.<String>get("name"), ":"),
 i.<String>get("auctionEnd")
)
);

This query returns a List of Strings, each with the form “[Item name]:[Auction end
date]”. This example also shows that you can write nested function calls.

 Next, the coalesce() function returns null if all its arguments evaluate to null;
otherwise it returns the value of the first non-null argument:

Note the cast of Date.
Licensed to Thomas Snead <n.ordickan@gmail.com>

388 CHAPTER 15 The query languages
select i.name, coalesce(i.buyNowPrice, 0) from Item i

Root<Item> i = criteria.from(Item.class);
criteria.multiselect(
 i.get("name"),
 cb.coalesce(i.<BigDecimal>get("buyNowPrice"), 0)
);

If an Item doesn’t have a buyNowPrice, a BigDecimal for the value zero is returned
instead of null.

 Similar to coalesce() but more powerful are case/when expressions. The following
query returns the username of each User and an additional String with either “Ger-
many”, “Switzerland”, or “Other”, depending on the length of the user’s address zipcode:

select
 u.username,
 case when length(u.homeAddress.zipcode) = 5 then 'Germany'
 when length(u.homeAddress.zipcode) = 4 then 'Switzerland'
 else 'Other'
 end
from User u

// Check String literal support; see Hibernate bug HHH-8124
Root<User> u = criteria.from(User.class);
criteria.multiselect(
 u.get("username"),
 cb.selectCase()
 .when(
 cb.equal(
 cb.length(u.get("homeAddress").<String>get("zipcode")), 5
), "Germany"
)
 .when(
 cb.equal(
 cb.length(u.get("homeAddress").<String>get("zipcode")), 4
), "Switzerland"
)
 .otherwise("Other")
);

For the built-in standard functions, refer to the tables in the previous section. Unlike
function calls in restrictions, Hibernate won’t pass on an unknown function call in a
projection to the database as a plain direct SQL function call. Any function you’d like
to call in a projection must be known to Hibernate and/or invoked with the special
function() operation of JPQL.

 This projection returns the name of each auction Item and the number of days
between item creation and auction end, calling the SQL datediff() function of the
H2 database:

select
 i.name,
 function('DATEDIFF', 'DAY', i.createdOn, i.auctionEnd)
from Item i
Licensed to Thomas Snead <n.ordickan@gmail.com>

389Projection
Root<Item> i = criteria.from(Item.class);
criteria.multiselect(
 i.get("name"),
 cb.function(
 "DATEDIFF",
 Integer.class,
 cb.literal("DAY"),
 i.get("createdOn"),
 i.get("auctionEnd")
)
);

If instead you want to call a function directly, you give Hibernate the function’s return
type, so it can parse the query. You add functions for invocation in projections by
extending your configured org.hibernate.Dialect. The datediff() function is
already registered for you in the H2 dialect. Then, you can either call it as shown with
function(), which works in other JPA providers when accessing H2, or directly as
datediff(), which most likely only works in Hibernate. Check the source code of the
dialect for your database; you’ll probably find many other proprietary SQL functions
already registered there.

 Furthermore, you can add SQL functions programmatically on boot to Hibernate
by calling the method applySqlFunction() on a Hibernate MetadataBuilder. The
following example adds the SQL function lpad() to Hibernate before it’s started:

...
MetadataBuilder metadataBuilder = metadataSources.getMetadataBuilder();
metadataBuilder.applySqlFunction(
 "lpad",
 new org.hibernate.dialect.function.StandardSQLFunction(
 "lpad", org.hibernate.type.StringType.INSTANCE
)
);

See the Javadoc of SQLFunction and its subclasses for more information.
 Next, we look at aggregation functions, which are the most useful functions in

reporting queries.

15.3.5 Aggregation functions

Reporting queries take advantage of the database’s ability to perform efficient group-
ing and aggregation of data. For example, a typical report query would retrieve the
highest initial item price in a given category. This calculation can occur in the data-
base, and you don’t have to load many Item entity instances into memory.

 The aggregation functions standardized in JPA are count(), min(), max(), sum(),
and avg().

 The following query counts all Items:

select count(i) from Item i

criteria.select(
 cb.count(criteria.from(Item.class))
);
Licensed to Thomas Snead <n.ordickan@gmail.com>

390 CHAPTER 15 The query languages
The query returns the result as a Long:

Long count = (Long)query.getSingleResult();

The special count(distinct) JPQL function and countDistinct() method ignore
duplicates:

select count(distinct i.name) from Item i

criteria.select(
 cb.countDistinct(
 criteria.from(Item.class).get("name")
)
);

The following query calculates the total value of all Bids:

select sum(b.amount) from Bid b

CriteriaQuery<Number> criteria = cb.createQuery(Number.class);
criteria.select(
 cb.sum(
 criteria.from(Bid.class).<BigDecimal>get("amount")
)
);

This query returns a BigDecimal, because the amount property is of type BigDecimal.
The sum() function also recognizes the BigInteger property type and returns Long
for all other numeric property types.

 The next query returns the minimum and maximum bid amounts for a particular
Item:

select min(b.amount), max(b.amount) from Bid b
 where b.item.id = :itemId

Root<Bid> b = criteria.from(Bid.class);
criteria.multiselect(
 cb.min(b.<BigDecimal>get("amount")),
 cb.max(b.<BigDecimal>get("amount"))
);
criteria.where(
 cb.equal(
 b.get("item").<Long>get("id"),
 cb.parameter(Long.class, "itemId")
)
);

The result is an ordered pair of BigDecimals (two instances of BigDecimals, in an
Object[] array).

 When you call an aggregation function in the SELECT clause, without specifying any
grouping in a GROUP BY clause, you collapse the results down to a single row, containing
the aggregated value(s). This means (in the absence of a GROUP BY clause) any SELECT
clause that contains an aggregation function must contain only aggregation functions.
Licensed to Thomas Snead <n.ordickan@gmail.com>

391Projection

H

 For more advanced statistics and for reporting, you need to be able to perform
grouping, which is up next.

15.3.6 Grouping

JPA standardizes several features of SQL that are most commonly used for reporting—
although they’re also used for other things. In reporting queries, you write the SELECT
clause for projection and the GROUP BY and HAVING clauses for aggregation.

 Just like in SQL, any property or alias that appears outside of an aggregate function
in the SELECT clause must also appear in the GROUP BY clause. Consider the next
query, which counts the number of users with each last name:

select u.lastname, count(u) from User u
 group by u.lastname

Root<User> u = criteria.from(User.class);
criteria.multiselect(
 u.get("lastname"),
 cb.count(u)
);
criteria.groupBy(u.get("lastname"));

In this example, the u.lastname property isn’t inside an aggregation function, so pro-
jected data has to be “grouped by” u.lastname. You also don’t need to specify the prop-
erty you want to count; the count(u)expression is automatically translated into
count(u.id).

 The next query finds the average Bid#amount for each Item:

select i.name, avg(b.amount)
 from Bid b join b.item i
 group by i.name

Root<Bid> b = criteria.from(Bid.class);
criteria.multiselect(
 b.get("item").get("name"),
 cb.avg(b.<BigDecimal>get("amount"))
);
criteria.groupBy(b.get("item").get("name"));

When grouping, you may run into a Hibernate limitation. The following query is spec-
ification compliant but not properly handled in Hibernate:

select i, avg(b.amount)
 from Bid b join b.item i
 group by i

The JPA specification allows grouping by an entity path expression, group by i. But
Hibernate doesn’t automatically expand the properties of Item in the generated SQL
GROUP BY clause, which then doesn’t match the SELECT clause. You have to expand the

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

392 CHAPTER 15 The query languages
grouped/projected properties manually in your query, until this Hibernate issue is
fixed (this is one of the oldest and most “persistent” Hibernate issues, HHH-1615):

select i, avg(b.amount)
 from Bid b join b.item i
 group by i.id, i.name, i.createdOn, i.auctionEnd,
 i.auctionType, i.approved, i.buyNowPrice,
 i.seller

Root<Bid> b = criteria.from(Bid.class);
Join<Bid, Item> i = b.join("item");
criteria.multiselect(
 i,
 cb.avg(b.<BigDecimal>get("amount"))
);
criteria.groupBy(
 i.get("id"), i.get("name"), i.get("createdOn"), i.get("auctionEnd"),
 i.get("auctionType"), i.get("approved"), i.get("buyNowPrice"),
 i.get("seller")
);

Sometimes you want to restrict the result further by selecting only particular values of
a group. Use the WHERE clause to perform the relational operation of restriction on
rows. The HAVING clause performs restriction upon groups.

 For example, the next query counts users with each last name that begins with “D”:

select u.lastname, count(u) from User u
 group by u.lastname
 having u.lastname like 'D%'

Root<User> u = criteria.from(User.class);
criteria.multiselect(
 u.get("lastname"),
 cb.count(u)
);
criteria.groupBy(u.get("lastname"));
criteria.having(cb.like(u.<String>get("lastname"), "D%"));

The same rules govern the SELECT and HAVING clauses: only grouped properties may
appear outside of an aggregate function.

 The previous sections should get you started with basic queries. It’s time to look at
some more complex options. For many engineers, the most difficult to understand
but also one of most powerful benefits of the relational model is the ability to join arbi-
trary data.

15.4 Joins
Join operations combine data in two (or more) relations. Joining data in a query also
enables you to fetch several associated instances and collections in a single query: for
example, to load an Item and all its bids in one round trip to the database. We now
show you how basic join operations work and how to use them to write such dynamic
fetching strategies. Let’s first look at how joins work in SQL queries, without JPA.
Licensed to Thomas Snead <n.ordickan@gmail.com>

393Joins
15.4.1 Joins with SQL

Let’s start with the example we already mentioned: joining the data in the ITEM and
BID tables, as shown in figure 15.1. The database contains three items: the first has
three bids, the second has one bid, and the third has no bids. Note that we don’t show
all columns; hence the dotted lines.

What most people think of when they hear the word join in the context of SQL data-
bases is an inner join. An inner join is the most important of several types of joins and
the easiest to understand. Consider the SQL statement and result in figure 15.2. This
SQL statement contains an ANSI-style inner join in the FROM clause.

 If you join the ITEM and BID tables with an inner join, with the condition that the
ID of an ITEM row must match the ITEM_ID value of a BID row, you get items combined
with their bids in the result. Note that the result of this operation contains only items
that have bids.

 You can think of a join as working as follows: first you take a product of the two
tables, by taking all possible combinations of ITEM rows with BID rows. Second, you fil-
ter these combined rows with a join condition: the expression in the ON clause. (Any
good database engine has much more sophisticated algorithms to evaluate a join; it
usually doesn’t build a memory-consuming product and then filter out rows.) The
join condition is a Boolean expression that evaluates to true if the combined row is to
be included in the result.

 It’s crucial to understand that the join condition can be any expression that evalu-
ates to true. You can join data in arbitrary ways; you aren’t limited to comparisons of
identifier values. For example, the join condition on i.ID = b.ITEM_ID and b.AMOUNT
> 100 would only include rows from the BID table that also have an AMOUNT greater
than 100. The ITEM_ID column in the BID table has a foreign key constraint, ensuring

NAME

Foo

...

...

ID

1

Bar ...2

Baz ...3

ITEM

...ID

...

AMOUNT

1 99.00

...

...

...

2

3

4

ITEM_ID

1

1

1

2

100.00

101.00

4.99

BID

Figure 15.1 The ITEM and BID tables
are obvious candidates for a join
operation.

select i.*, b.*
 from ITEM i
 inner join BID b on i.ID = b.ITEM_ID

i.NAME

Foo

... b.ID

...

i.ID

1

b.AMOUNT

1 99.00

Foo ...1

Foo ...1

Bar ...2

2

3

4

b.ITEM_ID

1

1

1

2

100.00

101.00

4.99
Figure 15.2 The result of an ANSI-style
inner join of two tables
Licensed to Thomas Snead <n.ordickan@gmail.com>

394 CHAPTER 15 The query languages
that a BID has a reference to an ITEM row. This doesn’t mean you can only join by com-
paring primary and foreign key columns. Key columns are of course the most com-
mon operands in a join condition, because you often want to retrieve related
information together.

 If you want all items, not just the ones which have related bids, and NULL instead of
bid data when there is no corresponding bid, then you write a (left) outer join, as shown
in figure 15.3.

 In case of the left outer join, each row in the (left) ITEM table that never satisfies the
join condition is also included in the result, with NULL returned for all columns of BID.
Right outer joins are rarely used; developers always think from left to right and put
the “driving” table of a join operation first. In figure 15.4, you can see the same result
with BID instead of ITEM as the driving table, and a right outer join.
In SQL, you usually specify the join condition explicitly. Unfortunately, it isn’t possible
to use the name of a foreign key constraint to specify how two tables are to be joined:
select * from ITEM join BID on FK_BID_ITEM_ID doesn’t work.

 You specify the join condition in the ON clause for an ANSI-style join or in the WHERE
clause for a so-called theta-style join: select * from ITEM i, BID b where i.ID = b.ITEM_ID.
This is an inner join; here you see that a product is created first in the FROM clause.

 We now discuss JPA join options. Remember that Hibernate eventually translates
all queries into SQL, so even if the syntax is slightly different, you should always refer
to the illustrations shown in this section and verify that you understand what the
resulting SQL and result set looks like.

select i.*, b.*
 from ITEM i
 left outer join BID b on i.ID = b.ITEM_ID

i.NAME

Foo

... b.ID

...

i.ID

1

b.AMOUNT

1 99.00

Foo ...1

Foo ...1

Bar ...2

Baz ...3

2

3

4

b.ITEM_ID

1

1

1

2

100.00

101.00

4.99
Figure 15.3 The result of an ANSI-style
left outer join of two tables

select b.*, i.*
 from BID b
 right outer join ITEM i on b.ITEM_ID = i.ID

i.NAME

Foo

...b.ID

...

i.ID

1

b.AMOUNT

1 99.00

Foo ...1

Foo ...1

Bar ...2

Baz ...3

2

3

4

b.ITEM_ID

1

1

1

2

100.00

101.00

4.99
Figure 15.4 The result of an ANSI-style
right outer join of two tables
Licensed to Thomas Snead <n.ordickan@gmail.com>

395Joins
15.4.2 Join options in JPA

JPA provides four ways of expressing (inner and outer) joins in queries:

 An implicit association join with path expressions
 An ordinary join in the FROM clause with the join operator
 A fetch join in the FROM clause with the join operator and the fetch keyword for

eager fetching
 A theta-style join in the WHERE clause

Let’s start with implicit association joins.

15.4.3 Implicit association joins

In JPA queries, you don’t have to specify a join condition explicitly. Rather, you specify
the name of a mapped Java class association. This is the same feature we’d prefer to
have in SQL: a join condition expressed with a foreign key constraint name. Because
you’ve mapped most, if not all, foreign key relationships of your database schema, you
can use the names of these mapped associations in the query language. This is syntac-
tical sugar, but it’s convenient.

 For example, the Bid entity class has a mapped many-to-one association named
item, with the Item entity class. If you refer to this association in a query, Hibernate
has enough information to deduce the join expression with a key column compari-
son. This helps make queries less verbose and more readable.

 Earlier in this chapter, we showed you property path expressions, using dot-notation:
single-valued path expressions such as user.homeAddress.zipcode and collection-
valued path expressions such as item.bids. You can create a path expression in an
implicit inner join query:

select b from Bid b where b.item.name like 'Fo%'

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.like(
 b.get("item").<String>get("name"),
 "Fo%"
)
);

The path b.item.name creates an implicit join on the many-to-one associations from Bid
to Item—the name of this association is item. Hibernate knows that you mapped this
association with the ITEM_ID foreign key in the BID table and generates the SQL join
condition accordingly. Implicit joins are always directed along many-to-one or one-to-one
associations, never through a collection-valued association (you can’t write
item.bids.amount).

 Multiple joins are possible in a single path expression:

Licensed to Thomas Snead <n.ordickan@gmail.com>

396 CHAPTER 15 The query languages
select b from Bid b where b.item.seller.username = 'johndoe'

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.equal(
 b.get("item").get("seller").get("username"),
 "johndoe"
)
);

This query joins rows from the BID, the ITEM, and the USER tables.
 We frown on the use of this syntactic sugar for more complex queries. SQL joins

are important, and especially when optimizing queries, you need to be able to see at a
glance exactly how many of them there are. Consider the following query:

select b from Bid b where b.item.seller.username = 'johndoe'
 and b.item.buyNowPrice is not null

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.and(
 cb.equal(
 b.get("item").get("seller").get("username"),
 "johndoe"
),
 cb.isNotNull(b.get("item").get("buyNowPrice"))
)
);

How many joins are required to express such a query in SQL? Even if you get the
answer right, it takes more than a few seconds to figure out. The answer is two. The
generated SQL looks something like this:

select b.*
 from BID b
 inner join ITEM i on b.ITEM_ID = i.ID
 inner join USER u on i.SELLER_ID = u.ID
 where u.USERNAME = 'johndoe'
 and i.BUYNOWPRICE is not null;

Alternatively, instead of joins with such complex path expressions, you can write ordi-
nary joins explicitly in the FROM clause.

15.4.4 Explicit joins

JPA differentiates between purposes you may have for joining. Suppose you’re querying
items; there are two possible reasons you may be interested in joining them with bids.

 You may want to limit the items returned by the query based on some criterion to
apply to their bids. For example, you may want all items that have a bid of more than
100, which requires an inner join. Here, you aren’t interested in items that have no bids.

 On the other hand, you may be primarily interested in the items but may want to
execute an outer join just because you want to retrieve all bids for the queried items in
Licensed to Thomas Snead <n.ordickan@gmail.com>

397Joins
a single SQL statement, something we called eager join fetching earlier. Remember that
you prefer to map all associations lazily by default, so an eager fetch query will over-
ride the default fetching strategy at runtime for a particular use case.

 Let’s first write some queries that use joins for the purpose of restriction. If you
want to retrieve Item instances and restrict the result to items that have bids with a cer-
tain amount, you have to assign an alias to a joined association. Then you refer to the
alias in a WHERE clause to restrict the data you want:

select i from Item i
 join i.bids b
 where b.amount > 100

Root<Item> i = criteria.from(Item.class);
Join<Item, Bid> b = i.join("bids");
criteria.select(i).where(
 cb.gt(b.<BigDecimal>get("amount"), new BigDecimal(100))
);

This query assigns the alias b to the collection bids and limits the returned Item
instances to those with Bid#amount greater than 100.

 So far, you’ve only written inner joins. Outer joins are mostly used for dynamic
fetching, which we discuss soon. Sometimes, you want to write a simple query with an
outer join without applying a dynamic fetching strategy. For example, the following
query and retrieves items that have no bids, and items with bids of a minimum bid
amount:

select i, b from Item i
 left join i.bids b on b.amount > 100

Root<Item> i = criteria.from(Item.class);
Join<Item, Bid> b = i.join("bids", JoinType.LEFT);
b.on(
 cb.gt(b.<BigDecimal>get("amount"), new BigDecimal(100))
);
criteria.multiselect(i, b);

This query returns ordered pairs of Item and Bid, in a List<Object[]>.
 The first thing that is new in this query is the LEFT keyword and JoinType.LEFT in

the criteria query. Optionally you can write LEFT OUTER JOIN and RIGHT OUTER JOIN
in JPQL, but we usually prefer the short form.

 The second change is the additional join condition following the ON keyword. If
instead you place the b.amount > 100 expression into the WHERE clause, you restrict the
result to Item instances that have bids. This isn’t what you want here: you want to
retrieve items and bids, and even items that don’t have bids. If an item has bids, the
bid amount must be greater than 100. By adding an additional join condition in the
FROM clause, you can restrict the Bid instances and still retrieve all Item instances,
whether they have bids or not.

Licensed to Thomas Snead <n.ordickan@gmail.com>

398 CHAPTER 15 The query languages
 This is how the additional join condition translates into SQL:

... from ITEM i
 left outer join BID b
 on i.ID = b.ITEM_ID and (b.AMOUNT > 100)

The SQL query will always contain the implied join condition of the mapped associa-
tion, i.ID = b.ITEM_ID. You can only append additional expressions to the join con-
dition. JPA and Hibernate don’t support arbitrary outer joins without a mapped entity
association or collection.

 Hibernate has a proprietary WITH keyword, it’s the same as the ON keyword in JPQL.
You may see it in older code examples, because JPA only recently standardized ON.

 You can write a query returning the same data with a right outer join, switching the
driving table:

select b, i from Bid b
 right outer join b.item i
 where b is null or b.amount > 100

Root<Bid> b = criteria.from(Bid.class);
Join<Bid, Item> i = b.join("item", JoinType.RIGHT);
criteria.multiselect(b, i).where(
 cb.or(
 cb.isNull(b),
 cb.gt(b.<BigDecimal>get("amount"), new BigDecimal(100)))
);

This right outer join query is more important than you may think. Earlier in this book,
we told you to avoid mapping a persistent collection whenever possible. If you don’t
have a one-to-many Item#bids collection, you need a right outer join to retrieve all
Items and their Bid instances. You drive the query from the “other” side: the many-to-
one Bid#item.

 Left outer joins also play an important role with eager dynamic fetching.

15.4.5 Dynamic fetching with joins

All the queries you saw in the previous sections have one thing in common: the
returned Item instances have a collection named bids. This @OneToMany collection, if
mapped as FetchType.LAZY (the default for collections), isn’t initialized, and an addi-
tional SQL statement is triggered as soon as you access it. The same is true for all sin-
gle-valued associations, like the @ManyToOne association seller of each Item. By
default, Hibernate generates a proxy and loads the associated User instance lazily and
only on demand.

 What options do you have to change this behavior? First, you can change the fetch
plan in your mapping metadata and declare a collection or single-valued association
as FetchType.EAGER. Hibernate then executes the necessary SQL to guarantee that
the desired network of instances is loaded at all times. This also means a single JPA
query may result in several SQL operations! As an example, the simple query select i
Licensed to Thomas Snead <n.ordickan@gmail.com>

399Joins
from Item i may trigger additional SQL statements to load the bids of each Item, the
seller of each Item, and so on.

 In chapter 12, we made the case for a lazy global fetch plan in mapping metadata,
where you shouldn’t have FetchType.EAGER on association and collection mappings.
Then, for a particular use case in your application, you dynamically override the lazy
fetch plan and write a query that fetches the data you need as efficiently as possible.
For example, there is no reason you need several SQL statements to fetch all Item
instances and to initialize their bids collections, or to retrieve the seller for each
Item. You can do this at the same time, in a single SQL statement, with a join operation.

 Eager fetching of associated data is possible with the FETCH keyword in JPQL and
the fetch() method in the criteria query API:

select i from Item i
 left join fetch i.bids

Root<Item> i = criteria.from(Item.class);
i.fetch("bids", JoinType.LEFT);
criteria.select(i);

You’ve already seen the SQL query this produces and the result set in figure 15.3.
 This query returns a List<Item>; each Item instance has its bids collection fully

initialized. This is different than the ordered pairs returned by the queries in the pre-
vious section!

 Be careful—you may not expect the duplicate results from the previous query:

List<Item> result = query.getResultList();
assertEquals(result.size(), 5);

Set<Item> distinctResult = new LinkedHashSet<Item>(result);
assertEquals(distinctResult.size(), 3);

Make sure you understand why these duplicates appear in the result List. Verify the
number of Item “rows” in the result set, as shown in figure 15.3. Hibernate preserves
the rows as list elements; you may need the correct row count to make rendering a
report table in the user interface easier.

 You can filter out duplicate Item instances by passing the result List through a
LinkedHashSet, which doesn’t allow duplicate elements but preserves the order of
elements. Alternatively, Hibernate can remove the duplicate elements with the
DISTINCT operation and distinct() criteria method:

select distinct i from Item i
 left join fetch i.bids

Root<Item> i = criteria.from(Item.class);
i.fetch("bids", JoinType.LEFT);
criteria.select(i).distinct(true);

3 items, 4 bids, 5 “rows”
in the result

In-memory
“distinct”

Only three items all along
Licensed to Thomas Snead <n.ordickan@gmail.com>

400 CHAPTER 15 The query languages
Understand that in this case the DISTINCT operation does not execute in the database.
There will be no DISTINCT keyword in the SQL statement. Conceptually, you can’t
remove the duplicate rows at the SQL ResultSet level. Hibernate performs deduplica-
tion in memory, just as you would manually with a LinkedHashSet.

 You can also prefetch many-to-one or one-to-one associations with the same syntax:

select distinct i from Item i
 left join fetch i.bids b
 join fetch b.bidder
 left join fetch i.seller

Root<Item> i = criteria.from(Item.class);
Fetch<Item, Bid> b = i.fetch("bids", JoinType.LEFT);
b.fetch("bidder");
i.fetch("seller", JoinType.LEFT);
criteria.select(i).distinct(true);

This query returns a List<Item>, and each Item has its bids collection initialized. The
seller of each Item is loaded as well. Finally, the bidder of each Bid instance is loaded.
You can do this in one SQL query by joining rows of the ITEM, BID, and USERS tables.

 If you write JOIN FETCH without LEFT, you get eager loading with an inner join
(also if you use INNER JOIN FETCH). An eager inner join fetch makes sense if there
must be a fetched value: an Item must have a seller, and a Bid must have a bidder.

 There are limits to how many associations you should eagerly load in one query
and how much data you should fetch in one round trip. Consider the following query,
which initializes the Item#bids and Item#images collections:

select distinct i from Item i
 left join fetch i.bids
 left join fetch i.images

Root<Item> i = criteria.from(Item.class);
i.fetch("bids", JoinType.LEFT);
i.fetch("images", JoinType.LEFT);
criteria.select(i).distinct(true);

This is a bad query, because it creates a Cartesian product of bids and images, with a
potentially extremely large result set. We covered this issue in section 12.2.2.

 To summarize, eager dynamic fetching in queries has the following caveats:

 Never assign an alias to any fetch-joined association or collection for further
restriction or projection. The query left join fetch i.bids b where b.amount
... is invalid. You can’t say, “Load the Item instances and initialize their bids col-
lections, but only with Bid instances that have a certain amount.” You can assign
an alias to a fetch-joined association for further fetching: for example, retrieving
the bidder of each Bid: left join fetch i.bids b join fetch b.bidder.

 You shouldn’t fetch more than one collection; otherwise, you create a Cartesian
product. You can fetch as many single-valued associations as you like without
creating a product.

Non-nullable foreign
key columns. Inner join
or outer doesn’t make
a difference.

Cartesian product: bad
Licensed to Thomas Snead <n.ordickan@gmail.com>

401Joins
 Queries ignore any fetching strategy you’ve defined in mapping metadata with
@org.hibernate.annotations.Fetch. For example, mapping the bids collec-
tion with org.hibernate.annotations.FetchMode.JOIN has no effect on the
queries you write. The dynamic fetching strategy of your query ignores the
global fetching strategy. On the other hand, Hibernate doesn’t ignore the
mapped fetch plan: Hibernate always considers a FetchType.EAGER, and you may
see several additional SQL statements when you execute your query.

 If you eager-fetch a collection, the List returned by Hibernate preserves the
number of rows in the SQL result as duplicate references. You can filter out the
duplicates in-memory either manually with a LinkedHashSet or with the special
DISTINCT operation in the query.

There is one more issue to be aware of, and it deserves some special attention. You
can’t paginate a result set at the database level if you eagerly fetch a collection. For
example, for the query select i from Item i fetch i.bids, how should Query#set-
FirstResult(21) and Query#setMaxResults(10) be handled?

 Clearly, you expect to get only 10 items, starting with item 21. But you also want to
load all bids of each Item eagerly. Therefore, the database can’t do the paging opera-
tion; you can’t limit the SQL result to 10 arbitrary rows. Hibernate will execute paging
in-memory if a collection is eagerly fetched in a query. This means all Item instances
will be loaded into memory, each with the bids collection fully initialized. Hibernate
then gives you the requested page of items: for example, only items 21 to 30.

 Not all items might fit into memory, and you probably expected the paging to
occur in the database before it transmitted the result to the application! Therefore,
Hibernate will log a warning message if your query contains fetch [collectionPath]
and you call setFirstResult() or setMaxResults().

 We don’t recommend the use of fetch [collectionPath] with setMaxResults()
or setFirstResult() options. Usually there is an easier query you can write to get the
data you want to render—and we don’t expect that you load data page by page to
modify it. For example, if you want to show several pages of items and for each item
the number of bids, write a report query:

select i.id, i.name, count(b)
 from Item i left join i.bids b
 group by i.id, i.name

The result of this query can be paged by the database with setFirstResult() and
setMaxResults(). It’s much more efficient than retrieving any Item or Bid instances
into memory, so let the database create the report for you.

 The last JPA join option on the list is the theta-style join.

15.4.6 Theta-style joins

In traditional SQL, a theta-style join is a Cartesian product together with a join condi-
tion in the WHERE clause, which is applied on the product to restrict the result. In JPA
Licensed to Thomas Snead <n.ordickan@gmail.com>

402 CHAPTER 15 The query languages
queries, the theta-style syntax is useful when your join condition isn’t a foreign key
relationship mapped to a class association.

 For example, suppose you store the User’s name in log records instead of mapping
an association from LogRecord to User. The classes don’t know anything about each
other, because they aren’t associated. You can then find all the Users and their Log-
Records with the following theta-style join:

select u, log from User u, LogRecord log
 where u.username = log.username

Root<User> u = criteria.from(User.class);
Root<LogRecord> log = criteria.from(LogRecord.class);
criteria.where(
 cb.equal(u.get("username"), log.get("username")));
criteria.multiselect(u, log);

The join condition here is a comparison of username, present as an attribute in both
classes. If both rows have the same username, they’re joined (with an inner join) in
the result. The query result consists of ordered pairs:

List<Object[]> result = query.getResultList();
for (Object[] row : result) {
 assertTrue(row[0] instanceof User);
 assertTrue(row[1] instanceof LogRecord);
}

You probably won’t need to use the theta-style joins often. Note that it’s currently not
possible in JPA to outer join two tables that don’t have a mapped association—theta-
style joins are inner joins.

 Another more common case for theta-style joins is comparisons of primary key or
foreign key values to either query parameters or other primary or foreign key values in
the WHERE clause:

select i, b from Item i, Bid b
 where b.item = i and i.seller = b.bidder

Root<Item> i = criteria.from(Item.class);
Root<Bid> b = criteria.from(Bid.class);
criteria.where(
 cb.equal(b.get("item"), i),
 cb.equal(i.get("seller"), b.get("bidder"))
);
criteria.multiselect(i, b);

This query returns pairs of Item and Bid instances, where the bidder is also the
seller. This is an important query in CaveatEmptor because it lets you detect people
who bid on their own items. You probably should translate this query into a database
constraint and not allow such a Bid instance to be stored.

 The previous query also has an interesting comparison expression: i.seller =
b.bidder. This is an identifier comparison, our next topic.
Licensed to Thomas Snead <n.ordickan@gmail.com>

403Joins

H

15.4.7 Comparing identifiers

JPA supports the following implicit identifier comparison syntax in queries:

select i, u from Item i, User u
 where i.seller = u and u.username like 'j%'

Root<Item> i = criteria.from(Item.class);
Root<User> u = criteria.from(User.class);
criteria.where(
 cb.equal(i.get("seller"), u),
 cb.like(u.<String>get("username"), "j%")
);
criteria.multiselect(i, u);

In this query, i.seller refers to the SELLER_ID foreign key column of the ITEM table,
referencing the USERS table. The alias u refers to the primary key of the USERS table
(on the ID column). Hence, this query has a theta-style join and is equivalent to the
easier, readable alternative:

select i, u from Item i, User u
 where i.seller.id = u.id and u.username like 'j%'

Root<Item> i = criteria.from(Item.class);
Root<User> u = criteria.from(User.class);
criteria.where(
 cb.equal(i.get("seller").get("id"), u.get("id")),
 cb.like(u.<String>get("username"), "j%")
);
criteria.multiselect(i, u);

A path expression ending with id is special in Hibernate: the id name always refers to
the identifier property of an entity. It doesn’t matter what the actual name of the
property annotated with @Id is; you can always reach it with entityAlias.id. That’s
why we recommend you always name the identifier property of your entity classes id,
to avoid confusion in queries. Note that this isn’t a requirement or standardized in
JPA; only Hibernate treats an id path element specially.

 You may also want to compare a key value to a query parameter, perhaps to find all
Items for a given seller (a User):

select i from Item i where i.seller = :seller

Root<Item> i = criteria.from(Item.class);
criteria.where(
 cb.equal(
 i.get("seller"),
 cb.parameter(User.class, "seller")
)
);
criteria.select(i);
query.setParameter("seller", someUser);
List<Item> result = query.getResultList();

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

404 CHAPTER 15 The query languages
Alternatively, you may prefer to express these kinds of queries in terms of identifier val-
ues rather than object references. These queries are equivalent to the earlier queries:

select i from Item i where i.seller.id = :sellerId

Root<Item> i = criteria.from(Item.class);
criteria.where(
 cb.equal(
 i.get("seller").get("id"),
 cb.parameter(Long.class, "sellerId")
)
);
criteria.select(i);
query.setParameter("sellerId", USER_ID);
List<Item> result = query.getResultList();

Considering identifier attributes, there is a world of difference between this query
pair

select b from Bid b where b.item.name like 'Fo%'

Root<Bid> b = criteria.from(Bid.class);
criteria.select(b).where(
 cb.like(
 b.get("item").<String>get("name"),
 "Fo%"
)
);

and this similar-looking query pair:

select b from Bid b where b.item.id = :itemId

CriteriaQuery<Bid> criteria = cb.createQuery(Bid.class);
Root<Bid> b = criteria.from(Bid.class);
criteria.where(
 cb.equal(
 b.get("item").get("id"),
 cb.parameter(Long.class, "itemId")
)
);
criteria.select(b);

The first query pair uses an implicit table join; the second has no joins at all!
 This completes our discussion of queries that involve joins. Our final topic is nest-

ing selects within selects: subselects.

15.5 Subselects
Subselects are an important and powerful feature of SQL. A subselect is a select query
embedded in another query, usually in the SELECT, FROM, or WHERE clause.

 JPA supports subqueries in the WHERE clause. Subselects in the FROM clause aren’t
supported because the query languages doesn’t have transitive closure. The result of a
Licensed to Thomas Snead <n.ordickan@gmail.com>

405Subselects
query may not be usable for further selection in a FROM clause. The query language also
doesn’t support subselects in the SELECT clause, but you map can subselects to derived
properties with @org.hibernate.annotations.Formula, as shown in section 5.1.3.

 Subselects can be either correlated with the rest of the query or uncorrelated.

15.5.1 Correlated and uncorrelated nesting

The result of a subquery may contain either a single row or multiple rows. Typically,
subqueries that return single rows perform aggregation. The following subquery
returns the total number of items sold by a user; the outer query returns all users who
have sold more than one item:

select u from User u
 where (
 select count(i) from Item i where i.seller = u
) > 1

Root<User> u = criteria.from(User.class);

Subquery<Long> sq = criteria.subquery(Long.class);
Root<Item> i = sq.from(Item.class);
sq.select(cb.count(i))
 .where(cb.equal(i.get("seller"), u)
);

criteria.select(u);
criteria.where(cb.greaterThan(sq, 1L));

The inner query is a correlated subquery—it refers to an alias (u) from the outer query.
 The next query contains an uncorrelated subquery:

select b from Bid b
 where b.amount + 1 >= (
 select max(b2.amount) from Bid b2
)

Root<Bid> b = criteria.from(Bid.class);

Subquery<BigDecimal> sq = criteria.subquery(BigDecimal.class);
Root<Bid> b2 = sq.from(Bid.class);
sq.select(cb.max(b2.<BigDecimal>get("amount")));

criteria.select(b);
criteria.where(
 cb.greaterThanOrEqualTo(
 cb.sum(b.<BigDecimal>get("amount"), new BigDecimal(1)),
 sq
)
);

The subquery in this example returns the maximum bid amount in the entire system;
the outer query returns all bids whose amount is within one (U.S. dollar, Euro, and so
on) of that amount. Note that in both cases, parentheses enclose the subquery in
JPQL. This is always required.
Licensed to Thomas Snead <n.ordickan@gmail.com>

406 CHAPTER 15 The query languages
 Uncorrelated subqueries are harmless, and there is no reason not to use them
when convenient. You can always rewrite them as two queries, because they don’t
reference each other. You should think more carefully about the performance impact
of correlated subqueries. On a mature database, the performance cost of a simple cor-
related subquery is similar to the cost of a join. But it isn’t necessarily possible to
rewrite a correlated subquery using several separate queries.

 If a subquery returns multiple rows, you combine it with quantification.

15.5.2 Quantification

The following quantifiers are standardized:

 ALL—The expression evaluates to true if the comparison is true for all values in
the result of the subquery. It evaluates to false if a single value of the subquery
result fails the comparison test.

 ANY—The expression evaluates to true if the comparison is true for some (any)
value in the result of the subquery. If the subquery result is empty or no value satis-
fies the comparison, it evaluates to false. The keyword SOME is a synonym for ANY.

 EXISTS—Evaluates to true if the result of the subquery consists of one or more
values.

For example, the following query returns items where all bids are less or equal than 10:

select i from Item i
 where 10 >= all (
 select b.amount from i.bids b
)

Root<Item> i = criteria.from(Item.class);

Subquery<BigDecimal> sq = criteria.subquery(BigDecimal.class);
Root<Bid> b = sq.from(Bid.class);
sq.select(b.<BigDecimal>get("amount"));
sq.where(cb.equal(b.get("item"), i));

criteria.select(i);
criteria.where(
 cb.greaterThanOrEqualTo(
 cb.literal(new BigDecimal(10)),
 cb.all(sq)
)
);

The following query returns items with a bid of exactly 101:

select i from Item i
 where 101.00 = any (
 select b.amount from i.bids b
)

Root<Item> i = criteria.from(Item.class);

Subquery<BigDecimal> sq = criteria.subquery(BigDecimal.class);
Root<Bid> b = sq.from(Bid.class);
Licensed to Thomas Snead <n.ordickan@gmail.com>

407Summary
sq.select(b.<BigDecimal>get("amount"));
sq.where(cb.equal(b.get("item"), i));

criteria.select(i);
criteria.where(
 cb.equal(
 cb.literal(new BigDecimal("101.00")),
 cb.any(sq)
)
);

To retrieve all items that have bids, check the result of the subquery with EXISTS:

select i from Item i
 where exists (
 select b from Bid b where b.item = i
)

Root<Item> i = criteria.from(Item.class);

Subquery<Bid> sq = criteria.subquery(Bid.class);
Root<Bid> b = sq.from(Bid.class);
sq.select(b).where(cb.equal(b.get("item"), i));

criteria.select(i);
criteria.where(cb.exists(sq));

This query is more important than it looks. You can find all items that have bids with
the following query: select i from Item i where i.bids is not empty. This, however,
requires a mapped one-to-many collection Item#bids. If you follow our recommenda-
tions, you probably only have the “other” side mapped: the many-to-one Bid#item. With
an exists() and a subquery, you can get the same result.

 Subqueries are an advanced technique; you should question frequent use of sub-
queries, because queries with subqueries can often be rewritten using only joins and
aggregation. But they’re powerful and useful from time to time.

15.6 Summary
 If you knew SQL coming into this chapter, you’re now able to write a wide vari-

ety of queries in JPQL and with the criteria query API. If you aren’t comfortable
with SQL, consult our reference section.

 With selection, you pick the source(s) of your query: the “tables” you want to
query. Then you apply restriction expressions to limit the queried “rows” to the
relevant subset. The projection of your query defines the returned “columns”:
the data retrieved by your query. You can also direct the database to aggregate
and group data efficiently, before returning it.

 We discussed joins: how you select, restrict, and combine data from several
tables. A JPA application relies on joins to fetch associated entity instances and
collections in a single database round-trip. This is a critical feature when you’re
trying to reduce database load, and we recommend you repeat these examples
to get a firm grasp of joining data and eager fetching.

 You can nest queries inside each other as subselects.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Advanced query options
This chapter explains query options that you may consider optional or advanced:
transforming query results, filtering collections, and the Hibernate criteria query
API. First, we discuss Hibernate’s ResultTransformer API, with which you can apply
a result transformer to a query result to filter or marshal the result with your own
code instead of Hibernate’s default behavior.

 In previous chapters, we always advised you to be careful when mapping collec-
tions, because it’s rarely worth the effort. In this chapter, we introduce collection fil-
ters, a native Hibernate feature that makes persistent collections more valuable.
Finally, we look at another proprietary Hibernate feature, the org.hibernate.Cri-
teria query API, and some situations when you might prefer it to the standard JPA
query-by-criteria.

 Let’s start with the transformation of query results.

In this chapter
 Transforming query results

 Filtering collections

 Query-by-criteria with the Hibernate API
408

Licensed to Thomas Snead <n.ordickan@gmail.com>

409Transforming query results

H

16.1 Transforming query results
You can apply a result transformer to a query result so that you can filter or marshal
the result with your own procedure instead of the Hibernate default behavior. Hiber-
nate’s default behavior provides a set of default transformers that you can replace
and/or customize.

 The result you’re going to transform is that of a simple query, but you need to
access the native Hibernate API org.hibernate.Query through the Session, as shown
in the following listing.

Session session = em.unwrap(Session.class);
org.hibernate.Query query = session.createQuery(
 "select i.id as itemId, i.name as name, i.auctionEnd as auctionEnd from

Item i"
);

Without any custom result transformation, this query returns a List of Object[]:

List<Object[]> result = query.list();

for (Object[] tuple : result) {
 Long itemId = (Long) tuple[0];
 String name = (String) tuple[1];
 Date auctionEnd = (Date) tuple[2];
 // ...
}

Each object array is a “row” of the query result. Each element of that tuple can be
accessed by index: here index 0 is a Long, index 1 a String, and index 2 a Date.
The first result transformer we introduce instead returns a List of Lists.

Listing 16.1 Simple query with several projected elements

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java

ibernate Feature

Transforming criteria query results
All the mples in this section are for queries written in JPQL created with the
org.hibernate.Query API. If you write a JPA CriteriaQuery using a Criteria-
Builder, you can’t apply a Hibernate org.hibernate.transform.Result-
Transformer: this is a Hibernate-only interface. Even if you obtain the native API for
your criteria query (through HibernateQuery casting, as shown in section 14.1.3),
you can’t set a custom transformer. For JPA CriteriaQuery, Hibernate applies a
built-in transformer to implement the JPA contracts; using a custom transformer
Licensed to Thomas Snead <n.ordickan@gmail.com>

410 CHAPTER 16 Advanced query options

16.1.1 Returning a list of lists

Let’s say you want to use indexed access but are unhappy with the Object[] result.
Instead of a list of Object[]s, each tuple can also be represented as a List, using the
ToListResultTransformer:

query.setResultTransformer(
 ToListResultTransformer.INSTANCE
);

List<List> result = query.list();

for (List list : result) {
 Long itemId = (Long) list.get(0);
 String name = (String) list.get(1);
 Date auctionEnd = (Date) list.get(2);
 // ...
}

This is a minor difference but a convenient alternative if code in other layers of your
application already works with lists of lists.

 The next transformer converts the query result to a Map for each tuple, where the
query projection assigns aliases mapped to the projection elements.

16.1.2 Returning a list of maps

The AliasToEntityMapResultTransformer returns a List of java.util.Map, one
map per “row.” The aliases in the query are itemId, name, and auctionEnd:

query.setResultTransformer(
 AliasToEntityMapResultTransformer.INSTANCE
);

List<Map> result = query.list();

assertEquals(
 query.getReturnAliases(),

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java

(Continued)
would override this and cause problems. You can set a custom transformer for JPQL
queries created with javax.persistence.Query, though, after obtaining the native
API with HibernateQuery. In addition, later in this chapter, you see the native
org.hibernate.Criteria API, an alternative query-by-criteria facility that supports
overriding the org.hibernate.transform.ResultTransformer.

Accesses query aliases
Licensed to Thomas Snead <n.ordickan@gmail.com>

411Transforming query results
 new String[]{"itemId", "name", "auctionEnd"}
);

for (Map map : result) {
 Long itemId = (Long) map.get("itemId");
 String name = (String) map.get("name");
 Date auctionEnd = (Date) map.get("auctionEnd");
 // ...
}

If you don’t know the aliases used in the query and need to obtain them dynamically,
call org.hibernate.Query#getReturnAliases().

 The example query returns scalar values; you may also want to transform results
that contain persistent entity instances. This example uses aliases for projected enti-
ties and a List of Maps:

org.hibernate.Query entityQuery = session.createQuery(
 "select i as item, u as seller from Item i join i.seller u"
);

entityQuery.setResultTransformer(
 AliasToEntityMapResultTransformer.INSTANCE
);

List<Map> result = entityQuery.list();

for (Map map : result) {
 Item item = (Item) map.get("item");
 User seller = (User) map.get("seller");

 assertEquals(item.getSeller(), seller);
 // ...
}

More useful is the next transformer, mapping the query result to JavaBean properties
by alias.

16.1.3 Mapping aliases to bean properties

In section 15.3.2, we showed how a query can return instances of a JavaBean dynami-
cally by calling the ItemSummary constructor. In JPQL, you achieve this with the new
operator. For criteria queries, you use the construct() method. The ItemSummary
class must have a constructor that matches the projected query result.

 Alternatively, if your JavaBean doesn’t have the right constructor, you can still
instantiate and populate its values through setters and/or fields with the AliasTo-
BeanResultTransformer. The following example transforms the query result shown
in listing 16.1:

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

412 CHAPTER 16 Advanced query options

query.setResultTransformer(
 new AliasToBeanResultTransformer(ItemSummary.class)
);

List<ItemSummary> result = query.list();

for (ItemSummary itemSummary : result) {
 Long itemId = itemSummary.getItemId();
 String name = itemSummary.getName();
 Date auctionEnd = itemSummary.getAuctionEnd();
 // ...
}

You create the transformer with the JavaBean class you want to instantiate, here Item-
Summary. Hibernate requires that this class either has no constructor or a public no-
argument constructor.

 When transforming the query result, Hibernate looks for setter methods and fields
with the same names as the aliases in the query. The ItemSummary class must either
have the fields itemId, name, andauctionEnd, or the setter methods setItemId(),
setName(), and setAuctionEnd(). The fields or setter method parameters must be of
the right type. If you have fields that map to some query aliases and setter methods for
the rest, that’s fine too.

 You should also know how to write your own ResultTransformer when none of
the built-in ones suits you.

16.1.4 Writing a ResultTransformer

The built-in transformers in Hibernate aren’t sophisticated; there isn’t much differ-
ence between result tuples represented as lists, maps, or object arrays. Implementing
the ResultTransformer interface is trivial, though, and custom conversion of query
results can tighten the integration between the layers of code in your application. If
your user interface code already knows how to render a table of List<ItemSummary>,
let Hibernate return it directly from a query.

 Next, we show you how to implement a ResultTransformer. Let’s assume that you
want a List<ItemSummary> returned from the query shown in listing 16.1, but you
can’t let Hibernate create an instance of ItemSummary through reflection on a con-
structor. Maybe your ItemSummary class is predefined and doesn’t have the right con-
structor, fields, and setter methods. Instead, you have an ItemSummaryFactory to
produce instances of ItemSummary.

 The ResultTransformer interface requires that you implement the methods
transformTuple() and transformList():

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

413Transforming query results

query.setResultTransformer(
 new ResultTransformer() {

 @Override
 public Object transformTuple(Object[] tuple, String[] aliases) {

 Long itemId = (Long) tuple[0];
 String name = (String) tuple[1];
 Date auctionEnd = (Date) tuple[2];

 assertEquals(aliases[0], "itemId");
 assertEquals(aliases[1], "name");
 assertEquals(aliases[2], "auctionEnd");

 return ItemSummaryFactory.newItemSummary(
 itemId, name, auctionEnd
);
 }

 @Override
 public List transformList(List collection) {
 return Collections.unmodifiableList(collection);
 }
 }
);

B For each result “row,” an Object[] tuple must be transformed into the desired result
value for that row. Here you access each projection element by index in the tuple
array and then call the ItemSummaryFactory to produce the query result value. Hiber-
nate passes the method the aliases found in the query, for each tuple element. You
don’t need the aliases in this transformer, though.

C You can wrap or modify the result list after transforming the tuples. Here you make
the returned List unmodifiable: ideal for a reporting screen where nothing should
change the data.

As you can see in the example, you transform query results in two steps: first you cus-
tomize how to convert each “row” or tuple of the query result to whatever value you
desire. Then you work on the entire List of these values, wrapping or converting
again.

 Next, we discuss another convenient Hibernate feature (where JPA doesn’t have an
equivalent): collection filters.

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
TransformResults.java

Transforms
result rows

B

Access query
aliases if needed

Modifies result listC

Collection is a
List<ItemSummary>
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#FetchJoins
jpwh-2e-preview.xhtml#FetchJoins

414 CHAPTER 16 Advanced query options

H

16.2 Filtering collections
In chapter 7, you saw reasons you should (or rather, shouldn’t) map a collection in
your Java domain model. The main benefit of a collection mapping is easier access to
data: you can call item.getImages() or item.getBids() to access all images and bids
associated with an Item. You don’t have to write a JPQL or criteria query; Hibernate will
execute the query for you when you start iterating through the collection elements.

 The most obvious problem with this automatic data access is that Hibernate will
always write the same query, retrieving all images or bids for an Item. You can custom-
ize the order of collection elements, but even that is a static mapping. What would you
do to render two lists of bids for an Item, in ascending and descending order by cre-
ation date? You could go back to writing and executing custom queries and not call
item.getBids(); the collection mapping might not even be necessary.

 Instead, you can use a Hibernate proprietary feature, collection filters, that makes
writing these queries easier, using the mapped collection. Let’s say you have a persis-
tent Item instance in memory, probably loaded with the EntityManager API. You want
to list all bids made for this Item but further restrict the result to bids made by a par-
ticular User. You also want the list sorted in descending order by Bid#amount.

Item item = em.find(Item.class, ITEM_ID);
User user = em.find(User.class, USER_ID);

org.hibernate.Query query = session.createFilter(
 item.getBids(),
 "where this.bidder = :bidder order by this.amount desc"
);

query.setParameter("bidder", user);
List<Bid> bids = query.list();

The session.createFilter() method accepts a persistent collection and a JPQL
query fragment. This query fragment doesn’t require a select or from clause; here it
only has a restriction with the where clause and an order by clause. The alias this
always refers to elements of the collection, here Bid instances. The filter created is an
ordinary org.hibernate.Query, prepared with a bound parameter and executed with
list(), as usual.

 Hibernate doesn’t execute collection filters in memory. The Item#bids collection
may be uninitialized when you call the filter and, and if so, remains uninitialized. Fur-
thermore, filters don’t apply to transient collections or query results. You may only
apply them to a mapped persistent collection currently referenced by an entity
instance managed by the persistence context. The term filter is somewhat misleading,

Listing 16.2 Filtering and ordering a collection

Path: /examples/src/test/java/org/jpwh/test/querying/advanced/
FilterCollections.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

415Filtering collections
because the result of filtering is a completely new and different collection; the original
collection isn’t touched.

 To the great surprise of everyone, including the designer of this feature, even triv-
ial filters turn out to be useful. For example, you can use an empty query to paginate
collection elements:

Item item = em.find(Item.class, ITEM_ID);

org.hibernate.Query query = session.createFilter(
 item.getBids(),
 ""
);

query.setFirstResult(0);
query.setMaxResults(2);
List<Bid> bids = query.list();

Here, Hibernate executes the query, loading the collection elements and limiting the
returned rows to two, starting with row zero of the result. Usually, you’d use an order
by with paginated queries.

 You don’t need a from clause in a collection filter, but you can have one if that’s
your style. A collection filter doesn’t even need to return elements of the collection
being filtered.

 This next filter returns any Item sold by any of the bidders:

Item item = em.find(Item.class, ITEM_ID);

org.hibernate.Query query = session.createFilter(
 item.getBids(),
 "from Item i where i.seller = this.bidder"
);

List<Item> items = query.list();

With a select clause, you can declare a projection. The following filter retrieves the
names of users who made the bids:

Item item = em.find(Item.class, ITEM_ID);

org.hibernate.Query query = session.createFilter(
 item.getBids(),
 "select distinct this.bidder.username order by this.bidder.username asc"
);

List<String> bidders = query.list();

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
FilterCollections.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
FilterCollections.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
FilterCollections.java

Retrieves only two bids
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#WritingPersistenceCapableClasses

416 CHAPTER 16 Advanced query options

H

All this is a lot of fun, but the most important reason for the existence of collection fil-
ters is to allow your application to retrieve collection elements without initializing the
entire collection. For large collections, this is important to achieve acceptable perfor-
mance. The following query retrieves all bids made for the Item with an amount
greater or equal to 100:

Item item = em.find(Item.class, ITEM_ID);

org.hibernate.Query query = session.createFilter(
 item.getBids(),
 "where this.amount >= :param"
);

query.setParameter("param", new BigDecimal(100));
List<Bid> bids = query.list();

Again, this doesn’t initialize the Item#bids collection but returns a new collection.
 Before JPA 2, query-by-criteria was only available as a proprietary Hibernate API.

Today, the standardized JPA interfaces are equally as powerful as the old org.hiber-
nate.Criteria API, so you’ll rarely need it. But several features are still only available
in the Hibernate API, such as query-by-example and embedding of arbitrary SQL frag-
ments. In the following section, you find a short overview of the org.hibernate
.Criteria API and some of its unique options.

16.3 The Hibernate criteria query API
Using the org.hibernate.Criteria and org.hibernate.Example interfaces, you can
build queries programmatically by creating and combining org.hibernate.crite-
rion.* instances. You see how to use these APIs and how to express selection, restric-
tion, joins, and projection. We assume that you’ve read the previous chapter and that
you know how these operations are translated into SQL. All query examples shown
here have an equivalent JPQL or JPA criteria example in the previous chapter, so you
can easily flip back and forth if you need to compare all three APIs.

 Let’s start with some basic selection examples.

16.3.1 Selection and ordering

The following query loads all Item instances:

org.hibernate.Criteria criteria = session.createCriteria(Item.class);
List<Item> items = criteria.list();

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
FilterCollections.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

417The Hibernate criteria query API
You create an org.hibernate.Criteria using the Session. Alternatively, you can cre-
ate a DetachedCriteria without an open persistence context:

DetachedCriteria criteria = DetachedCriteria.forClass(Item.class);

List<Item> items = criteria.getExecutableCriteria(session).list();

When you’re ready to execute the query, “attach” it to a Session with getExecutable-
Criteria().

 Note that this is a unique feature of the Hibernate criteria API. With JPA, you always
need at least an EntityManagerFactory to get a CriteriaBuilder.

 You can declare the order of the results, equivalent to an order by clause in JPQL.
The following query loads all User instances sorted in ascending order by first and last
name:

List<User> users =
 session.createCriteria(User.class)
 .addOrder(Order.asc("firstname"))
 .addOrder(Order.asc("lastname"))
 .list();

In this example, the code is written in the fluent style (using method chaining); meth-
ods such as addOrder() return the original org.hibernate.Criteria.

 Next, we look at restricting the selected records.

16.3.2 Restriction

The following query returns all Item instances with name “Foo”:

List<Item> items =
 session.createCriteria(Item.class)
 .add(Restrictions.eq("name", "Foo"))
 .list();

The Restrictions interface is the factory for individual Criterion you can add to the
Criteria. Attributes are addressed with simple strings, here Item#name with "name".

 You can also match substrings, similar to the like operator in JPQL. The following
query loads all User instances with username starting with “j” or “J”:

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

418 CHAPTER 16 Advanced query options

List<User> users =
 session.createCriteria(User.class)
 .add(Restrictions.like("username", "j",

MatchMode.START).ignoreCase())
 .list();

MatchMode.START is equivalent to the wildcard j% in JPQL. The other modes are
EXACT, END, and ANYWHERE.

 You can name nested attributes of embeddable types, such as the Address of a
User, using dot-notation

List<User> users =
 session.createCriteria(User.class)
 .add(Restrictions.eq("homeAddress.city", "Some City"))
 .list();

A unique feature of the Hibernate Criteria API is the ability to write plain SQL frag-
ments in restrictions. This query loads all User instances with a username shorter than
eight characters:

List<User> users =
 session.createCriteria(User.class)
 .add(Restrictions.sqlRestriction(
 "length({alias}.USERNAME) < ?",
 8,
 StandardBasicTypes.INTEGER
)).list();

Hibernate sends the SQL fragment to the database as is. You need the {alias} place-
holder to prefix any table alias in the final SQL; it always refers to the table the root
entity is mapped to (USERS, in this case). You also apply a position parameter (named
parameters aren’t supported by this API) and specify its type as StandardBasic-
Types.INTEGER.

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

Extending the Hibernate criteria system
The Hibernate criteria query system is extensible: you could wrap the LENGTH() SQL
function in your own implementation of the org.hibernate.criterion.Criterion
interface.
Licensed to Thomas Snead <n.ordickan@gmail.com>

419The Hibernate criteria query API
After you perform selection and restriction, you want to add projection to your query
to declare the data you want to retrieve.

16.3.3 Projection and aggregation

The following query returns the identifier value, the username, and the homeAddress
of all User entities:

List<Object[]> result =
 session.createCriteria(User.class)
 .setProjection(Projections.projectionList()
 .add(Projections.property("id"))
 .add(Projections.property("username"))
 .add(Projections.property("homeAddress"))
).list();

The result of this query is a List of Object[], one array for each tuple. Each array
contains a Long (or whatever the type of the user’s identifier is), a String, and an
Address.

 Just as with restrictions, you can add arbitrary SQL expressions and function calls
to projections:

List<String> result =
 session.createCriteria(Item.class)
 .setProjection(Projections.projectionList()
 .add(Projections.sqlProjection(
 "NAME || ':' || AUCTIONEND as RESULT",
 new String[]{"RESULT"},
 new Type[]{StandardBasicTypes.STRING}
))
).list();

This query returns a List of Strings, where strings have the form “[Item name]:[Auc-
tion end date]”. The second parameter for the projection is the name of the alias(es)
you used in the query: Hibernate needs this to read the value of the ResultSet. The
type of each projected element/alias is also needed: here, StandardBasic-

Types.STRING.
 Hibernate supports grouping and aggregation. This query counts users’ last

names:

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

420 CHAPTER 16 Advanced query options

List<Object[]> result =
 session.createCriteria(User.class)
 .setProjection(Projections.projectionList()
 .add(Projections.groupProperty("lastname"))
 .add(Projections.rowCount())
).list();

The rowCount() method is equivalent to a count() function call in JPQL. The follow-
ing aggregation query returns average Bid amounts grouped by Item:

List<Object[]> result =
 session.createCriteria(Bid.class)
 .setProjection(Projections.projectionList()
 .add(Projections.groupProperty("item"))
 .add(Projections.avg("amount"))
).list();

Next, you see that joins are also available with the Criteria API.

16.3.4 Joins

You express inner joins of an associated entity with nested Criterias:

List<Bid> result =
 session.createCriteria(Bid.class)
 .createCriteria("item")
 .add(Restrictions.isNotNull("buyNowPrice"))
 .createCriteria("seller")
 .add(Restrictions.eq("username", "johndoe"))
 .list();

This query returns all Bid instances of any Item sold by User “johndoe” that doesn’t
have a buyNowPrice. The first inner join of the Bid#item association is made with
createCriteria("item") on the root Criteria of the Bid. This nested Criteria now
represents the association path, on which another inner join is made with createCri-
teria("seller"). Further restrictions are placed on each join Criteria; they will be
combined with logical and in the where clause of the final SQL query.

 Alternatively, inner joins can be expressed with createAlias() on a Criteria.
This is the same query:

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

Inner join
Licensed to Thomas Snead <n.ordickan@gmail.com>

421The Hibernate criteria query API

List<Bid> result =
 session.createCriteria(Bid.class)
 .createCriteria("item")
 .createAlias("seller", "s")
 .add(Restrictions.and(
 Restrictions.eq("s.username", "johndoe"),
 Restrictions.isNotNull("buyNowPrice")
))
 .list();

Dynamic eager fetching with outer joins are declared with setFetchMode():

List<Item> result =
 session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .list();

This query returns all Item instances with their bids collection initialized in the same
SQL query.

Similar to JPQL and JPA criteria, Hibernate can filter out duplicate references in-mem-
ory with a “distinct” operation:

List<Item> result =
 session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .setResultTransformer(Criteria.DISTINCT_ROOT_ENTITY)
 .list();

Here, you can also see that a ResultTransformer, as discussed earlier in this chapter,
can be applied to a Criteria.

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

Inner join

Look out for duplicates
As with JPQL and JPA criteria queries, Hibernate may return duplicate Item refer-
ences! See our previous discussion in section 15.4.5.
Licensed to Thomas Snead <n.ordickan@gmail.com>

422 CHAPTER 16 Advanced query options
 You can fetch multiple associations/collections in one query:

List<Item> result =
 session.createCriteria(Item.class)
 .createAlias("bids", "b", JoinType.LEFT_OUTER_JOIN)
 .setFetchMode("b", FetchMode.JOIN)
 .createAlias("b.bidder", "bdr", JoinType.INNER_JOIN)
 .setFetchMode("bdr", FetchMode.JOIN)
 .createAlias("seller", "s", JoinType.LEFT_OUTER_JOIN)
 .setFetchMode("s", FetchMode.JOIN)
 .list();

This query returns all Item instances, loads the Item#bids collection with an outer
join, and loads Bid#bidder with an inner join. The Item#seller is also loaded:
because it can’t be null, it doesn’t matter whether an inner or outer join is used. As
always, don’t fetch several collections in one query, or you’ll create a Cartesian prod-
uct (see section 15.4.5).

 Next, you see that subqueries with criteria also work with nested Criteria
instances.

16.3.5 Subselects

The following subquery returns all User instances who are selling more than one
item:

DetachedCriteria sq = DetachedCriteria.forClass(Item.class, "i");
sq.add(Restrictions.eqProperty("i.seller.id", "u.id"));
sq.setProjection(Projections.rowCount());

List<User> result =
 session.createCriteria(User.class, "u")
 .add(Subqueries.lt(1l, sq))
 .list();

The DetachedCriteria is a query that returns the number of items sold restricted by a
given User. The restriction relies on the alias u, so this is a correlated subquery. The
“outer” query then embeds the DetachedCriteria and provides the alias u. Note that
the subquery is the right operand of the lt() (less than) operation, which translates
into 1 < ([Result of count query]) in SQL.

 Hibernate also supports quantification. This query returns items where all bids are
less or equal than 10:

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

423The Hibernate criteria query API

DetachedCriteria sq = DetachedCriteria.forClass(Bid.class, "b");
sq.add(Restrictions.eqProperty("b.item.id", "i.id"));
sq.setProjection(Projections.property("amount"));

List<Item> result =
 session.createCriteria(Item.class, "i")
 .add(Subqueries.geAll(new BigDecimal(10), sq))
 .list();

Again, the position of the operands dictates that the comparison is based on geAll()
(greater or equal than all) to find the bids with “less or equal than 10” amount.

 So far, there are a few good reasons to use the old org.hibernate.Criteria API.
You really should use the standardized JPA query languages in new applications,
though. The most interesting features of the old proprietary API we’ve shown are
embedded SQL expressions in restrictions and projections. Another Hibernate-only
feature you may find interesting is query-by-example.

16.3.6 Example queries

The idea behind example queries is that you provide an example entity instance, and
Hibernate loads all entity instances that “look like the example.” This can be conve-
nient if you have a complex search screen in your user interface, because you don’t
have to write extra classes to hold the entered search terms.

 Let’s say you have a search form in your application where you can search for User
instances by last name. You can bind the form field for “last name” directly to the
User#lastname property and then tell Hibernate to load “similar” User instances:

User template = new User();
template.setLastname("Doe");

org.hibernate.criterion.Example example = Example.create(template);
example.ignoreCase();
example.enableLike(MatchMode.START);
example.excludeProperty("activated");

List<User> users =
 session.createCriteria(User.class)
 .add(example)
 .list();

B Create an “empty” instance of User as a template for your search, and set the property
values you’re looking for: people with the last name “Doe”.

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java

Creates empty User instanceB

C

Creates
Example
instanceIgnores

activate
propertyD

Adds Example
as a restrictionE
Licensed to Thomas Snead <n.ordickan@gmail.com>

424 CHAPTER 16 Advanced query options
C Create an instance of Example with the template. This API allows you to fine-tune the
search. You want the case of the last name to be ignored, and a substring search, so
“Doe”, “DoeX”, or “Doe Y” will match.

D The User class has a boolean property called activated. As a primitive, it can’t be
null, and its default value is false, so Hibernate would include it in the search and
only return users that aren’t activated. You want all users, so tell Hibernate to ignore
that property.

E The Example is added to a Criteria as a restriction.

Because you’ve written the User entity class following JavaBean rules, binding it to a
UI form should be trivial. It has regular getter and setter methods, and you can create
an “empty” instance with the public no-argument constructor (remember our discus-
sion of constructor design in section 3.2.3.)

 One obvious disadvantage of the Example API is that any string-matching options,
such as ignoreCase() and enableLike(), apply to all string-valued properties of the
template. If you searched for both lastname and firstname, both would be case-
insensitive substring matches.

 By default, all non-null valued properties of the given entity template are added to
the restriction of the example query. As shown in the last code snippet, you can manu-
ally exclude properties of the entity template by name with excludeProperty().
Other exclusion options are exclusion of zero-valued properties (such as int or long)
with excludeZeroes() and disabling exclusion altogether with excludeNone(). If no
properties are excluded, any null property of the template is added to the restriction
in the SQL query with an is null check.

 If you need more control over exclusion and inclusion of properties, you can
extend Example and write your own PropertySelector:

class ExcludeBooleanExample extends Example {
 ExcludeBooleanExample(Object template) {
 super(template, new PropertySelector() {
 @Override
 public boolean include(Object propertyValue,
 String propertyName,
 Type type) {
 return propertyValue != null
 && !type.equals(StandardBasicTypes.BOOLEAN);
 }
 });
 }
}

This selector excludes any null properties (like the default selector) and additional
excludes any Boolean properties (such as User#activated).

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

425Summary
 After adding an Example restriction to a Criteria, you can add further restrictions
to the query. Alternatively, you can add multiple example restrictions to a single query.
The following query returns all Item instances with names starting with “B” or “b” and
a seller matching a User example:

Item itemTemplate = new Item();
itemTemplate.setName("B");

Example exampleItem = Example.create(itemTemplate);
exampleItem.ignoreCase();
exampleItem.enableLike(MatchMode.START);
exampleItem.excludeProperty("auctionType");
exampleItem.excludeProperty("createdOn");

User userTemplate = new User();
userTemplate.setLastname("Doe");

Example exampleUser = Example.create(userTemplate);
exampleUser.excludeProperty("activated");

List<Item> items =
 session
 .createCriteria(Item.class)
 .add(exampleItem)
 .createCriteria("seller").add(exampleUser)
 .list();

At this point, we invite you to take a step back and consider how much code would be
required to implement such a search using hand-coded SQL/JDBC.

16.4 Summary
 You used the ResultTransformer API to write custom code to process a query

result, returning a list of lists and a list of maps, and mapping aliases to bean
properties.

 We covered Hibernate’s collection-filtering interfaces as well as making better
use of mapped persistent collections.

 You explored the older Hibernate Criteria query facility and when you might
use it instead of the standardized criteria queries in JPA. We covered all the rela-
tional and Hibernate goodies using this API: selection and ordering, restriction,
projection and aggregation, joins, subselects, and example queries.

PATH: /examples/src/test/java/org/jpwh/test/querying/advanced/
HibernateCriteria.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

Customizing SQL
In this chapter, we cover customizing and embedding SQL in a Hibernate applica-
tion. SQL was created in the 1970s, but ANSI didn’t standardized it until 1986.
Although each update of the SQL standard has seen new (and many controversial)
features, every DBMS product that supports SQL does so in its own unique way. The
burden of portability is again on the database application developers. This is where
Hibernate helps: its built-in query languages produce SQL that depends on the con-
figured database dialect. Dialects also help produce all other automatically gener-
ated SQL (for example, when Hibernate has to retrieve a collection on demand).
With a simple dialect switch, you can run your application on a different DBMS.
Hibernate generates all SQL statements for you, for all create, read, update, and
delete (CRUD) operations.

 Sometimes, though, you need more control than Hibernate and the Java Persis-
tence API provide: you need to work at a lower level of abstraction. With Hibernate,
you can write your own SQL statements:

In this chapter
 Falling back to JDBC

 Mapping SQL query results

 Customizing CRUD operations

 Calling stored procedures
426

Licensed to Thomas Snead <n.ordickan@gmail.com>

427Falling back to JDBC

H

 Fall back to the JDBC API, and work directly with the Connection, Prepared-
Statement, and ResultSet interfaces. Hibernate provides the Connection, so
you don’t have to maintain a separate connection pool, and your SQL state-
ments execute within the same (current) transaction.

 Write plain SQL SELECT statements, and either embed them within your Java
code or externalize them (in XML files or annotations) as named queries. You
execute these SQL queries with the Java Persistence API, just like a regular JPQL
query. Hibernate can then transform the query result according to your map-
ping. This also works with stored procedure calls.

 Replace SQL statements generated by Hibernate with your own hand-written
SQL. For example, when Hibernate loads an entity instance with em.find() or
loads a collection on-demand, your own SQL query can perform the load. You
can also write your own Data Manipulation Language (DML) statements, such
as UPDATE, INSERT, and DELETE. You might even call a stored procedure to per-
form a CRUD operation. You can replace all SQL statements automatically gen-
erated by Hibernate with custom statements.

We start with JDBC fallback usage and then discuss Hibernate’s automatic result-map-
ping capabilities. Then, we show you how to override queries and DML statements in
Hibernate. Last, we discuss integration with stored database procedures.

17.1 Falling back to JDBC
Sometimes you want Hibernate to get out of the way and directly access the database
through the JDBC API. To do so, you need a java.sql.Connection interface to write
and execute your own PreparedStatement and direct access to your statement
ResultSet. Because Hibernate already knows how to obtain and close database con-
nections, it can provide your application with a Connection and release it when you’re
done.

 This functionality is available with the org.hibernate.jdbc.Work API, a callback-
style interface. You encapsulate your JDBC “work” by implementing this interface;
Hibernate calls your implementation providing a Connection. The following example
executes an SQL SELECT and iterates through the ResultSet.

Major new features in JPA 2
 You can map a SQL query result to a constructor.
 You can call stored procedures and functions directly with the new Stored-

ProcedureQuery API.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#OptimisticConcurrency
jpwh-2e-preview.xhtml#OptimisticConcurrency

428 CHAPTER 17 Customizing SQL

public class QueryItemWork implements org.hibernate.jdbc.Work {

 final protected Long itemId;

 public QueryItemWork(Long itemId) {
 this.itemId = itemId;
 }

 @Override
 public void execute(Connection connection) throws SQLException {
 PreparedStatement statement = null;
 ResultSet result = null;
 try {
 statement = connection.prepareStatement(
 "select * from ITEM where ID = ?"
);
 statement.setLong(1, itemId);

 result = statement.executeQuery();

 while (result.next()) {
 String itemName = result.getString("NAME");
 BigDecimal itemPrice = result.getBigDecimal("BUYNOWPRICE");
 // ...
 }
 } finally {
 if (result != null)
 result.close();
 if (statement != null)
 statement.close();
 }
 }
}

B For this “work,” an item identifier is needed, enforced with the final field and the con-
structor parameter.

C The execute() method is called by Hibernate with a JDBC Connection. You don’t
have to close the connection when you’re done.

D You have to close and release other resources you’ve obtained, though, such as the
PreparedStatement and ResultSet.

You execute the Work with the Hibernate Session API:

UserTransaction tx = TM.getUserTransaction();
tx.begin();
EntityManager em = JPA.createEntityManager();

Session session = em.unwrap(Session.class);
session.doWork(new QueryItemWork(ITEM_ID));

Listing 17.1 Encapsulating “work” with the JDBC interfaces

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/JDBCFallback.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/JDBCFallback.java

Item identifierB

Calls execute()C

Closes resourcesD
Licensed to Thomas Snead <n.ordickan@gmail.com>

429Mapping SQL query results

H

tx.commit();
em.close();

In this case, Hibernate has already enlisted the JDBC Connection it provides with the
current system transaction. Your statements are committed when the system transac-
tion is committed, and all operations, whether executed with the EntityManager or
Session API, are part of the same unit of work. Alternatively, if you want to return a
value from your JDBC “work” to the application, implement the interface org.hiber-
nate.jdbc.ReturningWork.

 There are no limits on the JDBC operations you can perform in a Work implemen-
tation. Instead of a PreparedStatement, you may use a CallableStatement and exe-
cute a stored procedure in the database; you have full access to the JDBC API.

 For simple queries and working with a ResultSet, such as the one in the previous
example, a more convenient alternative is available.

17.2 Mapping SQL query results
When you execute an SQL SELECT query with the JDBC API or execute a stored proce-
dure that returns a ResultSet, you iterate through each row of this result set and
retrieve the data you need. This is a labor-intensive task, and you end up duplicating
the same lines of code repeatedly.

Hibernate offers an alternative: execute the native SQL query or stored procedure call
with the Hibernate/Java Persistence API and, instead of a ResultSet, get a List of
instances of your choice. You can map the ResultSet to any class you like, and Hiber-
nate will perform the transformation for you.

NOTE In this section, we only talk about native SELECT SQL queries. You can
also write UPDATE and INSERT statements with the same API, which we cover in
section 20.1.

Today, two APIs are available for executing native SQL queries and transforming their
result:

 The standardized Java Persistence API with EntityManager#createNative-
Query() for embedded SQL statements, and @NamedNativeQuery for external-
ized queries. You can map result sets with the @SqlResultSetMapping

annotation or in JPA orm.xml files. You may also externalize named SQL queries
to JPA XML files.

Quickly testing SQL statements
For an easy way to test SQL scripts with several DBMSs, without starting a local
server, check out the online service SQL Fiddle at http://sqlfiddle.com.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://sqlfiddle.com
jpwh-2e-preview.xhtml#NamedQueries
jpwh-2e-preview.xhtml#NamedQueries

430 CHAPTER 17 Customizing SQL
 The proprietary and older Hibernate API, with Session#createSQLQuery() and
org.hibernate.SQLQuery for result-set mapping. You can also define external-
ized named SQL queries and result mappings in Hibernate XML metadata files.

The Hibernate API has more features. For example, it also supports eager loading of
collections and entity associations in an SQL result mapping. In the following sections,
you see both APIs side by side for each query. Let’s start with a simple embedded SQL
query and mapping of scalar projection results.

17.2.1 Projection with SQL queries

The following query returns a List of Object[], each array representing a tuple
(row) of the SQL projection:

Query query = em.createNativeQuery(
 "select NAME, AUCTIONEND from {h-schema}ITEM"
);
List<Object[]> result = query.getResultList();

for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof String);
 assertTrue(tuple[1] instanceof Date);}

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select NAME, AUCTIONEND from {h-schema}ITEM"
);
List<Object[]> result = query.list();

for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof String);
 assertTrue(tuple[1] instanceof Date);
}

The em.createNativeQuery() and session.createSQLQuery() methods accept a
plain SQL query string.

 The query retrieves the NAME and AUCTIONEND column values of the ITEM table, and
Hibernate automatically maps them to String and java.util.Date values. Hibernate
reads the java.sql.ResultSetMetaData to determine the type of each projection ele-
ment, and it knows that a VARCHAR column type maps to a String and a TIMESTAMP to
a java.util.Date (as explained in section 5.3).

 Hibernate’s SQL query engine supports several handy placeholders, like
{h-schema} in the previous examples. Hibernate replaces this placeholder with the
default schema of your persistence unit (the hibernate.default_schema configura-
tion property). The other supported placeholders are {h-catalog} for the default
SQL catalog and {h-domain}, which combines the catalog and schema values.

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

431Mapping SQL query results
 The biggest advantage of executing an SQL statement within Hibernate is auto-
matic marshaling of the result set into instances of your domain model (entity)
classes.

17.2.2 Mapping to an entity class

This SQL query returns a List of Item entity instances:

Query query = em.createNativeQuery(
 "select * from ITEM",
 Item.class
);

List<Item> result = query.getResultList();

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select * from ITEM"
);
query.addEntity(Item.class);

List<Item> result = query.list();

The returned Item instances are in persistent state, managed by the current persistence
context. The result is therefore the same as with the JPQL query select i from Item i.

 For this transformation, Hibernate reads the result set of the SQL query and tries
to discover the column names and types as defined in your entity mapping metadata.
If the column AUCTIONEND is returned, and it’s mapped to the Item#auctionEnd prop-
erty, Hibernate knows how to populate that property and returns fully loaded entity
instances.

 Note that Hibernate expects the query to return all columns required to create an
instance of Item, including all properties, embedded components, and foreign key
columns. If Hibernate can’t find a mapped column (by name) in the result set, an
exception is thrown. You may have to use aliases in SQL to return the same column
names as defined in your entity mapping metadata.

 The interfaces javax.persistence.Query and org.hibernate.SQLQuery both
support parameter binding. The following query returns only a single Item entity
instance:

Query query = em.createNativeQuery(
 "select * from ITEM where ID = ?",
 Item.class
);

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

432 CHAPTER 17 Customizing SQL
query.setParameter(1, ITEM_ID);

List<Item> result = query.getResultList();

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select * from ITEM where ID = ?"
);
query.addEntity(Item.class);
query.setParameter(0, ITEM_ID);

List<Item> result = query.list();

For historical reasons, Hibernate counts positional parameters starting at zero,
whereas JPA starts at one. Named parameter binding is usually more robust:

Query query = em.createNativeQuery(
 "select * from ITEM where ID = :id",
 Item.class
);
query.setParameter("id", ITEM_ID);

List<Item> result = query.getResultList();

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select * from ITEM where ID = :id"
);
query.addEntity(Item.class);
query.setParameter("id", ITEM_ID);

List<Item> result = query.list();

Although available in Hibernate for both APIs, the JPA specification doesn’t consider
named parameter binding for native queries portable. Therefore, some JPA providers
may not support named parameters for native queries.

 If your SQL query doesn’t return the columns as mapped in your Java entity class,
and you can’t rewrite the query with aliases to rename columns in the result, you must
create a result-set mapping.

17.2.3 Customizing result mappings

The following query returns a List of managed Item entity instances. All columns of
the ITEM table are included in the SQL projection, as required for the construction of
an Item instance. But the query renames the NAME column to EXTENDED_NAME with an
alias in the projection:

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

Starts at one

Starts at zero
Licensed to Thomas Snead <n.ordickan@gmail.com>

433Mapping SQL query results

Query query = em.createNativeQuery(
 "select " +
 "i.ID, " +
 "'Auction: ' || i.NAME as EXTENDED_NAME, " +
 "i.CREATEDON, " +
 "i.AUCTIONEND, " +
 "i.AUCTIONTYPE, " +
 "i.APPROVED, " +
 "i.BUYNOWPRICE, " +
 "i.SELLER_ID " +
 "from ITEM i",
 "ItemResult"
);

List<Item> result = query.getResultList();

Hibernate can no longer automatically match the result set fields to Item properties:
the NAME column is missing from the result set. You therefore specify a “result map-
ping” with the second parameter ofcreateNativeQuery(), here ItemResult.

MAPPING RESULT FIELDS TO ENTITY PROPERTIES

You can declare this mapping with annotations, for example, on the Item class:

@SqlResultSetMappings({
 @SqlResultSetMapping(
 name = "ItemResult",
 entities =
 @EntityResult(
 entityClass = Item.class,
 fields = {
 @FieldResult(name = "id", column = "ID"),
 @FieldResult(name = "name", column = "EXTENDED_NAME"),
 @FieldResult(name = "createdOn", column = "CREATEDON"),
 @FieldResult(name = "auctionEnd", column = "AUCTIONEND"),
 @FieldResult(name = "auctionType", column = "AUCTIONTYPE"),
 @FieldResult(name = "approved", column = "APPROVED"),
 @FieldResult(name = "buyNowPrice", column = "BUYNOWPRICE"),
 @FieldResult(name = "seller", column = "SELLER_ID")
 }
)
)
})
@Entity
public class Item {
 // ...
}

You map all fields of the result set to properties of the entity class. Even if only one
field/column doesn’t match the already mapped column name (here
EXTENDED_NAME), all other columns and properties have to be mapped as well.

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /model/src/main/java/org/jpwh/model/querying/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

434 CHAPTER 17 Customizing SQL
 SQL result mappings in annotations are difficult to read and as usual with JPA
annotations, they only work when declared on a class, not in a package-info.java meta-
data file. We prefer externalizing such mappings into XML files. The following pro-
vides the same mapping:

<sql-result-set-mapping name="ExternalizedItemResult">
 <entity-result entity-class="org.jpwh.model.querying.Item">
 <field-result name="id" column="ID"/>
 <field-result name="name" column="EXTENDED_NAME"/>
 <field-result name="createdOn" column="CREATEDON"/>
 <field-result name="auctionEnd" column="AUCTIONEND"/>
 <field-result name="auctionType" column="AUCTIONTYPE"/>
 <field-result name="approved" column="APPROVED"/>
 <field-result name="buyNowPrice" column="BUYNOWPRICE"/>
 <field-result name="seller" column="SELLER_ID"/>
 </entity-result>
</sql-result-set-mapping>

If both result-set mappings have the same name, the mapping declared in XML over-
rides the one defined with annotations.

 You can also externalize the actual SQL query with @NamedNativeQuery or <named-
native-query>, as shown in section 14.4. In all following examples, we keep the SQL
statement embedded in the Java code, because this will make it easier for you to
understand what the code does. But most of the time, you’ll see result-set mappings in
the more succinct XML syntax.

 Let’s first repeat the last query with the proprietary Hibernate API:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "i.ID as {i.id}, " +
 "'Auction: ' || i.NAME as {i.name}, " +
 "i.CREATEDON as {i.createdOn}, " +
 "i.AUCTIONEND as {i.auctionEnd}, " +
 "i.AUCTIONTYPE as {i.auctionType}, " +
 "i.APPROVED as {i.approved}, " +
 "i.BUYNOWPRICE as {i.buyNowPrice}, " +
 "i.SELLER_ID as {i.seller} " +
 "from ITEM i"
);
query.addEntity("i", Item.class);

List<Item> result = query.list();

With the Hibernate API, you can perform the result-set mapping directly within the
query through alias placeholders. When calling addEntity(), you provide an alias,
here i. In the SQL string, you then let Hibernate generate the actual aliases in the

PATH: /model/src/main/resources/querying/NativeQueries.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#NamedQueries

435Mapping SQL query results
projection with placeholders such as {i.name} and {i.auctionEnd}, which refer to
properties of the Item entity. No additional result-set mapping declaration is neces-
sary; Hibernate generates the aliases in the SQL string and knows how to read the
property values from the query ResultSet. This is much more convenient than the
JPA result-set mapping option.

 Or, if you can’t or don’t want to modify the SQL statement, use addRoot() and
addProperty() on the org.hibernate.SQLQuery to perform the mapping:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "i.ID, " +
 "'Auction: ' || i.NAME as EXTENDED_NAME, " +
 "i.CREATEDON, " +
 "i.AUCTIONEND, " +
 "i.AUCTIONTYPE, " +
 "i.APPROVED, " +
 "i.BUYNOWPRICE, " +
 "i.SELLER_ID " +
 "from ITEM i"
);
query.addRoot("i", Item.class)
 .addProperty("id", "ID")
 .addProperty("name", "EXTENDED_NAME")
 .addProperty("createdOn", "CREATEDON")
 .addProperty("auctionEnd", "AUCTIONEND")
 .addProperty("auctionType", "AUCTIONTYPE")
 .addProperty("approved", "APPROVED")
 .addProperty("buyNowPrice", "BUYNOWPRICE")
 .addProperty("seller", "SELLER_ID");

List<Item> result = query.list();

As with the standard API, you can also rely on an existing result-set mapping by name
with the Hibernate API:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "i.ID, " +
 "'Auction: ' || i.NAME as EXTENDED_NAME, " +
 "i.CREATEDON, " +
 "i.AUCTIONEND, " +
 "i.AUCTIONTYPE, " +
 "i.APPROVED, " +
 "i.BUYNOWPRICE, " +
 "i.SELLER_ID " +
 "from ITEM i"

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

436 CHAPTER 17 Customizing SQL
);
query.setResultSetMapping("ItemResult");

List<Item> result = query.list();

Another case where you need custom result-set mapping are duplicate column names
in the result set of your SQL query.

MAPPING DUPLICATE FIELDS

The following query loads the seller of each Item in a single statement, joining ITEM
and USERS tables:

Query query = em.createNativeQuery(
 "select " +
 "i.ID as ITEM_ID, " +
 "i.NAME, " +
 "i.CREATEDON, " +
 "i.AUCTIONEND, " +
 "i.AUCTIONTYPE, " +
 "i.APPROVED, " +
 "i.BUYNOWPRICE, " +
 "i.SELLER_ID, " +
 "u.ID as USER_ID, " +
 "u.USERNAME, " +
 "u.FIRSTNAME, " +
 "u.LASTNAME, " +
 "u.ACTIVATED, " +
 "u.STREET, " +
 "u.ZIPCODE, " +
 "u.CITY " +
 "from ITEM i join USERS u on u.ID = i.SELLER_ID",
 "ItemSellerResult"
);
List<Object[]> result = query.getResultList();

for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof Item);
 assertTrue(tuple[1] instanceof User);
 Item item = (Item) tuple[0];
 assertTrue(Persistence.getPersistenceUtil().isLoaded(item, "seller"));
 assertEquals(item.getSeller(), tuple[1]);
}

This is effectively an eager fetch of the association Item#seller. Hibernate knows that
each row contains the fields for an Item and a User entity instance, linked by the
SELLER_ID.

 The duplicate columns in the result set would be i.ID and u.ID, which both have
the same name. You’ve renamed them with an alias to ITEM_ID and USER_ID, so you
have to map how the result set is to be transformed:

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

437Mapping SQL query results

<sql-result-set-mapping name="ItemSellerResult">
 <entity-result entity-class="org.jpwh.model.querying.Item">
 <field-result name="id" column="ITEM_ID"/>
 <field-result name="name" column="NAME"/>
 <field-result name="createdOn" column="CREATEDON"/>
 <field-result name="auctionEnd" column="AUCTIONEND"/>
 <field-result name="auctionType" column="AUCTIONTYPE"/>
 <field-result name="approved" column="APPROVED"/>
 <field-result name="buyNowPrice" column="BUYNOWPRICE"/>
 <field-result name="seller" column="SELLER_ID"/>
 </entity-result>
 <entity-result entity-class="org.jpwh.model.querying.User">
 <field-result name="id" column="USER_ID"/>
 <field-result name="name" column="NAME"/>
 <field-result name="username" column="USERNAME"/>
 <field-result name="firstname" column="FIRSTNAME"/>
 <field-result name="lastname" column="LASTNAME"/>
 <field-result name="activated" column="ACTIVATED"/>
 <field-result name="homeAddress.street" column="STREET"/>
 <field-result name="homeAddress.zipcode" column="ZIPCODE"/>
 <field-result name="homeAddress.city" column="CITY"/>
 </entity-result>
</sql-result-set-mapping>

As before, you have to map all fields of each entity result to column names, even if
only two have different names as the original entity mapping.

 This query is much easier to map with the Hibernate API:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "{i.*}, {u.*} " +
 "from ITEM i join USERS u on u.ID = i.SELLER_ID"
);
query.addEntity("i", Item.class);
query.addEntity("u", User.class);

List<Object[]> result = query.list();

Hibernate will add auto-generated unique aliases to the SQL statement for the {i.*}
and {u.*} placeholders, so the query won’t return duplicate column names.

 You may have noticed the dot syntax in the previous JPA result mapping for the
homeAddress embedded component in a User. Let’s look at this special case again.

MAPPING FIELDS TO COMPONENT PROPERTIES

The User has a homeAddress, an embedded instance of the Address class. The follow-
ing query loads all User instances:

PATH: /model/src/main/resources/querying/NativeQueries.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

438 CHAPTER 17 Customizing SQL

Query query = em.createNativeQuery(
 "select " +
 "u.ID, " +
 "u.USERNAME, " +
 "u.FIRSTNAME, " +
 "u.LASTNAME, " +
 "u.ACTIVATED, " +
 "u.STREET as USER_STREET, " +
 "u.ZIPCODE as USER_ZIPCODE, " +
 "u.CITY as USER_CITY " +
 "from USERS u",
 "UserResult"
);

List<User> result = query.getResultList();

In this query, you rename the STREET, ZIPCODE, and CITY columns, so you have to map
them manually to the embedded component properties:

<sql-result-set-mapping name="UserResult">
 <entity-result entity-class="org.jpwh.model.querying.User">
 <field-result name="id" column="ID"/>
 <field-result name="name" column="NAME"/>
 <field-result name="username" column="USERNAME"/>
 <field-result name="firstname" column="FIRSTNAME"/>
 <field-result name="lastname" column="LASTNAME"/>
 <field-result name="activated" column="ACTIVATED"/>
 <field-result name="homeAddress.street" column="USER_STREET"/>
 <field-result name="homeAddress.zipcode" column="USER_ZIPCODE"/>
 <field-result name="homeAddress.city" column="USER_CITY"/>
 </entity-result>
</sql-result-set-mapping>

We’ve shown this dot syntax several times before when discussing embedded compo-
nents: you reference the street property of homeAddress with homeAddress.street.
For nested embedded components, you can write homeAddress.city.name if City
isn’t just a string but another embeddable class.

 Hibernate’s SQL query API also supports the dot syntax in alias placeholders for
component properties. Here are the same query and result-set mapping:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "u.ID as {u.id}, " +
 "u.USERNAME as {u.username}, " +
 "u.FIRSTNAME as {u.firstname}, " +

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /model/src/main/resources/querying/NativeQueries.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

439Mapping SQL query results

H

 "u.LASTNAME as {u.lastname}, " +
 "u.ACTIVATED as {u.activated}, " +
 "u.STREET as {u.homeAddress.street}, " +
 "u.ZIPCODE as {u.homeAddress.zipcode}, " +
 "u.CITY as {u.homeAddress.city} " +
 "from USERS u"
);
query.addEntity("u", User.class);

List<User> result = query.list();

Eager fetching of collections with an SQL query is only available with the Hibernate API.

EAGER-FETCHING COLLECTIONS

Let’s say you want to load all Item instances with an SQL query and have the bids col-
lection of each Item initialized at the same time. This requires an outer join in the
SQL query:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "i.ID as ITEM_ID, " +
 "i.NAME, " +
 "i.CREATEDON, " +
 "i.AUCTIONEND, " +
 "i.AUCTIONTYPE, " +
 "i.APPROVED, " +
 "i.BUYNOWPRICE, " +
 "i.SELLER_ID, " +
 "b.ID as BID_ID," +
 "b.ITEM_ID as BID_ITEM_ID, " +
 "b.AMOUNT, " +
 "b.BIDDER_ID " +
 "from ITEM i left outer join BID b on i.ID = b.ITEM_ID"
);
query.addRoot("i", Item.class)
 .addProperty("id", "ITEM_ID")
 .addProperty("name", "NAME")
 .addProperty("createdOn", "CREATEDON")
 .addProperty("auctionEnd", "AUCTIONEND")
 .addProperty("auctionType", "AUCTIONTYPE")
 .addProperty("approved", "APPROVED")
 .addProperty("buyNowPrice", "BUYNOWPRICE")
 .addProperty("seller", "SELLER_ID");

query.addFetch("b", "i", "bids")
 .addProperty("key", "BID_ITEM_ID")
 .addProperty("element", "BID_ID")
 .addProperty("element.id", "BID_ID")
 .addProperty("element.item", "BID_ITEM_ID")

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

ibernate Feature

Joins ITEM and BIDB

Maps columns to entity propertiesC

Maps Bid properties to result setD
Licensed to Thomas Snead <n.ordickan@gmail.com>

440 CHAPTER 17 Customizing SQL
 .addProperty("element.amount", "AMOUNT")
 .addProperty("element.bidder", "BIDDER_ID");

List<Object[]> result = query.list();

assertEquals(result.size(), 5);

for (Object[] tuple : result) {
 Item item = (Item) tuple[0];
 assertTrue(Persistence.getPersistenceUtil().isLoaded(item, "bids"));

 Bid bid = (Bid) tuple[1];
 if (bid != null)
 assertTrue(item.getBids().contains(bid));
}

B The query (outer) joins the ITEM and BID tables. The projection returns all columns
required to construct Item and Bid instances. The query renames duplicate columns
such as ID with aliases, so field names are unique in the result.

C Because of the renamed fields, you have to map each column to its respective entity
property.

D Add a FetchReturn for the bids collection with the alias of the owning entity i, and
map the key and element special properties to the foreign key column BID_ITEM_ID
and the identifier of the Bid. Then the code maps each property of Bid to a field of
the result set. Some fields are mapped twice, as required by Hibernate for construc-
tion of the collection.

E The number of rows in the result set is a product: one item has three bids, one item
has one bid, and the last item has no bids, for a total of five rows in the result.

F The first element of the result tuple is the Item instance; Hibernate initialized the bids
collection.

G The second element of the result tuple is each Bid.

Alternatively, if you don’t have to manually map the result because the field names
returned by your SQL query match the already-mapped columns of the entities, you
can let Hibernate insert aliases into your SQL statement with placeholders:

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "{i.*}, " +
 "{b.*} " +
 "from ITEM i left outer join BID b on i.ID = b.ITEM_ID"
);
query.addEntity("i", Item.class);
query.addFetch("b", "i", "bids");

List<Object[]> result = query.list();

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

5 rows
in resultE

First result is
Item instanceF

Second result is each BidG
Licensed to Thomas Snead <n.ordickan@gmail.com>

441Mapping SQL query results
Eager fetching of collections with dynamic SQL result mappings is only available with
the Hibernate API; it’s not standardized in JPA.

So far, you’ve seen SQL queries returning managed entity instances. You can also
return transient instances of any class with the right constructor.

MAPPING THE RESULT TO A CONSTRUCTOR

We covered dynamic instantiation in a query with JPQL and criteria examples in sec-
tion 15.3.2. JPA supports the same feature with native queries. The following query
returns a List of ItemSummary instances:

Query query = em.createNativeQuery(
 "select ID, NAME, AUCTIONEND from ITEM",
 "ItemSummaryResult"
);
List<ItemSummary> result = query.getResultList();

The ItemSummaryResult mapping transforms each column of the query result into a
parameter for the ItemSummary constructor:

<sql-result-set-mapping name="ItemSummaryResult">
 <constructor-result target-class="org.jpwh.model.querying.ItemSummary">
 <column name="ID" class="java.lang.Long"/>
 <column name="NAME"/>
 <column name="AUCTIONEND"/>
 </constructor-result>
</sql-result-set-mapping>

The returned column types have to match the constructor parameter types; Hibernate
would default to BigInteger for the ID column, so you map it to a Long with the
class attribute.

 The Hibernate API gives you a choice. You can either use an existing result map-
ping for the query by name, or apply a result transformer, as you saw for JPQL queries in
section 16.1:

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /model/src/main/resources/querying/NativeQueries.xml

Limitations of collection fetching with SQL queries
With the org.hibernate.SQLQuery API, you can only fetch a collection of entity
associations: that is, one-to-many or many-to-many collections. At the time of
writing, Hibernate doesn’t support ad hoc dynamic mapping of SQL result sets to
collections of basic or embeddable type. This means you can’t, for example,
eagerly load the Item#images collection with a custom SQL query and the org
.hibernate.SQLQuery API.
Licensed to Thomas Snead <n.ordickan@gmail.com>

442 CHAPTER 17 Customizing SQL

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select ID, NAME, AUCTIONEND from ITEM"
);

// query.setResultSetMapping("ItemSummaryResult");

query.addScalar("ID", StandardBasicTypes.LONG);
query.addScalar("NAME");
query.addScalar("AUCTIONEND");

query.setResultTransformer(
 new AliasToBeanConstructorResultTransformer(
 ItemSummary.class.getConstructor(
 Long.class,
 String.class,
 Date.class
)
)
);

List<ItemSummary> result = query.list();

B You can use an existing result mapping.

C Alternatively, you can map the fields returned by the query as scalar values. Without a
result transformer, you’d get an Object[] for each result row.

D Apply a built-in result transformer to turn the Object[] into instances of ItemSummary.

As explained in section 15.3.2, Hibernate can use any class constructor with such a
mapping. Instead of ItemSummary, you can construct Item instances. They will be in
either transient or detached state, depending on whether you return and map an
identifier value in your query.

 You can also mix different kinds of result mappings or return scalar values directly.

SCALAR AND MIXED RESULT MAPPINGS

The next query returns a List of Object[], where the first element is an Item entity
instance and the second element is a scalar reflecting the number of bids for that
item:

Query query = em.createNativeQuery(
 "select " +
 "i.*, " +
 "count(b.ID) as NUM_OF_BIDS " +
 "from ITEM i left join BID b on b.ITEM_ID = i.ID " +
 "group by i.ID, i.NAME, i.CREATEDON, i.AUCTIONEND, " +
 "i.AUCTIONTYPE, i.APPROVED, i.BUYNOWPRICE, i.SELLER_ID",
 "ItemBidResult"
);

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

Uses existing
result mapping

B

Maps fields
as scalarsC

Applies result
transformerD
Licensed to Thomas Snead <n.ordickan@gmail.com>

443Mapping SQL query results
List<Object[]> result = query.getResultList();

for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof Item);
 assertTrue(tuple[1] instanceof Number);
}

The result mapping is simple, because the projection contains no duplicate columns:

<sql-result-set-mapping name="ItemBidResult">
 <entity-result entity-class="org.jpwh.model.querying.Item"/>
 <column-result name="NUM_OF_BIDS"/>
</sql-result-set-mapping>

With the Hibernate API, the additional scalar result is mapped with addScalar():

org.hibernate.SQLQuery query = session.createSQLQuery(
 "select " +
 "i.*, " +
 "count(b.ID) as NUM_OF_BIDS " +
 "from ITEM i left join BID b on b.ITEM_ID = i.ID " +
 "group by i.ID, i.NAME, i.CREATEDON, i.AUCTIONEND, " +
 "i.AUCTIONTYPE, i.APPROVED, i.BUYNOWPRICE, i.SELLER_ID"
);
query.addEntity(Item.class);
query.addScalar("NUM_OF_BIDS");

List<Object[]> result = query.list();

for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof Item);
 assertTrue(tuple[1] instanceof Number);
}

Finally, in a single result mapping, you can combine entity, constructor, and scalar col-
umn results. The following query returns a persistent and managed User entity
instance that is the seller of the also-returned ItemSummary. You also get the number
of bids for each item:

Query query = em.createNativeQuery(
 "select " +
 "u.*, " +
 "i.ID as ITEM_ID, i.NAME as ITEM_NAME, i.AUCTIONEND as

ITEM_AUCTIONEND, " +
 "count(b.ID) as NUM_OF_BIDS " +
 "from ITEM i " +
 "join USERS u on u.ID = i.SELLER_ID " +

PATH: /model/src/main/resources/querying/NativeQueries.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
HibernateSQLQueries.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

444 CHAPTER 17 Customizing SQL
 "left join BID b on b.ITEM_ID = i.ID " +
 "group by u.ID, u.USERNAME, u.FIRSTNAME, u.LASTNAME, " +
 "u.ACTIVATED, u.STREET, u.ZIPCODE, u.CITY, " +
 "ITEM_ID, ITEM_NAME, ITEM_AUCTIONEND",
 "SellerItemSummaryResult"
);

List<Object[]> result = query.getResultList();
for (Object[] tuple : result) {
 assertTrue(tuple[0] instanceof User);
 assertTrue(tuple[1] instanceof BigInteger);
 assertTrue(tuple[2] instanceof ItemSummary);
}

The result mapping of this query is as follows:

<sql-result-set-mapping name="SellerItemSummaryResult">

 <entity-result entity-class="org.jpwh.model.querying.User"/>

 <constructor-result target-class="org.jpwh.model.querying.ItemSummary">
 <column name="ID" class="java.lang.Long"/>
 <column name="ITEM_NAME"/>
 <column name="ITEM_AUCTIONEND"/>
 </constructor-result>

 <column-result name="NUM_OF_BIDS"/>
</sql-result-set-mapping>

The JPA specification guarantees that in mixed result mappings, the produced
Object[] of each tuple will contain elements in the following order: first all <entity-
result> data, then <constructor-result>data, and then <column-result> data. The
JPA XML schema enforces this order in the result mapping declaration; but even if you
map elements in a different order with annotations (which can’t enforce the order in
which you declare mappings), the query result will have the standard order. Be aware
that, as shown in the code example, Hibernate at the time of writing didn’t return the
right order.

 Note that with the Hibernate query API, you can use the same result mapping by
name, as we’ve shown previously. If you need more programmatic control over the
result marshalling, you must write your own result transformer, because there is no
built-in transformer to map such a mixed query result automatically.

 Last, you’ll see a more complex example with an SQL query declared in an XML file.

17.2.4 Externalizing native queries

We now show you how to declare an SQL query in an XML file, instead of embedding
the string in the code. In real applications with long SQL statements, reading concate-
nated strings in Java code is unpleasant, so you’ll almost always prefer having SQL

PATH: /model/src/main/resources/querying/NativeQueries.xml

Wrong order of
results: Hibernate
issue HHH-8678
Licensed to Thomas Snead <n.ordickan@gmail.com>

445Mapping SQL query results
statements in an XML file. This also simplifies ad hoc testing, because you can copy
and paste SQL statements between an XML file and your SQL database console.

 You’ve probably noticed that all the SQL examples in the previous sections were
trivial. In fact, none of the examples required a query written in SQL—we could have
used JPQL in each case. To make the next example more
interesting, we write a query that can’t be expressed in
JPQL, only in SQL.

THE TREE OF CATEGORIES

Consider the Category class and its self-referencing many-
to-one association, as shown in figure 17.1.

 This is the mapping of the association—a regular
@ManyToOne of the PARENT_ID foreign key column:

@Entity
public class Category {

 @ManyToOne
 @JoinColumn(
 name = "PARENT_ID",
 foreignKey = @ForeignKey(name = "FK_CATEGORY_PARENT_ID")
)
 protected Category parent;

 // ...
}

Categories form a tree. The root of the tree is a Category node without a parent. The
database data for the example tree is in figure 17.2.

 You can also represent this data as a tree diagram, as shown in figure 17.3. Alterna-
tively, you can use a sequence of paths and the level of each node:

/One, 0
/One/Two, 1
/One/Three, 1
/One/Two/Four, 2

PATH: /model/src/main/java/org/jpwh/model/querying/Category.java

Tree root has no parent;
column must be nullable

ID

1

2

3

4

NAME

One

CATEGORY

PARENT_ID

1

1

2

Two

Three

Four

Figure 17.2 Database table and
sample data for a tree of categories

One(1,)

Two(2, 1) Three(3, 1)

Four(4, 2)

Figure 17.3 A tree of categories

name : String
Category 0..*

parent

Figure 17.1 The Category
has a self-referencing many-
to-one association.
Licensed to Thomas Snead <n.ordickan@gmail.com>

446 CHAPTER 17 Customizing SQL
Now, consider how your application loads Category instances. You may want to find
the root Category of the tree. This is a trivial JPQL query:

select c from Category c where c.parent is null

You can easily query for the categories in a particular level of the tree, such as all chil-
dren of the root:

select c from Category c, Category r where r.parent is null and c.parent = r

This query will only return direct children of the root: here, categories Two and Three.
 How can you load the entire tree (or a subtree) in one query? This isn’t possible with

JPQL, because it would require recursion: “Load categories at this level, then all the chil-
dren on the next level, then all the children of those, and so on.” In SQL, you can write
such a query, using a common table expression (CTE), a feature also known as subquery factoring.

LOADING THE TREE

The following SQL query loads the entire tree of Category instances, declared in a JPA
XML file:

<named-native-query name="findAllCategories"
 result-set-mapping="CategoryResult">
 <query>
 with CATEGORY_LINK(ID, NAME, PARENT_ID, PATH, LEVEL) as (
 select
 ID,
 NAME,
 PARENT_ID,
 '/' || NAME,
 0
 from CATEGORY where PARENT_ID is null
 union all
 select
 c.ID,
 c.NAME,
 c.PARENT_ID,
 cl.PATH || '/' || c.NAME,
 cl.LEVEL + 1
 from CATEGORY_LINK cl
 join CATEGORY c on cl.ID = c.PARENT_ID
)
 select
 ID,
 NAME as CAT_NAME,
 PARENT_ID,
 PATH,
 LEVEL
 from CATEGORY_LINK
 order by ID
 </query>
</named-native-query>

PATH: /model/src/main/resources/querying/NativeQueries.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

447Mapping SQL query results
It’s a complex query, and we won’t spend too much time on it here. To understand it,
read the last SELECT, querying the CATEGORY_LINK view. Each row in that view repre-
sents a node in the tree. The view is declared here in the WITH() AS operation. The
CATEGORY_LINK view is a combined (union) result of two other SELECTs. You add addi-
tional information to the view during recursion, such as the PATH and the LEVEL of
each node.

 Let’s map the result of this query:

<sql-result-set-mapping name="CategoryResult">
 <entity-result entity-class="org.jpwh.model.querying.Category">
 <field-result name="id" column="ID"/>
 <field-result name="name" column="CAT_NAME"/>
 <field-result name="parent" column="PARENT_ID"/>
 </entity-result>
 <column-result name="PATH"/>
 <column-result name="LEVEL" class="java.lang.Integer"/>
</sql-result-set-mapping>

The XML maps the ID, CAT_NAME, and PARENT_ID fields to properties of the Category
entity. The mapping returns the PATH and LEVEL as additional scalar values.

 To execute the named SQL query and access the result, write the following:

Query query = em.createNamedQuery("findAllCategories");
List<Object[]> result = query.getResultList();

for (Object[] tuple : result) {
 Category category = (Category) tuple[0];
 String path = (String) tuple[1];
 Integer level = (Integer) tuple[2];
 // ...
}

Each tuple contains a managed, persistent Category instance; its path in the tree as a
string (such as /One, /One/Two, and so on); and the tree level of the node.

 Alternatively, you can declare and map an SQL query in a Hibernate XML meta-
data file:

<sql-query name="findAllCategoriesHibernate">
 <return class="org.jpwh.model.querying.Category">
 <return-property name="id" column="ID"/>
 <return-property name="name" column="CAT_NAME"/>
 <return-property name="parent" column="PARENT_ID"/>
 </return>
 <return-scalar column="PATH"/>
 <return-scalar column="LEVEL" type="integer"/>
 ...
</sql-query>

PATH: /model/src/main/resources/querying/NativeQueries.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/NativeQueries.java

PATH: /model/src/main/resources/querying/SQLQueries.hbm.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

448 CHAPTER 17 Customizing SQL

H

We left out the SQL query in this snippet; it’s the same as the SQL statement shown
earlier in the JPA example.

 As mentioned in section 14.4, with regard to the execution in Java code, it doesn’t
matter which syntax you declare your named queries in: XML file or annotations. Even
the language doesn’t matter—it can be JPQL or SQL. Both Hibernate and JPA query
interfaces have methods to “get a named query” and execute it independently from
how you defined it.

 This concludes our discussion of SQL result mapping for queries. The next subject
is customization of SQL statements for CRUD operations, replacing the SQL automati-
cally generated by Hibernate for creating, reading, updating, and deleting data in the
database.

17.3 Customizing CRUD operations
The first custom SQL you write loads an entity instance of the User class. All the follow-
ing code examples show the same SQL that Hibernate executes automatically by
default, without much customization—this helps you understand the mapping tech-
nique more quickly.

 You can customize retrieval of an entity instance with a loader.

17.3.1 Enabling custom loaders

Hibernate has two requirements when you override an SQL query to load an entity
instance:

 Write a named query that retrieves the entity instance. We show an example in
SQL, but as always, you can also write named queries in JPQL. For an SQL query,
you may need a custom result mapping, as shown earlier in this chapter.

 Activate the query on an entity class with @org.hibernate.annotations
.Loader. This enables the query as the replacement for the Hibernate-gener-
ated query.

Let’s override how Hibernate loads an instance of the User entity, as shown in the follow-
ing listing.

@NamedNativeQueries({
 @NamedNativeQuery(
 name = "findUserById",
 query = "select * from USERS where ID = ?",
 resultClass = User.class
)
})

Listing 17.2 Loading a User instance with a custom query

PATH: /model/src/main/java/org/jpwh/model/customsql/User.java

ibernate Feature

Declares query to load UserB

Parameter
placeholder

C

No custom mapping neededD
Licensed to Thomas Snead <n.ordickan@gmail.com>

449Customizing CRUD operations
@org.hibernate.annotations.Loader(
 namedQuery = "findUserById"
)
@Entity
@Table(name = "USERS")
public class User {
 // ...
}

B Annotations declare the query to load an instance of User; you can also declare it in
an XML file (JPA or Hibernate metadata). You can call this named query directly in
your data-access code when needed.

C The query must have exactly one parameter placeholder, which Hibernate sets as the
identifier value of the instance to load. Here it’s a positional parameter, but a named
parameter would also work.

D For this trivial query, you don’t need a custom result-set mapping. The User class maps
all fields returned by the query. Hibernate can automatically transform the result.

E Setting the loader for an entity class to a named query enables the query for all opera-
tions that retrieve an instance of User from the database. There’s no indication of the
query language or where you declared it; this is independent of the loader declaration.

In a named loader query for an entity, you have to SELECT (that is, perform a projec-
tion for) the following properties of the entity class:

 The value of the identifier property or properties, if a composite primary key is
used.

 All scalar properties of basic type.
 All properties of embedded components.
 An entity identifier value for each @JoinColumn of each mapped entity associa-

tion such as @ManyToOne owned by the loaded entity class.
 All scalar properties, embedded component properties, and association join

references that are inside a @SecondaryTable annotation.
 If you enable lazy loading for some properties, through interception and bytecode

instrumentation, you don’t need to load the lazy properties (see section 12.1.3).

Hibernate always calls the enabled loader query when a User has to be retrieved from
the database by identifier. When you call em.find(User.class, USER_ID), your cus-
tom query will execute. When you call someItem.getSeller().getUsername(), and
the Item#seller proxy has to be initialized, your custom query will load the data.

 You may also want to customize how Hibernate creates, updates, and deletes an
instance of User in the database.

17.3.2 Customizing creation, updates, and deletion

Hibernate usually generates CRUD SQL statements at startup. It caches the SQL state-
ments internally for future use, thus avoiding any runtime costs of SQL generation for

Sets loader to
named queryE
Licensed to Thomas Snead <n.ordickan@gmail.com>

450 CHAPTER 17 Customizing SQL
the most common operations. You’ve seen how you can override the R in CRUD, so
now, let’s do the same for CUD. For each entity, you can define custom CUD SQL state-
ments with the Hibernate annotations @SQLInsert, @SQLUpdate, and @SQLDelete,
respectively.

@org.hibernate.annotations.SQLInsert(
 sql = "insert into USERS " +
 "(ACTIVATED, USERNAME, ID) values (?, ?, ?)"
)
@org.hibernate.annotations.SQLUpdate(
 sql = "update USERS set " +
 "ACTIVATED = ?, " +
 "USERNAME = ? " +
 "where ID = ?"
)
@org.hibernate.annotations.SQLDelete(
 sql = "delete from USERS where ID = ?"
)
@Entity
@Table(name = "USERS")
public class User {
 // ...
}

You need to be careful with the binding of arguments for SQL statements and parame-
ter placeholders (the ? in the statements). For CUD customization, Hibernate only
supports positional parameters.

 What is the right order for the parameters? There’s an internal order to how
Hibernate binds arguments to SQL parameters for CUD statements. The easiest way to
figure out the right SQL statement and parameter order is to let Hibernate generate
an example for you. Without any custom SQL statements, enable DEBUG logging for
the org.hibernate.persister.entity category, and search the Hibernate startup
output for lines like the following:

Static SQL for entity: org.jpwh.model.customsql.User
 Insert 0: insert into USERS (activated, username, id) values (?, ?, ?)
 Update 0: update USERS set activated=?, username=? where id=?
 Delete 0: delete from USERS where id=?

These automatically generated SQL statements show the right parameter order, and
Hibernate always binds the values in that order. Copy the SQL statements you want to
customize into annotations, and make the necessary changes.

 A special case is properties of an entity class mapped to another table with
@SecondaryTable. The CUD customization statements we’ve shown so far only refer to
the columns of the main entity table. Hibernate still executes automatically generated
SQL statements for insertion, updates, and deletion of rows in the secondary table(s).

Listing 17.3 Custom DML for the User entity

PATH: /model/src/main/java/org/jpwh/model/customsql/User.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

451Customizing CRUD operations
You can customize this SQL by adding the @org.hibernate.annotations.Table anno-
tation to your entity class and setting its sqlInsert, sqlUpdate, and sqlDelete attributes.

 If you prefer to have your CUD SQL statements in XML, your only choice is to map
the entire entity in a Hibernate XML metadata file. The elements in this proprietary
mapping format for custom CUD statements are <sql-insert>, <sql-update>, and
<sql-delete>. Fortunately, CUD statements are usually much more trivial than que-
ries, so annotations are fine in most applications.

 You’ve now added custom SQL statements for CRUD operations of an entity
instance. Next, we show how to override SQL statements for loading and modifying a
collection.

17.3.3 Customizing collection operations

Let’s override the SQL statement Hibernate uses when loading the Item#images col-
lection. This is a collection of embeddable components mapped with @Element-
Collection; the procedure is the same for collections of basic types or many-valued
entity associations (@OneToMany or @ManyToMany).

@Entity
public class Item {

 @ElementCollection
 @org.hibernate.annotations.Loader(namedQuery = "loadImagesForItem")
 protected Set<Image> images = new HashSet<Image>();

 // ...
}

As before, you declare that a named query will load the collection. This time, however,
you must declare and map the result of the query in a Hibernate XML metadata file,
which is the only facility that supports mapping of query results to collection properties:

<sql-query name="loadImagesForItem">
 <load-collection alias="img" role="Item.images"/>
 select
 ITEM_ID, FILENAME, WIDTH, HEIGHT
 from
 ITEM_IMAGES
 where
 ITEM_ID = ?
</sql-query>

The query has to have one (positional or named) parameter. Hibernate sets its value
to the entity identifier that owns the collection. Whenever Hibernate need to initialize
the Item#images collection, Hibernate now executes your custom SQL query.

Listing 17.4 Loading a collection with a custom query

PATH: /model/src/main/java/org/jpwh/model/customsql/Item.java

PATH: /model/src/main/resources/customsql/ItemQueries.hbm.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

452 CHAPTER 17 Customizing SQL
 Sometimes you don’t have to override the entire SQL statement for loading a col-
lection: for example, if you only want to add a restriction to the generated SQL state-
ment. Let’s say the Category entity has a collection of Item references, and the Item
has an activation flag. If the property Item#active is false, you don’t want to load it
when accessing the Category#items collection. You can append this restriction to the
SQL statement with the Hibernate @Where annotation on the collection mapping, as a
plain SQL fragment:

@Entity
public class Category {

 @OneToMany(mappedBy = "category")
 @org.hibernate.annotations.Where(clause = "ACTIVE = 'true'")
 protected Set<Item> items = new HashSet<Item>();

 // ...
}

You can also write custom insertion and deletion SQL statements for collection ele-
ments, as shown next.

@Entity
public class Item {

 @ElementCollection
 @org.hibernate.annotations.SQLInsert(
 sql = "insert into ITEM_IMAGES " +
 "(ITEM_ID, FILENAME, HEIGHT, WIDTH) " +
 "values (?, ?, ?, ?)"
)
 @org.hibernate.annotations.SQLDelete(
 sql = "delete from ITEM_IMAGES " +
 "where ITEM_ID = ? and FILENAME = ? and HEIGHT = ? and WIDTH = ?"
)
 @org.hibernate.annotations.SQLDeleteAll(
 sql = "delete from ITEM_IMAGES where ITEM_ID = ?"
)
 protected Set<Image> images = new HashSet<Image>();

 // ...
}

To find the right parameter order, enable DEBUG logging for the org.hibernate
.persister.collection category and search the Hibernate startup output for the gen-
erated SQL statements for this collection, before you add your custom SQL annotations.

 A new annotation here is @SQLDeleteAll, which only applies to collections of
basic or embeddable types. Hibernate executes this SQL statement when the entire

PATH: /model/src/main/java/org/jpwh/model/customsql/Category.java

Listing 17.5 Custom CUD statements for collection modification

PATH: /model/src/main/java/org/jpwh/model/customsql/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

453Customizing CRUD operations
collection has to be removed from the database: for example, when you call someItem
.getImages().clear() or someItem.setImages(new HashSet()).

 No @SQLUpdate statement is necessary for this collection, because Hibernate
doesn’t update rows for this collection of embeddable type. When an Image property
value changes, Hibernate detects this as a new Image in the collection (recall that
images are compared “by value” of all their properties). Hibernate will DELETE the old
row and INSERT a new row to persist this change.

 Instead of lazily loading collection elements, you can eagerly fetch them when the
owning entity is loaded. You can also override this query with a custom SQL statement.

17.3.4 Eager fetching in custom loaders

Let’s consider the Item#bids collection and how it’s loaded. Hibernate enables lazy
loading by default because you mapped with @OneToMany, so it’s only when you begin
iterating through the collection’s elements that Hibernate will execute a query and
retrieve the data. Hence, when loading the Item entity, you don’t have to load any col-
lection data.

 If instead you want to fetch the Item#bids collection eagerly when the Item is
loaded, first enable a custom loader query on the Item class:

@org.hibernate.annotations.Loader(
 namedQuery = "findItemByIdFetchBids"
)
@Entity
public class Item {

 @OneToMany(mappedBy = "item")
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

As in the previous section, you must declare this named query in a Hibernate XML
metadata file; no annotations are available to fetch collections with named queries.
Here is the SQL statement to load an Item and its bids collection in a single OUTER JOIN:

<sql-query name="findItemByIdFetchBids">
 <return alias="i" class="Item"/>
 <return-join alias="b" property="i.bids"/>
 select
 {i.*}, {b.*}
 from
 ITEM i
 left outer join BID b
 on i.ID = b.ITEM_ID
 where
 i.ID = ?
</sql-query>

PATH: /model/src/main/java/org/jpwh/model/customsql/Item.java

PATH: /model/src/main/resources/customsql/ItemQueries.hbm.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

454 CHAPTER 17 Customizing SQL
You saw this query and result mapping in Java code earlier in this chapter in the sec-
tion “Eager-fetching collections.” Here, you apply an additional restriction to only one
row of ITE, with the given primary key value.

 You can also eagerly load single-valued entity associations such as a @ManyToOne
with a custom SQL statement. Let’s say you want to eagerly load the bidder when a Bid
entity is retrieved from the database. First, enable a named query as the entity loader:

@org.hibernate.annotations.Loader(
 namedQuery = "findBidByIdFetchBidder"
)
@Entity
public class Bid {

 @ManyToOne(optional = false, fetch = FetchType.LAZY)
 protected User bidder;

 // ...
}

Unlike custom queries used to load collections, you can declare this named query
with standard annotations (of course, you can also have it in an XML metadata file, in
either the JPA or Hibernate syntax):

@NamedNativeQueries({
 @NamedNativeQuery(
 name = "findBidByIdFetchBidder",
 query =
 "select " +
 "b.ID as BID_ID, b.AMOUNT, b.ITEM_ID, b.BIDDER_ID, " +
 "u.ID as USER_ID, u.USERNAME, u.ACTIVATED " +
 "from BID b join USERS u on b.BIDDER_ID = u.ID " +
 "where b.ID = ?",
 resultSetMapping = "BidBidderResult"
)
})
@Entity
public class Bid {
 // ...
}

An INNER JOIN is appropriate for this SQL query, because a Bid always has a bidder
and the BIDDER_ID foreign key column is never NULL. You rename duplicate ID col-
umns in the query, and because you rename them to BID_ID and USER_ID, a custom
result mapping is necessary:

PATH: /model/src/main/java/org/jpwh/model/customsql/Bid.java

PATH: /model/src/main/java/org/jpwh/model/customsql/Bid.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

455Calling stored procedures

@SqlResultSetMappings({
 @SqlResultSetMapping(
 name = "BidBidderResult",
 entities = {
 @EntityResult(
 entityClass = Bid.class,
 fields = {
 @FieldResult(name = "id", column = "BID_ID"),
 @FieldResult(name = "amount", column = "AMOUNT"),
 @FieldResult(name = "item", column = "ITEM_ID"),
 @FieldResult(name = "bidder", column = "BIDDER_ID")
 }
),
 @EntityResult(
 entityClass = User.class,
 fields = {
 @FieldResult(name = "id", column = "USER_ID"),
 @FieldResult(name = "username", column = "USERNAME"),
 @FieldResult(name = "activated", column = "ACTIVATED")
 }
)
 }
)
})
@Entity
public class Bid {
 // ...
}

Hibernate executes this custom SQL query and maps the result when loading an
instance of the Bid class, either through em.find(Bid.class, BID_ID) or when it has
to initialize a Bid proxy. Hibernate loads the Bid#bidder right away and overrides the
FetchType.LAZY setting on the association.

 You’ve now customized Hibernate operations with your own SQL statements. Let’s
continue with stored procedures and explore the options for integrating them into
your Hibernate application.

17.4 Calling stored procedures
Stored procedures are common in database application development. Moving code
closer to the data and executing it inside the database has distinct advantages. You
end up not duplicating functionality and logic in each program that accesses the data.
A different point of view is that a lot of business logic shouldn’t be duplicated, so it
can be applied all the time. This includes procedures that guarantee the integrity of
the data: for example, constraints that are too complex to implement declaratively.
You’ll usually also find triggers in a database that contain procedural integrity rules.

 Stored procedures have advantages for all processing on large amounts of data,
such as reporting and statistical analysis. You should always try to avoid moving large

PATH: /model/src/main/java/org/jpwh/model/customsql/Bid.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

456 CHAPTER 17 Customizing SQL
data sets on your network and between your database and application servers, so a
stored procedure is the natural choice for mass data operations.

 There are of course (legacy) systems that implement even the most basic CRUD
operations with stored procedures. In a variation on this theme, some systems don’t
allow any direct use of SQL INSERT, UPDATE, or DELETE, but only stored procedure calls;
these systems also had (and sometimes still have) their place.

 In some DBMSs, you can declare user-defined functions, in addition to, or instead
of, stored procedures. The summary in table 17.1 shows some of the differences
between procedures and functions.

It’s difficult to generalize and compare procedures and functions beyond these obvi-
ous differences. This is one area where DBMS support differs widely; some DBMSs
don’t support stored procedures or user-defined functions, whereas others roll both
into one (for example, PostgreSQL has only user-defined functions). Programming
languages for stored procedures are usually proprietary. Some databases even support
stored procedures written in Java. Standardizing Java stored procedures was part of
the SQLJ effort, which unfortunately hasn’t been successful.

 In this section, we show you how to integrate Hibernate with MySQL stored proce-
dures and PostgreSQL user-defined functions. First, we look at defining and calling
stored procedures with the standardized Java Persistence API and the native Hibernate
API. Then, we customize and replace Hibernate CRUD operations with procedure
calls. It’s important that you read the previous sections before this one, because the
integration of stored procedures relies on the same mapping options as other SQL
customization in Hibernate.

 As before in this chapter, the actual SQL stored procedures we cover in the exam-
ples are trivial so you can focus on the more important parts—how to call the proce-
dures and use the API in your application.

 When calling a stored procedure, you typically want to provide input and receive
the output of the procedure. You can distinguish between procedures that

 Return a result set
 Return multiple result sets
 Update data and return the count of updated rows
 Accept input and/or output parameters
 Return a cursor, referencing a result in the database

Table 17.1 Comparing database procedures and functions

Stored procedure Function

May have input and/or output parameters May have input parameters

Returns zero, a single, or multiple values Must return a value (although the value may not
be scalar or even NULL)

Can only be called directly with JDBC
CallableStatement

Can be called directly or inside a SELECT,
WHERE, or other clauses of a CRUD statement
Licensed to Thomas Snead <n.ordickan@gmail.com>

457Calling stored procedures

H

Let’s start with the simplest case: a stored procedure that doesn’t have any parameters
and only returns data in a result set.

17.4.1 Returning a result set

You can create the following procedure in MySQL. It returns a result set containing all
rows of the ITEM table:

create procedure FIND_ITEMS()
begin
 select * from ITEM;
end

Using an EntityManager, build a StoredProcedureQuery and execute it:

StoredProcedureQuery query = em.createStoredProcedureQuery(
 "FIND_ITEMS",
 Item.class
);

List<Item> result = query.getResultList();
for (Item item : result) {
 // ...
}

As you’ve previously seen in this chapter, Hibernate automatically maps the columns
returned in the result set to properties of the Item class. The Item instances returned
by this query will be managed and in persistent state. To customize the mapping of
returned columns, provide the name of a result-set mapping instead of the Item
.class parameter.

 Using the Hibernate native API on a Session, you get the outputs of a Procedure-
Call:

org.hibernate.procedure.ProcedureCall call =
 session.createStoredProcedureCall("FIND_ITEMS", Item.class);

org.hibernate.result.ResultSetOutput resultSetOutput =
 (org.hibernate.result.ResultSetOutput) call.getOutputs().getCurrent();

List<Item> result = resultSetOutput.getResultList();

PATH: /model/src/main/resources/querying/StoredProcedures.hbm.xml

PATH:/examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

PATH:/examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

Or name of result-set mapping

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

458 CHAPTER 17 Customizing SQL

Proces
resu
The Hibernate getCurrent() method already indicates that a procedure may return
more than a single ResultSet. A procedure may return multiple result sets and even
return update counts if it modified data.

17.4.2 Returning multiple results and update counts

The following MySQL procedure returns all rows of the ITEM table that weren’t
approved and all rows that were already approved, and also sets the APPROVED flag for
these rows:

create procedure APPROVE_ITEMS()
begin
 select * from ITEM where APPROVED = 0;
 select * from ITEM where APPROVED = 1;
 update ITEM set APPROVED = 1 where APPROVED = 0;
end

In the application, you get two result sets and an update count. Accessing and pro-
cessing the results of a procedure call is a bit more involved, but JPA is closely aligned
to plain JDBC, so this kind of code should be familiar if you’ve worked with stored
procedures:

StoredProcedureQuery query = em.createStoredProcedureQuery(
 "APPROVE_ITEMS",
 Item.class
);

boolean isCurrentReturnResultSet = query.execute();
while (true) {
 if (isCurrentReturnResultSet) {
 List<Item> result = query.getResultList();
 // ...
 } else {
 int updateCount = query.getUpdateCount();
 if (updateCount > -1) {
 // ...
 } else {
 break;
 }
 }

 isCurrentReturnResultSet = query.hasMoreResults();
}

B Execute the procedure call with execute(). This method returns true if the first
result of the call is a result set and false if the first result is an update count.

PATH: /model/src/main/resources/querying/StoredProcedures.hbm.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

Or name of result-set mapping

Calls execute()B
ses
lts C

Processes result setsD

No more update
counts: exit the loop

Processes update countsE

Advances to
next result

F

Licensed to Thomas Snead <n.ordickan@gmail.com>

459Calling stored procedures

H

C Process all results of the call in a loop. Stop looping when no more results are avail-
able, which is always indicated by hasMoreResults() returning false and getUpdate-
Count() returning -1.

D If the current result is a result set, read and process it. Hibernate maps the columns in
each result set to managed instances of the Item class. Alternatively, provide a result-
set mapping name applicable to all result sets returned by the call.

E If the current result is an update count, getUpdateCount() returns a value greater
than -1.

F hasMoreResults() advances to the next result and indicates the type of that result.

The alternative—procedure execution with the Hibernate API—may seem more
straightforward. It hides some of the complexity of testing the type of each result and
whether there is more procedure output to process:

org.hibernate.procedure.ProcedureCall call =
 session.createStoredProcedureCall("APPROVE_ITEMS", Item.class);

org.hibernate.procedure.ProcedureOutputs callOutputs = call.getOutputs();

org.hibernate.result.Output output;
while ((output = callOutputs.getCurrent()) != null) {
 if (output.isResultSet()) {
 List<Item> result =
 ((org.hibernate.result.ResultSetOutput) output)
 .getResultList();
 // ...
 } else {
 int updateCount =
 ((org.hibernate.result.UpdateCountOutput) output)
 .getUpdateCount();
 // ...
 }
 if (!callOutputs.goToNext())
 break;
}

B As long as getCurrent() doesn’t return null, there are more outputs to process.

C An output may be a result set: test and cast it.

D If an output isn’t a result set, it’s an update count.

E Proceed with the next output, if any.

Next, we consider stored procedures with input and output parameters.

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

ibernate Feature

Checks for
more outputs

B

Is output a
result set?C

Output is an update count.D

ContinuesE
Licensed to Thomas Snead <n.ordickan@gmail.com>

460 CHAPTER 17 Customizing SQL
17.4.3 Setting input and output parameters

The following MySQL procedure returns a row for the given identifier from the ITEM
table, as well as the total number of items:

create procedure FIND_ITEM_TOTAL(in PARAM_ITEM_ID bigint,
 out PARAM_TOTAL bigint)
begin
 select count(*) into PARAM_TOTAL from ITEM;
 select * from ITEM where ID = PARAM_ITEM_ID;
end

This next procedure returns a result set with the data of the ITEM row. Additionally,
the output parameter PARAM_TOTAL is set. To call this procedure in JPA, you must first
register all parameters:

StoredProcedureQuery query = em.createStoredProcedureQuery(
 "FIND_ITEM_TOTAL",
 Item.class
);

query.registerStoredProcedureParameter(1, Long.class, ParameterMode.IN);
query.registerStoredProcedureParameter(2, Long.class, ParameterMode.OUT);

query.setParameter(1, ITEM_ID);

List<Item> result = query.getResultList();
for (Item item : result) {
 // ...
}

Long totalNumberOfItems = (Long) query.getOutputParameterValue(2);

B Register all parameters by position (starting at 1) and their type.

C Bind values to the input parameters.

D Retrieve the result set returned by the procedure.

E After you’ve retrieved the result sets, you can access the output parameter values.

You can also register and use named parameters, but you can’t mix named and posi-
tional parameters in a particular call. Also, note that any parameter names you choose
in your Java code don’t have to match the names of the parameters in your stored pro-
cedure declaration. Ultimately, you must register the parameters in the same order as
declared in the signature of the procedure.

PATH: /model/src/main/resources/querying/StoredProcedures.hbm.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

B
Registers

parameters

Binds parameter valuesC

Retrieves resultsD

EAccesses parameter values
Licensed to Thomas Snead <n.ordickan@gmail.com>

461Calling stored procedures

H

 The native Hibernate API simplifies parameter registration and usage:

org.hibernate.procedure.ProcedureCall call =
 session.createStoredProcedureCall("FIND_ITEM_TOTAL", Item.class);

call.registerParameter(1, Long.class, ParameterMode.IN)
 .bindValue(ITEM_ID);

ParameterRegistration<Long> totalParameter =
 call.registerParameter(2, Long.class, ParameterMode.OUT);

org.hibernate.procedure.ProcedureOutputs callOutputs = call.getOutputs();

org.hibernate.result.Output output;
while ((output = callOutputs.getCurrent()) != null) {
 if (output.isResultSet()) {
 org.hibernate.result.ResultSetOutput resultSetOutput =
 (org.hibernate.result.ResultSetOutput) output;
 List<Item> result = resultSetOutput.getResultList();
 for (Item item : result) {
 // ...
 }
 }
 if (!callOutputs.goToNext())
 break;
}

Long totalNumberOfItems =
callOutputs.getOutputParameterValue(totalParameter);

B Register all parameters; you can bind input values directly.

C Output parameter registrations can be reused later to read the output value.

D Process all returned result sets before you access any output parameters.

E Access the output parameter value through the registration.

The following MySQL procedure uses input parameters to update a row in the ITEM
table with a new item name:

create procedure UPDATE_ITEM(in PARAM_ITEM_ID bigint,
 in PARAM_NAME varchar(255))
begin
 update ITEM set NAME = PARAM_NAME where ID = PARAM_ITEM_ID;
end

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

PATH: /model/src/main/resources/querying/StoredProcedures.hbm.xml

ibernate Feature

Registers parameters B

Gets
registrationsC

Processes result setsD

Accesses
parameter
values

E

Licensed to Thomas Snead <n.ordickan@gmail.com>

462 CHAPTER 17 Customizing SQL

H

No result sets are returned by this procedure, so execution is simple, and you only get
an update count:

StoredProcedureQuery query = em.createStoredProcedureQuery(
 "UPDATE_ITEM"
);

query.registerStoredProcedureParameter("itemId", Long.class,
ParameterMode.IN);

query.registerStoredProcedureParameter("name", String.class,
ParameterMode.IN);

query.setParameter("itemId", ITEM_ID);
query.setParameter("name", "New Item Name");

assertEquals(query.executeUpdate(), 1);

// Alternative:
// assertFalse(query.execute());
// assertEquals(query.getUpdateCount(), 1);

In this example, you can also see how named parameters work and that names in the
Java code don’t have to match names in the stored procedure declaration. The order
of parameter registrations is still important, though; PARAM_ITEM_ID must be first, and
PARAM_ITEM_NAME must be second.

 A shortcut for calling procedures that don’t return a result set but modify data
is executeUpdate(): its return value is your update count. Alternatively, you can
execute() the procedure and call getUpdateCount().

 This is the same procedure execution using the Hibernate API:

org.hibernate.procedure.ProcedureCall call =
 session.createStoredProcedureCall("UPDATE_ITEM");

call.registerParameter(1, Long.class, ParameterMode.IN)
 .bindValue(ITEM_ID);

call.registerParameter(2, String.class, ParameterMode.IN)
 .bindValue("New Item Name");

org.hibernate.result.UpdateCountOutput updateCountOutput =
 (org.hibernate.result.UpdateCountOutput) call.getOutputs().getCurrent();

assertEquals(updateCountOutput.getUpdateCount(), 1);

Because you know there is no result set returned by this procedure, you can directly
cast the first (current) output to UpdateCountOutput.

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

Update count is 1

First result is NOT a result set

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

463Calling stored procedures
 Next, instead of returning a result set, we see procedures that return a cursor reference.

17.4.4 Returning a cursor

MySQL doesn’t support returning cursors from stored procedures. The following
example only works on PostgreSQL. This stored procedure (or, because this is the
same in PostgreSQL, this user-defined function) returns a cursor to all rows of the
ITEM table:

create function FIND_ITEMS() returns refcursor as $$
 declare someCursor refcursor;
 begin
 open someCursor for select * from ITEM;
 return someCursor;
 end;
$$ language plpgsql;

JPA always registers cursor results as parameters, using the special ParameterMode
.REF_CURSOR:

StoredProcedureQuery query = em.createStoredProcedureQuery(
 "FIND_ITEMS",
 Item.class
);

query.registerStoredProcedureParameter(
 1,
 void.class,
 ParameterMode.REF_CURSOR
);

List<Item> result = query.getResultList();
for (Item item : result) {
 // ...
}

The type of the parameter is void, because its only purpose is to prepare the call inter-
nally for reading data with the cursor. When you call getResultList(), Hibernate
knows how to get the desired output.

PATH: /model/src/main/resources/querying/StoredProcedures.hbm.xml

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

464 CHAPTER 17 Customizing SQL

H

H

 The Hibernate API also offers automatic handling of cursor output parameters:

org.hibernate.procedure.ProcedureCall call =
 session.createStoredProcedureCall("FIND_ITEMS", Item.class);

call.registerParameter(1, void.class, ParameterMode.REF_CURSOR);

org.hibernate.result.ResultSetOutput resultSetOutput =
 (org.hibernate.result.ResultSetOutput) call.getOutputs().getCurrent();

List<Item> result = resultSetOutput.getResultList();
for (Item item : result) {
 // ...
}

Supporting database cursors across DBMS dialects is difficult, and Hibernate has some
limitations. For example, with PostgreSQL, a cursor parameter must always be the first
registered parameter, and (because it’s a function) only one cursor should be
returned by the database. With the PostgreSQL dialect, Hibernate doesn’t support
named parameter binding if a cursor return is involved: you must use positional
parameter binding. Consult your Hibernate SQL dialect for more information; the rel-
evant methods are Dialect#getResultSet(CallableStatement) and so on.

 This completes our discussion of APIs for direct stored procedure calls. Next, you
can also use stored procedures to override the statements generated by Hibernate
when it loads or stores data.

17.5 Using stored procedures for CRUD
The first customized CRUD operation you write loads an entity instance of the User
class. Previously in this chapter, you used a native SQL query with a loader to imple-
ment this requirement. If you have to call a stored procedure to load an instance of
User, the process is equally straightforward.

PATH: /examples/src/test/java/org/jpwh/test/querying/sql/
CallStoredProcedures.java

ibernate Feature

Scrolling stored procedure cursors
In section 14.3.3, we discussed how to use a database cursor to scroll through a
potentially large result set. Unfortunately, at the time of writing, this feature isn’t
available for stored procedure calls in JPA or in the Hibernate API. Hibernate will
always retrieve in memory the result set represented by the stored procedure cursor
reference.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

465Using stored procedures for CRUD
17.5.1 Custom loader with a procedure

First, write a named query that calls a stored procedure—for example, in annotations
on the User class:

@NamedNativeQueries({
 @NamedNativeQuery(
 name = "findUserById",
 query = "{call FIND_USER_BY_ID(?)}",
 resultClass = User.class
)
})
@org.hibernate.annotations.Loader(
 namedQuery = "findUserById"
)
@Entity
@Table(name = "USERS")
public class User {
 // ...
}

Compare this with the previous customization in section 17.3.1: the declaration of the
loader is still the same, and it relies on a defined named query in any supported lan-
guage. You’ve only changed the named query, which you can also move into an XML
metadata file to further isolate and separate this concern.

 JPA doesn’t standardize what goes into a @NamedNativeQuery, you’re free to write
any SQL statement. With the JDBC escape syntax in curly braces, you’re saying, “Let
the JDBC driver figure out what to do here.” If your JDBC driver and DBMS understand
stored procedures, you can invoke a procedure with {call PROCEDURE}. Hibernate
expects that the procedure will return a result set, and the first row in the result set is
expected to have the columns necessary to construct a User instance. We listed the
required columns and properties earlier, in section 17.3.1. Also remember that you
can always apply a result-set mapping if the column (names) returned by your proce-
dure aren’t quite right or you can’t change the procedure code.

 The stored procedure must have a signature matching the call with a single argu-
ment. Hibernate sets this identifier argument when loading an instance of User.
Here’s an example of a stored procedure on MySQL with such a signature:

create procedure FIND_USER_BY_ID(in PARAM_USER_ID bigint)
begin
 select * from USERS where ID = PARAM_USER_ID;
end

Next, we map creating, updating, and deleting a User to a stored procedure.

PATH: /model/src/main/java/org/jpwh/model/customsql/procedures/User.java

PATH: /model/src/main/resources/customsql/CRUDProcedures.hbm.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

466 CHAPTER 17 Customizing SQL
17.5.2 Procedures for CUD

You use the Hibernate annotations @SQLInsert, @SQLUpdate, and @SQLDelete to cus-
tomize how Hibernate creates, updates, and deletes an entity instance in the database.
Instead of a custom SQL statement, you can call a stored procedure to perform the
operation:

@org.hibernate.annotations.SQLInsert(
 sql = "{call INSERT_USER(?, ?, ?)}",
 callable = true
)
@org.hibernate.annotations.SQLUpdate(
 sql = "{call UPDATE_USER(?, ?, ?)}",
 callable = true,
 check = ResultCheckStyle.NONE
)
@org.hibernate.annotations.SQLDelete(
 sql = "{call DELETE_USER(?)}",
 callable = true
)
@Entity
@Table(name = "USERS")
public class User {
 // ...
}

You have to indicate that Hibernate must execute an operation with a JDBC Callable-
Statement instead of a PreparedStatement; hence set the callable=true option.

 As explained in section 17.3.2, argument binding for procedure calls is only possi-
ble with positional parameters, and you must declare them in the order Hibernate
expects. Your stored procedures must have a matching signature. Here are some pro-
cedure examples for MySQL that insert, update, and delete a row in the USERS table:

create procedure INSERT_USER(in PARAM_ACTIVATED bit,
 in PARAM_USERNAME varchar(255),
 in PARAM_ID bigint)
begin
 insert into USERS (ACTIVATED, USERNAME, ID)
 values (PARAM_ACTIVATED, PARAM_USERNAME, PARAM_ID);
end

create procedure UPDATE_USER(in PARAM_ACTIVATED bit,
 in PARAM_USERNAME varchar(255),
 in PARAM_ID bigint)
begin
 update USERS set

PATH: /model/src/main/java/org/jpwh/model/customsql/procedures/User.java

PATH: /model/src/main/resources/customsql/CRUDProcedures.hbm.xml

PATH: /model/src/main/resources/customsql/CRUDProcedures.hbm.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

467Using stored procedures for CRUD
 ACTIVATED = PARAM_ACTIVATED,
 USERNAME = PARAM_USERNAME
 where ID = PARAM_ID;
end

create procedure DELETE_USER(in PARAM_ID bigint)
begin
 delete from USERS where ID = PARAM_ID;
end

When a stored procedure inserts, updates, or deletes an instance of User, Hibernate
has to know whether the call was successful. Usually, for dynamically generated SQL,
Hibernate looks at the number of updated rows returned from an operation. If you
enabled versioning (see section 11.2.2), and the operation didn’t or couldn’t update
any rows, an optimistic locking failure occurs. If you write your own SQL, you can cus-
tomize this behavior as well. It’s up to the stored procedure to perform the version
check against the database state when updating or deleting rows. With the check
option in your annotations, you can let Hibernate know how the procedure will imple-
ment this requirement.

 The default is ResultCheckStyle.NONE, and the following settings are available:

 NONE—The procedure will throw an exception if the operation fails. Hibernate
doesn’t perform any explicit checks but instead relies on the procedure code to
do the right thing. If you enable versioning, your procedure must com-
pare/increment versions and throw an exception if it detects a version mismatch.

 COUNT—The procedure will perform any required version increments and
checks and return the number of updated rows to Hibernate as an update
count. Hibernate uses CallableStatement#getUpdateCount() to access the
result.

 PARAM—The procedure will perform any required version increments and
checks and return the number of updated rows to Hibernate in its first output
parameter. For this check style, you need to add an additional question mark to
your call and, in your stored procedure, return the row count of your DML
operation in this (first) output parameter. Hibernate automatically registers the
parameter and reads its value when the call completes.

Finally, remember that stored procedures and functions sometimes can’t be mapped
in Hibernate. In such cases, you have to fall back to plain JDBC. Sometimes you can

PATH: /model/src/main/resources/customsql/CRUDProcedures.hbm.xml

Availability of ResultCheckStyle options
At the time of writing, Hibernate only implements ResultCheckStyle.NONE.
Licensed to Thomas Snead <n.ordickan@gmail.com>

468 CHAPTER 17 Customizing SQL
wrap a legacy stored procedure with another stored procedure that has the parameter
interface Hibernate expects.

17.6 Summary
 You saw how to fall back to the JDBC API when necessary. Even for custom SQL

queries, Hibernate can do the heavy lifting and transform the ResultSet into
instances of your domain model classes, with flexible mapping options, includ-
ing customizing result mapping. You can also externalize native queries for a
cleaner setup.

 We discussed how to override and provide your own SQL statements for regular
create, read, update, and delete (CRUD) operations, as well as for collection
operations.

 You can enable custom loaders and use eager fetching in such loaders.
 You learned how to call database stored procedures directly and integrate them

into Hibernate. You explored processing a single result set as well as multiple
result sets and update counts. You set stored procedure (input and output)
parameters and learned how to return a database cursor. You also saw how to
use stored procedures for CRUD.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 5

Building applications

In part 5, the last part of this book, we’ll discuss the design and implementa-
tion of layered and conversation-aware Java database applications. We’ll discuss
the most common design patterns used with Hibernate, such as the Data Access
Object (DAO). You’ll see how you can test your Hibernate application easily and
what other best practices are relevant if you work with ORM software in web and
client/server applications in general.

 Chapter 18 is all about designing client/server applications. You’ll learn pat-
terns for client/server architecture, write and test a persistence layer, and inte-
grate EJBs with JPA. In chapter 19, we’ll look at building web applications and
integrating JPA with CDI and JSF. We’ll cover browsing data in tables, implement-
ing long-running conversations, and customizing entity serialization. Finally, in
chapter 20, we’ll look at scaling Hibernate by performing bulk and batch data
operations, and improving scalability with the shared cache.

 After reading this part, you’ll have gathered the architectural-level knowl-
edge to put together an application and let it scale as it succeeds.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Designing client/server
applications
Most JPA developers build client/server applications with a Java-based server access-
ing the database tier through Hibernate. Knowing how the EntityManager and sys-
tem transactions work, you could probably come up with your own server
architecture. You’d have to figure out where to create the EntityManager, when
and how to close it, and how to set transaction boundaries.

 You may be wondering what the relationship is between requests and responses
from and to your client, and the persistence context and transactions on the server.
Should a single system transaction handle each client request? Can several consecu-
tive requests hold a persistence context open? How does detached entity state fit
into this picture? Can you and should you serialize entity data between client and
server? How will these decisions affect your client design?

In this chapter
 Patterns for client/server architecture

 Writing and testing a persistence layer

 Integrating EJBs with JPA
471

Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#PersistenceContextCache
jpwh-2e-preview.xhtml#PersistenceContextCache
jpwh-2e-preview.xhtml#PersistenceContextCache

472 CHAPTER 18 Designing client/server applications
 Before we start answering these questions, we have to mention that we won’t talk
about any specific frameworks besides JPA and EJB in this chapter. There are several
reasons the code examples use EJBs in addition to JPA:

 Our goal is to focus on client/server design patterns with JPA. Many cross-cut-
ting concerns, such as data serialization between client and server, are standard-
ized in EJB, so we don’t have to solve every problem immediately. We know you
probably won’t write an EJB client application. With the example EJB client
code in this chapter, though, you’ll have the foundation to make informed deci-
sions when choosing and working with a different framework. We’ll discuss cus-
tom serialization procedures in the next chapter and explain how to exchange
your JPA-managed data with any client.

 We can’t possibly cover every combination of client/server frameworks in the
Java space. Note that we haven’t even narrowed our scope to web server applica-
tions. Of course, web applications are important, so we’ll dedicate the next
chapter to JPA with JSF and JAX-RS. In this chapter, we’re concerned with any cli-
ent/server system relying on JPA for persistence, and abstractions like the DAO
pattern, which are useful no matter what frameworks you use.

 EJBs are effective even if you only use them on the server side. They offer trans-
action management, and you can bind the persistence context to stateful ses-
sion beans. We’ll discuss these details as well, so if your application architecture
calls for EJBs on the server side, you’ll know how to build them.

Throughout this chapter, you implement two simple use cases with straightforward
workflows as an actual working application: editing an auction item, and placing bids
for an item. First we look at the persistence layer and how you can encapsulate JPA
operations into reusable components: in particular, using the DAO pattern. This will
give you a solid foundation to build more application functionality.

 Then you implement the use cases as conversations: units of work from the perspec-
tive of your application users. You see the code for stateless and stateful server-side com-
ponents and the impact this has on client design and overall application architecture.
This affects not only the behavior of your application but also its scalability and robust-
ness. We repeat all the examples with both strategies and highlight the differences.

 Let’s start with fleshing out a persistence layer and the DAO pattern.

18.1 Creating a persistence layer
In section 3.1.1, we introduced the encapsulation of persistence code in a separate
layer. Although JPA already provides a certain level of abstraction, there are several
reasons you should consider hiding JPA calls behind a facade:

 A custom persistence layer can provide a higher level of abstraction for data-
access operations. Instead of basic CRUD and query operations as exposed by
the EntityManager, you can expose higher-level operations, such as get-
MaximumBid(Item i) and findItems(User soldBy) methods. This abstraction
Licensed to Thomas Snead <n.ordickan@gmail.com>

473Creating a persistence layer
is the primary reason to create a persistence layer in larger applications: to sup-
port reuse of the same data-access operations.

 The persistence layer can have a generic interface without exposing implemen-
tation details. In other words, you can hide the fact that you’re using Hibernate
(or Java Persistence) to implement the data-access operations from any client of
the persistence layer. We consider persistence-layer portability an unimportant
concern because full object/relational mapping solutions like Hibernate
already provide database portability. It’s highly unlikely that you’ll rewrite your
persistence layer with different software in the future and still not want to
change any client code. Furthermore, Java Persistence is a standardized and
fully portable API; there is little harm in occasionally exposing it to clients of the
persistence layer.

The persistence layer can unify data-access operations. This concern relates to porta-
bility, but from a slightly different angle. Imagine that you have to deal with mixed
data-access code, such as JPA and JDBC operations. By unifying the facade that clients
see and use, you can hide this implementation detail from the client. If you have to
deal with different types of data stores, this is a valid reason to write a persistence layer.

 If you consider portability and unification to be side effects of creating a persis-
tence layer, your primary motivation is achieving a higher level of abstraction and
improve the maintainability and reuse of data-access code. These are good reasons,
and we encourage you to create a persistence layer with a generic facade in all but the
simplest applications. But always first consider using JPA directly without any addi-
tional layering. Keep it as simple as possible, and create a lean persistence layer on top
of JPA when you realize you’re duplicating the same query and persistence operations.

 Many tools available claim to simplify creating a persistence layer for JPA or Hiber-
nate. We recommend that you try to work without such tools first, and only buy into a
product when you need a particular feature. Be especially wary of code and query gen-
erators: the frequently heard claims of a holistic solution to every problem, in the long
term, can become a significant restriction and maintenance burden. There can also
be a huge impact on productivity if the development process depends on running a
code-generation tool. This is of course also true for Hibernate’s own tools: for exam-
ple, if you have to generate the entity class source from an SQL schema every time you
make a change. The persistence layer is an important part of your application, and
you must be aware of the commitment you’re making by introducing additional
dependencies. You see in this chapter and the next how to avoid the repetitive code
often associated with persistence-layer components without using any additional tools.

 There is more than one way to design a persistence layer facade—some small
applications have a single DataAccess class; others mix data-access operations into
domain classes (the Active Record pattern, not discussed in this book)—but we prefer
the DAO pattern.
Licensed to Thomas Snead <n.ordickan@gmail.com>

474 CHAPTER 18 Designing client/server applications
18.1.1 A generic data access object pattern

The DAO design pattern originated in Sun’s Java Blueprints more than 15 years ago;
it’s had a long history. A DAO class defines an interface to persistence operations relat-
ing to a particular entity; it advises you to group together code that relates to the per-
sistence of that entity. Given its age, there are many variations of the DAO pattern. The
basic structure of our recommended design is shown in figure 18.1.

We designed the persistence layer with two parallel hierarchies: interfaces on one
side, implementations on the other. The basic instance-storage and -retrieval opera-
tions are grouped in a generic super-interface and a superclass that implements these
operations with a particular persistence solution (using Hibernate, of course). The
generic interface is extended by interfaces for particular entities that require addi-
tional business-related data-access operations. Again, you may have one or several
implementations of an entity DAO interface.

 Let’s quickly look at some of the interfaces and methods shown in this illustration.
There are a bunch of finder methods. These typically return managed (in persistent
state) entity instances, but they may also return arbitrary data-transfer objects such as
ItemBidSummary. Finder methods are your biggest code duplication issue; you may
end up with dozens if you don’t plan carefully. The first step is to try to make them as
generic as possible and move them up in the hierarchy, ideally into the top-level inter-
face. Consider the findByName() method in the ItemDAO: you’ll probably have to add
more options for item searches soon, or you may want the result presorted by the data-
base, or you may implement some kind of paging feature. We’ll elaborate on this
again later and show you a generic solution for sorting and paging in section 19.2.

 The methods offered by the DAO API indicate clearly that this is a state-managing
persistence layer. Methods such as makePersistent() and makeTransient() change
an entity instance’s state (or the state of many instances at once, with cascading

getCount() : Long
makePersistent(T entity) : T
makeTransient(T entity)
checkVersion(T entity, boolean forceUpdate);

GenericDAO<T, ID>

ItemDAO<Item, Long>

BidDAO<Bid, Long>

GenericDAOImpl

ItemDAOImpl

BidDAOImpl

findAll() : List<T>
findReferenceById(ID id) : T
findById(ID id, LockModeType lock) : T
findById(ID id) : T

findAll(boolean withBids) : List<Item>
findByName(String n, boolean substring) : List<Item>
findItemBidSummaries() : List<ItemBidSummary>

Figure 18.1 Generic DAO interfaces support arbitrary implementations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

475Creating a persistence layer
enabled). A client can expect that updates are executed automatically (flushed) by
the persistence engine when an entity instance is modified (there is no perform-
Update() method). You’d write a completely different DAO interface if your persis-
tence layer were statement-oriented: for example, if you weren’t using Hibernate to
implement it, but rather only plain JDBC.

 The persistence layer facade we introduce here doesn’t expose any Hibernate or
Java Persistence interface to the client, so theoretically you can implement it with any
software without making changes to the client code. You may not want or need persis-
tence-layer portability, as explained earlier. In that case, you should consider exposing
Hibernate or Java Persistence interfaces—for example, you could allow clients to
access the JPA CriteriaBuilder and then have a generic findBy(CriteriaQuery)
method. This decision is up to you; you may decide that exposing Java Persistence
interfaces is a safer choice than exposing Hibernate interfaces. You should know, how-
ever, that although it’s possible to change the implementation of the persistence layer
from one JPA provider to another, it’s almost impossible to rewrite a persistence layer
that is state-oriented with plain JDBC statements.

 Next, you implement the DAO interfaces.

18.1.2 Implementing the generic interface

Let’s continue with a possible implementation of the GenericDAO interface:

public abstract class GenericDAOImpl<T, ID extends Serializable>
 implements GenericDAO<T, ID> {

 @PersistenceContext
 protected EntityManager em;
 protected final Class<T> entityClass;
 protected GenericDAOImpl(Class<T> entityClass) {
 this.entityClass = entityClass;
 }
 public void setEntityManager(EntityManager em) {
 this.em = em;
 }
 // ...

}

This generic implementation needs two things to work: an EntityManager and an
entity class. A subclass must provide the entity class as a constructor argument. The
EntityManager, however, can be provided either by a runtime container that under-
stands the @PersistenceContext injection annotation (for example, any standard
Java EE container) or through setEntityManager().

PATH: /apps/app-model/src/main/java/org/jpwh/dao/GenericDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

476 CHAPTER 18 Designing client/server applications
 Next, let’s look at the finder methods:

public abstract class GenericDAOImpl<T, ID extends Serializable>
 implements GenericDAO<T, ID> {

 // ...

 public T findById(ID id) {
 return findById(id, LockModeType.NONE);
 }

 public T findById(ID id, LockModeType lockModeType) {
 return em.find(entityClass, id, lockModeType);
 }

 public T findReferenceById(ID id) {
 return em.getReference(entityClass, id);
 }

 public List<T> findAll() {
 CriteriaQuery<T> c =
 em.getCriteriaBuilder().createQuery(entityClass);
 c.select(c.from(entityClass));
 return em.createQuery(c).getResultList();
 }

 public Long getCount() {
 CriteriaQuery<Long> c =
 em.getCriteriaBuilder().createQuery(Long.class);
 c.select(em.getCriteriaBuilder().count(c.from(entityClass)));
 return em.createQuery(c).getSingleResult();
 }

 // ...
}

You can see how the code uses the entity class to perform the query operations. We’ve
written some simple criteria queries, but you could use JPQL or SQL.

 Finally, here are the state-management operations:

public abstract class GenericDAOImpl<T, ID extends Serializable>
 implements GenericDAO<T, ID> {

 // ...

 public T makePersistent(T instance) {
 // merge() handles transient AND detached instances
 return em.merge(instance);
 }

 public void makeTransient(T instance) {
 em.remove(instance);
 }

PATH: /apps/app-model/src/main/java/org/jpwh/dao/GenericDAOImpl.java

PATH: /apps/app-model/src/main/java/org/jpwh/dao/GenericDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

477Creating a persistence layer
 public void checkVersion(T entity, boolean forceUpdate) {
 em.lock(
 entity,
 forceUpdate
 ? LockModeType.OPTIMISTIC_FORCE_INCREMENT
 : LockModeType.OPTIMISTIC
);
 }
}

An important decision is how you implement the makePersistent() method. Here
we’ve chosen EntityManager#merge() because it’s the most versatile. If the given
argument is a transient entity instance, merging will return a persistent instance. If the
argument is a detached entity instance, merging will also return a persistent instance.
This provides clients with a consistent API without worrying about the state of an entity
instance before calling makePersistent(). But the client needs to be aware that the
returned value of makePersistent() is always the current instance and that the argu-
ment it has given must now be thrown away (see section 10.3.4).

 You’ve now completed building the basic machinery of the persistence layer and
the generic interface it exposes to the upper layer of the system. In the next step, you
create entity-related DAO interfaces and implementations by extending the generic
interface and implementation.

18.1.3 Implementing entity DAOs

Everything you’ve created so far is abstract and generic—you can’t even instantiate
GenericDAOImpl. You now implement the ItemDAO interface by extending Gener-
icDAOImpl with a concrete class.

 First you must make choices about how callers will access the DAOs. You also need
to think about the life cycle of a DAO instance. With the current design, the DAO
classes are stateless except for the EntityManager member.

 Caller threads can share a DAO instance. In a multithreaded Java EE environment,
for example, the automatically injected EntityManager is effectively thread-safe,
because internally it’s often implemented as a proxy that delegates to some thread- or
transaction-bound persistence context. Of course, if you call setEntityManager() on
a DAO, that instance can’t be shared and should only be used by one (for example,
integration/unit test) thread.

 An EJB stateless session bean pool would be a good choice, and thread-safe persis-
tence context injection is available if you annotate the concrete ItemDAOImpl as a
stateless EJB component:

@Stateless
public class ItemDAOImpl extends GenericDAOImpl<Item, Long>
 implements ItemDAO {

PATH: /apps/app-model/src/main/java/org/jpwh/dao/ItemDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

478 CHAPTER 18 Designing client/server applications
 public ItemDAOImpl() {
 super(Item.class);
 }

 // ...
}

You see in a minute how the EJB container selects the “right” persistence context for
injection.

Next are the finder methods defined in ItemDAO:

@Stateless
public class ItemDAOImpl extends GenericDAOImpl<Item, Long>
 implements ItemDAO {

 // ...

 @Override
 public List<Item> findAll(boolean withBids) {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Item> criteria = cb.createQuery(Item.class);
 // ...
 return em.createQuery(criteria).getResultList();
 }

 @Override
 public List<Item> findByName(String name, boolean substring) {
 // ...
 }

 @Override
 public List<ItemBidSummary> findItemBidSummaries() {
 CriteriaBuilder cb = em.getCriteriaBuilder();

PATH: /apps/app-model/src/main/java/org/jpwh/dao/ItemDAOImpl.java

Thread-safety of an injected EntityManager
The Java EE specifications don’t document clearly the thread-safety of injected
EntityManagers with @PersistenceContext. The JPA specification states that an
EntityManager may “only be accessed in a single-threaded manner.” This would
imply that it can’t be injected into inherently multithreaded components such as EJBs,
singleton beans, and servlets that, because it’s the default, don’t run with Single-
ThreadModel. But the EJB specification requires that the EJB container serializes
calls to each stateful and stateless session bean instance. The injected Entity-
Manager in stateless or stateful EJBs is therefore thread-safe; containers implement
this by injecting an EntityManager placeholder. Additionally, your application server
might (it doesn’t have to) support thread-safe access to injected EntityManagers in
a singleton bean or multithreaded servlet. If in doubt, inject the thread-safe Entity-
ManagerFactory, and then create and close your own application-managed Entity-
Manager in your component’s service methods.
Licensed to Thomas Snead <n.ordickan@gmail.com>

479Creating a persistence layer
 CriteriaQuery<ItemBidSummary> criteria =
 cb.createQuery(ItemBidSummary.class);
 // ...
 return em.createQuery(criteria).getResultList();
 }
}

You shouldn’t have any problem writing these queries after reading the previous chap-
ters; they’re straightforward: Either use the criteria query APIs or call externalized
JPQL queries by name. You should consider the static metamodel for criteria queries,
as explained in the section “Using a static metamodel” in chapter 3.

 With the ItemDAO finished, you can move on to BidDAO:

@Stateless
public class BidDAOImpl extends GenericDAOImpl<Bid, Long>
 implements BidDAO {

 public BidDAOImpl() {
 super(Bid.class);
 }
}

As you can see, this is an empty DAO implementation that only inherits generic meth-
ods. In the next section, we discuss some operations you could potentially move into
this DAO class. We also haven’t shown any UserDAO or CategoryDAO code and assume
that you’ll write these DAO interfaces and implementations as needed.

 Our next topic is testing this persistence layer: Should you, and if so, how?

18.1.4 Testing the persistence layer

We’ve pulled almost all the examples in this book so far directly from actual test code.
We continue to do so in all future examples, but we have to ask: should you write tests
for the persistence layer to validate its functionality?

 In our experience, it doesn’t usually make sense to test the persistence layer sepa-
rately. You could instantiate your domain DAO classes and provide a mock EntityMan-
ager. Such a unit test would be of limited value and quite a lot of work to write.
Instead, we recommend that you create integration tests, which test a larger part of the
application stack and involve the database system. All the rest of the examples in this
chapter are from such integration tests; they simulate a client calling the server appli-
cation, with an actual database back end. Hence, you’re testing what’s important: the
correct behavior of your services, the business logic of the domain model they rely on,
and database access through your DAOs, all together.

 The problem then is preparing such integration tests. You want to test in a real Java
EE environment, in the actual runtime container. For this, we use Arquillian
(http://arquillian.org), a tool that integrates with TestNG. With Arquillian, you

PATH: /apps/app-model/src/main/java/org/jpwh/dao/BidDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://arquillian.org
jpwh-2e-preview.xhtml#FallbackJDBC
jpwh-2e-preview.xhtml#FallbackJDBC

480 CHAPTER 18 Designing client/server applications
prepare a virtual archive in your test code and then execute it on a real application
server. Look at the examples to see how this works.

 A more interesting problem is preparing test data for integration tests. Most mean-
ingful tests require that some data exists in the database. You want to load that test data
into the database before your test runs, and each test should work with a clean and
well-defined data set so you can write reliable assertions.

 Based on our experience, here are three common techniques to import test data:

 Your test fixture executes a method before every test to obtain an Entity-
Manager. You manually instantiate your test data entities and persist them with
the EntityManager API. The major advantage of this strategy is that you test
quite a few of your mappings as a side effect. Another advantage is easy pro-
grammatic access to test data. For example, if you need the identifier value of a
particular test Item in your test code, it’s already there in Java because you can
pass it back from your data-import method. The disadvantage is that test data
can be hard to maintain, because Java code isn’t a great data format. You can
clear test data from the database by dropping and re-creating the schema after
every test using Hibernate’s schema-export feature. All integration tests in this
book so far have used this approach; you can find the test data-import proce-
dure next to each test in the example code.

 Arquillian can execute a DbUnit (http://dbunit.sourceforge.net) data-set
import before every test run. DbUnit offers several formats for writing data sets,
including the commonly used flat XML syntax. This isn’t the most compact for-
mat but is easy to read and maintain. The examples in this chapter use this
approach. You can find Arquillian’s @UsingDataSet on the test classes with a
path to the XML file to import. Hibernate generates and drops the SQL schema,
and Arquillian, with the help of DbUnit, loads the test data into the database. If
you like to keep your test data independent of tests, this may be the right
approach for you. If you don’t use Arquillian, manually importing a data set is
pretty easy with DbUnit—see the SampleDataImporter in this chapter’s exam-
ples. We deploy this importer when running the example applications during
development, to have the same data available for interactive use as in auto-
mated tests.

 In section 9.1.1, you saw how to execute custom SQL scripts when Hibernate
starts. The load script executes after Hibernate generates the schema; this is a
great utility for importing test data with plain INSERT SQL statements. The
examples in the next chapter use this approach. The major advantage is that
you can copy/paste the INSERT statements from an SQL console into your test
fixture and vice versa. Furthermore, if your database supports the SQL row
value constructor syntax, you can write compact multirow insertion statements
like insert into MY_TABLE (MY_COLUMN) values (1), (2), (3),

We leave it up to you to pick a strategy. This is frequently a matter of taste and how
much test data you have to maintain. Note that we’re talking about test data for
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://dbunit.sourceforge.net

481Building a stateless server
integration tests, not performance or scalability tests. If you need large amounts of
(mostly random) test data for load testing, consider data-generation tools such as Ben-
erator (http://databene.org/databene-benerator.html).

 This completes the first iteration of the persistence layer. You can now obtain
ItemDAO instances and work with a higher level of abstraction when accessing the data-
base. Let’s write a client that calls this persistence layer and implement the rest of the
application.

18.2 Building a stateless server
The application will be a stateless server application, which means no application
state will be managed on the server between client requests. The application will be
simple, in that it supports only two use cases: editing an auction item and placing a
bid for an item.

 Consider these workflows to be conversations: units of work from the perspective of
the application user. The point of view of application users isn’t necessarily the same
that we as developers have on the system; developers usually consider one system
transaction to be a unit of work. We now focus on this mismatch and how a user’s per-
spective influences the design of server and client code. We start with the first conver-
sation: editing an item.

18.2.1 Editing an auction item

The client is a trivial text-based EJB console application. Look at the “edit an auction
item” user conversation with this client in figure 18.2.

 The client presents the user with a list of auction items; the user picks one. Then the
client asks which operation the user would like to perform. Finally, after entering a new
name, the client shows a success confirmation message. The system is now ready for the
next conversation. The example client starts again and presents a list of auction items.

Figure 18.2 This conversation is a unit of work from a user’s perspective.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://databene.org/databene-benerator.html

482 CHAPTER 18 Designing client/server applications
The sequence of calls for this conversation is shown in figure 18.3. This is your road
map for the rest of the section.

 Let’s have a closer look at this in code; you can refer to the bullet items in the illus-
tration to keep track of where we are. The code you see next is from a test case simu-
lating the client, followed by code from the server-side components handling these
client calls.

 The client retrieves a list of Item instances from the server to start the conversa-
tion B and also requests with true that the Item#bids collection be eagerly fetched.
Because the server doesn’t hold the conversation state, the client must do this job:

List<Item> items;

items = service.getItems(true);

The server-side code handles the call with the help of DAOs:

@javax.ejb.Stateless
@javax.ejb.Local(AuctionService.class)
@javax.ejb.Remote(RemoteAuctionService.class)
public class AuctionServiceImpl implements AuctionService {

PATH: /apps/app-stateless-server/src/test/java/org/jpwh/test/stateless/
AuctionServiceTest.java

PATH: /apps/app-stateless-server/src/main/java/org/jpwh/stateless/
AuctionServiceImpl.java

Client JVM

C
onversation

Server JVM

Transaction &
Persistence

Context

Transaction &
Persistence

Context

: AuctionClient : AuctionServiceImpl itemDAO :
ItemDAOImpl

List<Item>

item :
Item

setName(...)

...

makePersistent(item)

Item

List<Item>

getItems(true)

storeItem(item)

Item

findAll(true)
B C

D

E

F

Figure 18.3 The calls in the “Edit an auction item” conversation

Client must manage application state: a list of items.

Get all items in detached state, and load bids.
Licensed to Thomas Snead <n.ordickan@gmail.com>

483Building a stateless server
 @Inject
 protected ItemDAO itemDAO;

 @Inject
 protected BidDAO bidDAO;

 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public List<Item> getItems(boolean withBids) {
 return itemDAO.findAll(withBids);
 }

 // ...

}

(You can ignore the interfaces declared here; they’re trivial but necessary for remote
calls and local testing of an EJB.) Because no transaction is active when the client calls
getItems(), a new transaction is started. The transaction is committed automatically
when the method returns. The @TransactionAttribute annotation is optional in this
case; the default behavior requires a transaction on EJB method calls.

 The getItems() EJB method calls the ItemDAO to retrieve a List of Item instances
C. The Java EE container automatically looks up and injects the ItemDAO, and the
EntityManager is set on the DAO. Because no EntityManager or persistence context is
associated with the current transaction, a new persistence context is started and
joined with the transaction. The persistence context is flushed and closed when the
transaction commits. This is a convenient feature of stateless EJBs; you don’t have to
do much to use JPA in a transaction.

 A List of Item instances in detached state (after the persistence context is closed)
is returned to the client D. You don’t have to worry about serialization right now; as
long as List and Item and all other reachable types are Serializable, the EJB frame-
work takes care of it.

 Next, the client sets the new name of a selected Item and asks the server to store
that change by sending the detached and modified Item E:

detachedItem.setName("Pretty Baseball Glove");

detachedItem = service.storeItem(detachedItem);

The server takes the detached Item instance and asks the ItemDAO to make the
changes persistent F, internally merging modifications:

PATH: /apps/app-stateless-server/src/test/java/org/jpwh/test/stateless/
AuctionServiceTest.java

Default

Call service and make
change permanent. Current
Item instance is returned.
Licensed to Thomas Snead <n.ordickan@gmail.com>

484 CHAPTER 18 Designing client/server applications

public class AuctionServiceImpl implements AuctionService {

 // ...

 @Override
 public Item storeItem(Item item) {
 return itemDAO.makePersistent(item);
 }

 // ...
}

The updated state—the result of the merge—is returned to the client.
 The conversation is complete, and the client may ignore the returned updated

Item. But the client knows that this return value is the latest state and that any previ-
ous state it was holding during the conversation, such as the List of Item instances, is
outdated and should probably be discarded. A subsequent conversation should begin
with fresh state: using the latest returned Item, or by obtaining a fresh list.

 You’ve now seen how to implement a single conversation—the entire unit of work,
from the user’s perspective—with two system transactions on the server. Because you
only loaded data in the first system transaction and deferred writing changes to the
last transaction, the conversation was atomic: changes aren’t permanent until the last
step completes successfully. Let’s expand on this with the second use case: placing a
bid for an item.

18.2.2 Placing a bid

In the console client, a user’s “placing a bid” conversation looks like figure 18.4. The cli-
ent presents the user with a list of auction items again and asks the user to pick one. The
user can place a bid and receives a success-confirmation message if the bid was stored
successfully. The sequence of calls and the code road map are shown in figure 18.5.

PATH: /apps/app-stateless-server/src/main/java/org/jpwh/stateless/
AuctionServiceImpl.java

Figure 18.4 A user placing a bid: a unit of work from the user’s perspective
Licensed to Thomas Snead <n.ordickan@gmail.com>

485Building a stateless server

We again step through the test client and server-side code. First B, the client gets a list
of Item instances and eagerly fetches the Item#bids collection. You saw the code for
this in the previous section.

 Then, the client creates a new Bid instance after receiving user input for the
amount C, linking the new transient Bid with the detached selected Item. The client
has to store the new Bid and send it to the server. If you don’t document your service
API properly, a client may attempt to send the detached Item:

item.getBids().add(newBid);

item = service.storeItem(item);

Here, the client assumes that the server knows it added the new Bid to the Item#bids
collection and that it must be stored. Your server could implement this functionality,
maybe with merge cascading enabled on the @OneToMany mapping of that collection.
Then, the storeItem() method of the service would work as in the previous section,
taking the Item and calling the ItemDAO to make it (and its transitive dependencies)
persistent.

 This isn’t the case in this application: the service offers a separate placeBid()
method. You have to perform additional validation before a bid is stored in the data-
base, such as checking whether it was higher than the last bid. You also want to force
an increment of the Item version, to prevent concurrent bids. Hence, you document

PATH: /apps/app-stateless-server/src/test/java/org/jpwh/test/stateless/
AuctionServiceTest.java

Server JVMClient JVM

Transaction &
Persistence

Context

Transaction &
Persistence

Context

item :
Item: AuctionClient : AuctionServiceImpl itemDAO :

ItemDAOImpl

List<Item>

new(item, amount)

...

bid :
Bid

bidDAO :
BidDAOImpl

makePersistent(bid)

C
onversation

List<Item>

bid.getItem()

placeBid(bid)

getItems(true)

checkVersion()

findAll(true)

B

C

D

Figure 18.5 The calls in the “Placing a bid” conversation

“Maybe this service has cascading persistence
on the Item#bids @OneToMany?” Afterward,
nothing happens—bid isn’t stored.
Licensed to Thomas Snead <n.ordickan@gmail.com>

486 CHAPTER 18 Designing client/server applications
the cascading behavior of your domain model entity associations: Item#bids isn’t
transitive, and new Bid instances must be stored through the service’s placeBid()
method exclusively.

 The implementation of the placeBid() method on the server takes care of valida-
tion and version checking:

public class AuctionServiceImpl implements AuctionService {

 // ...

 @Override
 public Item placeBid(Bid bid) throws InvalidBidException {
 bid = bidDAO.makePersistent(bid);

 if (!bid.getItem().isValidBid(bid))
 throw new InvalidBidException("Bid amount too low!");

 itemDAO.checkVersion(bid.getItem(), true);

 return bid.getItem();
 }
}

Two interesting things are happening here. First, a transaction is started and spans the
placeBid() method call. The nested EJB method calls to ItemDAO and BidDAO are in
that same transaction context and inherit the transaction. The same is true for the
persistence context: it has the same scope as the transaction D. Both DAO classes
declare that they need the current @PersistenceContext injected; the runtime con-
tainer provides the persistence context bound to the current transaction. Transaction
and persistence-context creation and propagation with stateless EJBs is straightfor-
ward, always “along with the call.”

 Second, the validation of the new Bid is business logic encapsulated in the domain
model classes. The service calls Item#isValid(Bid) and delegates the responsibility
for validation to the Item domain model class. Here’s how you implement this in the
Item class:

@Entity
public class Item implements Serializable {

 // ...
 public boolean isValidBid(Bid newBid) {
 Bid highestBid = getHighestBid();
 if (newBid == null)
 return false;
 if (newBid.getAmount().compareTo(new BigDecimal("0")) != 1)
 return false;
 if (highestBid == null)

PATH: /apps/app-stateless-server/src/main/java/org/jpwh/stateless/
AuctionServiceImpl.java

PATH: /apps/app-model/src/main/java/org/jpwh/model/Item.java

Checks
that business
rules are met.
Licensed to Thomas Snead <n.ordickan@gmail.com>

487Building a stateless server
 return true;
 if (newBid.getAmount().compareTo(highestBid.getAmount()) == 1)
 return true;
 return false;
 }

 public Bid getHighestBid() {
 return getBids().size() > 0
 ? getBidsHighestFirst().get(0) : null;
 }

 public List<Bid> getBidsHighestFirst() {
 List<Bid> list = new ArrayList<>(getBids());
 Collections.sort(list);
 return list;
 }

 // ...
}

The isValid() method performs several checks to find out whether the Bid is higher
than the last bid. If your auction system has to support a “lowest bid wins” strategy at
some point, all you have to do is change the Item domain-model implementation; the
services and DAOs using that class won’t know the difference. (Obviously, you’d need a
different message for the InvalidBidException.)

 What is debatable is the efficiency of the getHighestBid() method. It loads the
entire bids collection into memory, sorts it there, and then takes just one Bid. An
optimized variation could look like this:

@Entity
public class Item implements Serializable {

 // ...

 public boolean isValidBid(Bid newBid,
 Bid currentHighestBid,
 Bid currentLowestBid) {
 // ...
 }

}

The service (or controller, if you like) is still completely unaware of any business
logic—it doesn’t need to know whether a new bid must be higher or lower than the
last one. The service implementation must provide the currentHighestBid and
currentLowestBid when calling the Item#isValid() method. This is what we hinted
at earlier: that you may want to add operations to the BidDAO. You could write data-
base queries to find those bids in the most efficient way possible without loading all
the item bids into memory and sorting them there.

PATH: /apps/app-model/src/main/java/org/jpwh/model/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

488 CHAPTER 18 Designing client/server applications
 The application is now complete. It supports the two use cases you set out to imple-
ment. Let’s take a step back and analyze the result.

18.2.3 Analyzing the stateless application

You’ve implemented code to support conversations: units of work from the perspec-
tive of the users. The users expect to perform a series of steps in a workflow and that
each step will be only temporary until they finalize the conversation with the last step.
That last step is usually a final request from the client to the server, ending the conver-
sation. This sounds a lot like transactions, but you may have to perform several system
transactions on the server to complete a particular conversation. The question is how
to provide atomicity across several requests and system transactions.

 Conversations by users can be of arbitrary complexity and duration. More than
one client request in a conversation’s flow may load detached data. Because you’re in
control of the detached instances on the client, you can easily make a conversation
atomic if you don’t merge, persist, or remove any entity instances on the server until
the final request in your conversation workflow. It’s up to you to somehow queue mod-
ifications and manage detached data where the list of items is held during user think-
time. Just don’t call any service operation from the client that makes permanent
changes on the server until you’re sure you want to “commit” the conversation.

 One issue you have to keep an eye on is equality of detached references: for exam-
ple, if you load several Item instances and put them in a Set or use them as keys in a Map.
Because you’re then comparing instances outside the guaranteed scope of object iden-
tity—the persistence context—you must override the equals() and hashCode() meth-
ods on the Item entity class as explained in section 10.3.1. In the trivial conversations
with only one detached list of Item instances, this wasn’t necessary. You never compared
them in a Set, used them as keys in a HashMap, or tested them explicitly for equality.

 You should enable versioning of the Item entity for multiuser applications, as
explained in the section “Enabling versioning” in chapter 11. When entity modifica-
tions are merged in AuctionService#storeItem(), Hibernate increments the Item’s
version (it doesn’t if the Item wasn’t modified, though). Hence, if another user has
changed the name of an Item concurrently, Hibernate will throw an exception when
the system transaction is committed and the persistence context is flushed. The first
user to commit their conversation always wins with this optimistic strategy. The second
user should be shown the usual error message: “Sorry, someone else modified the
same data; please restart your conversation.”

 What you’ve created is a system with a rich client or thick client; the client isn’t a dumb
input/output terminal but an application with an internal state independent of the
server (recall that the server doesn’t hold any application state). One of the advantages
of such a stateless server is that any server can handle any client request. If a server fails,
you can route the next request to a different server, and the conversation process con-
tinues. The servers in a cluster share nothing; you can easily scale up your system hori-
zontally by adding more servers. Obviously, all application servers still share the
database system, but at least you only have to worry about scaling up one tier of servers.
Licensed to Thomas Snead <n.ordickan@gmail.com>

489Building a stateful server
The downside is that you need to write rich-client applications, and you have to deal
with network communication and data-serialization issues. Complexity shifts from the
server side to the client side, and you have to optimize communication between the
client and server.

 If, instead of on an EJB client, your (JavaScript) client has to work on several web
browsers or even as a native application on different (mobile) operating systems, this
can certainly be a challenge. We recommend this architecture if your rich client runs
in popular web browsers, where users download the latest version of the client applica-
tion every time they visit your website. Rolling out native clients on several platforms,
and maintaining and upgrading the installations, can be a significant burden even in
medium-sized intranets where you control the user’s environment.

 Without an EJB environment, you have to customize serialization and transmission
of detached entity state between the client and the server. Can you serialize and dese-
rialize an Item instance? What happens if you didn’t write your client in Java? We’ll
look at this issue in section 19.4.

 Next, you implement the same use cases again, but with a very different strategy.
The server will now hold the conversational state of the application, and the client will
only be a dumb input/output device. This is an architecture with a thin client and a
stateful server.

18.3 Building a stateful server
The application you’ll write is still simple. It supports the same two uses cases as before:
editing an auction item and placing a bid for an item. No difference is visible to the
users of the application; the EJB console client still looks like figures 18.2 and 18.4.

 With a thin client, it’s the server’s job to transform data for output into a display for-
mat understood by the thin client—for example, into HTML pages rendered by a web
browser. The client transmits user input operations directly to the server—for exam-
ple, as simple HTML form submissions. The server is responsible for decoding and

Keeping changes after race conditions
In acceptance testing, you’ll probably discover that users don’t like to restart conver-
sations when a race condition is detected. They may demand pessimistic locking:
while user A edits an item, user B shouldn’t even be allowed to load it into an editor
dialog. The fundamental problem isn’t the optimistic version checks at the end of a
conversation; it’s that you lose all your work when you start a conversation from
scratch.

Instead of rendering a simple concurrency error message, you could offer a dialog
that allows the user to keep their now invalid changes, merge them manually with the
modifications made by the other user, and then save the combined result. Be
warned, though: implementing this feature can be time-consuming, and Hibernate
doesn’t help much.
Licensed to Thomas Snead <n.ordickan@gmail.com>

490 CHAPTER 18 Designing client/server applications
transforming the input into higher-level domain model operations. We keep this part
simple for now, though, and use only remote method invocation with an EJB client.

 The server must then also hold conversational data, usually stored in some kind of
server-side session associated with a particular client. Note that a client’s session has a
larger scope than a single conversation; a user may perform several conversations dur-
ing a session. If the user walks away from the client and doesn’t complete a conversa-
tion, temporary conversation data must be removed on the server at some point. The
server typically handles this situation with timeouts; for example, the server may dis-
card a client’s session and all the data it contains after a certain period of inactivity.
This sounds like a job for EJB stateful session beans, and, indeed, they’re ideal for this
kind of architecture if you’re in need of a standardized solution.

 Keeping those fundamental issues in mind, let’s implement the first use case: edit-
ing an auction item.

18.3.1 Editing an auction item

The client presents the user again with a list of auction items, and the user picks one.
This part of the application is trivial, and you don’t have to hold any conversational
state on the server. Have a look at the sequence of calls and contexts in figure 18.6.

Because the client isn’t very smart, it doesn’t and shouldn’t understand what an Item
entity class is. It loads B a List of ItemBidSummary data-transfer objects:

List<ItemBidSummary> itemBidSummaries = auctionService.getSummaries();

PATH: /apps/app-stateful-server/src/test/java/org/jpwh/test/stateful/
AuctionServiceTest.java

Server JVMClient JVM

C
onversation

Transaction &
Persistence

Context

: AuctionClient : AuctionServiceImpl itemDAO :
ItemDAOImpl

List<ItemBidSummary>

itemId :
Long

...

List<ItemBidSummary>

getSummaries() findItemBidSummaries()
B

Figure 18.6 The client retrieves data already transformed for immediate display.
Licensed to Thomas Snead <n.ordickan@gmail.com>

491Building a stateful server
The server implements this with a stateless component because there is no need for it
to hold any conversational state at this time:

@javax.ejb.Stateless
@javax.ejb.Local(AuctionService.class)
@javax.ejb.Remote(RemoteAuctionService.class)
public class AuctionServiceImpl implements AuctionService {

 @Inject
 protected ItemDAO itemDAO;

 @Override
 public List<ItemBidSummary> getSummaries() {
 return itemDAO.findItemBidSummaries();
 }
}

Even if you have a stateful server architecture, there will be many short conversations
in your application that don’t require any state to be held on the server. This is both
normal and important: holding state on the server consumes resources. If you imple-
mented the getSummaries() operation with a stateful session bean, you’d waste
resources. You’d only use the stateful bean for a single operation, and then it would
consume memory until the container expired it. Stateful server architecture doesn’t
mean you can only use stateful server-side components.

 Next, the client renders the ItemBidSummary list, which only contains the identi-
fier of each auction item, its description, and the current highest bid. This is exactly
what the user sees on the screen, as shown in figure 18.2. The user then enters an item
identifier and starts a conversation that works with this item. You can see the road map
for this conversation in figure 18.7.

PATH: /apps/app-stateful-server/src/main/java/org/jpwh/stateful/
AuctionServiceImpl.java

Server JVM

Persistence
Context

Transaction
Context

itemDAO :
ItemDAOImpl

Transaction
Context

Client JVM
C

onversation

Transaction
Context

: AuctionClient : ItemServiceImpl

setName(...)

startConversation(itemId)

item :
Item

setItemName(...)

commitConversation()

Item

em :
EntityManager

joinTransaction()

findById(itemId)

B

D

C

E

Figure 18.7 The client controls the conversation boundaries on the server.
Licensed to Thomas Snead <n.ordickan@gmail.com>

492 CHAPTER 18 Designing client/server applications
The client notifies the server that it should now start a conversation, passing an item
identifier value B:

itemService.startConversation(itemId);

The service called here isn’t the pooled stateless AuctionService from the last sec-
tion. This new ItemService is a stateful component; the server will create an instance
and assign it to this client exclusively. You implement this service with a stateful ses-
sion bean:

@javax.ejb.Stateful(passivationCapable = false)
@javax.ejb.StatefulTimeout(10)
@javax.ejb.Local(ItemService.class)
@javax.ejb.Remote(RemoteItemService.class)
public class ItemServiceImpl implements ItemService {

 @PersistenceContext(type = EXTENDED, synchronization = UNSYNCHRONIZED)
 protected EntityManager em;

 @Inject
 protected ItemDAO itemDAO;

 @Inject
 protected BidDAO bidDAO;

 // Server-side conversational state
 protected Item item;
 // ...

 @Override
 public void startConversation(Long itemId) {
 item = itemDAO.findById(itemId);
 if (item == null)
 throw new EntityNotFoundException(
 "No Item found with identifier: " + itemId
);
 }

 // ...

}

There are many annotations on this class, defining how the container will handle this
stateful component. With a 10-minute timeout, the server removes and destroys an
instance of this component if the client hasn’t called it in the last 10 minutes. This
handles dangling conversations: for example, when a user walks away from the client.

PATH: /apps/app-stateful-server/src/test/java/org/jpwh/test/stateful/
AuctionServiceTest.java

PATH: /apps/app-stateful-server/src/main/java/org/jpwh/stateful/
ItemServiceImpl.java

Minutes
Licensed to Thomas Snead <n.ordickan@gmail.com>

493Building a stateful server
 You also disable passivation for this EJB: an EJB container may serialize and store
the stateful component to disk, to preserve memory or to transmit it to another node
in a cluster when session-failover is needed. This passivation won’t work because of
one member field: the EntityManager. You’re attaching a persistence context to this
stateful component with the EXTENDED switch, and the EntityManager isn’t
java.io.Serializable.

You use @PersistenceContext to declare that this stateful bean needs an Entity-
Manager and that the container should extend the persistence context to span the same
duration as the life cycle of the stateful session bean. This extended mode is an option
exclusively for stateful EJBs. Without it, the container will create and close a persis-
tence context whenever a transaction commits. Here, you want the persistence con-
text to stay open beyond any transaction boundaries and remain attached to the
stateful session bean instance.

 Furthermore, you don’t want the persistence context to be flushed automatically
when a transaction commits, so you configure it to be UNSYNCHRONIZED. Hibernate will
only flush the persistence context after you manually join it with a transaction. Now
Hibernate won’t automatically write to the database changes you make to loaded per-
sistent entity instances; instead, you queue them until you’re ready to write everything.

FAQ: Why can’t you serialize an EntityManager?
There is no technical reason why a persistence context and an EntityManager can’t
be serialized. Of course, the EntityManager would have to reattach itself upon dese-
rialization to the right EntityManagerFactory on the target machine, but that’s an
implementation detail. Passivation of persistence contexts has so far been out of
scope of the JPA and Java EE specifications.

Most vendors, however, have an implementation that is serializable and knows how
to deserialize itself correctly. Hibernate’s EntityManager can be serialized and
deserialized and tries to be smart when it has to find the right persistence unit upon
deserialization.

With Hibernate and a Wildfly server, you could enable passivation in the previous
example, and you’d get session failover and high availability with a stateful server
and extended persistence contexts. This isn’t standardized, though; and as we dis-
cuss later, this strategy is difficult to scale.

There was also a time when not even Hibernate’s EntityManager was serializable.
You may encounter legacy framework code that tries to work around this entire issue,
such as the Seam framework’s ManagedEntityInterceptor. You should avoid this
and look for a simpler solution, which usually means sticky sessions in a cluster,
stateless server design, or the CDI server-side conversation-management solution
we’ll discuss in the next chapter with a request-scoped persistence context.
Licensed to Thomas Snead <n.ordickan@gmail.com>

494 CHAPTER 18 Designing client/server applications
 At the start of the conversation, the server loads an Item instance and holds it as
conversational state in a member field C (figure 18.7). The ItemDAO also needs an
EntityManager; remember that it has a @PersistenceContext annotation without any
options. The rules for persistence context propagation in EJB calls you’ve seen before
still apply: Hibernate propagates the persistence context along with the transaction
context. The persistence context rides along into the ItemDAO with the transaction
that was started for the startConversation() method call. When startConversa-
tion() returns, the transaction is committed, but the persistence context is neither
flushed nor closed. The ItemServiceImpl instance waits on the server for the next
call from the client.

 The next call from the client instructs the server to change the item’s name D:

itemService.setItemName("Pretty Baseball Glove");

On the server, a transaction is started for the setItemName() method. But because no
transactional resources are involved (no DAO calls, no EntityManager calls), nothing
happens but a change to the Item you hold in conversational state:

public class ItemServiceImpl implements ItemService {

 // ...
 @Override
 public void setItemName(String newName) {
 item.setName(newName);
 }

 // ...
}

Note that the Item is still be in persistent state—the persistence context is still open!
But because it isn’t synchronized, it won’t detect the change you made to the Item,
because it won’t be flushed when the transaction commits.

 Finally, the client ends the conversation, giving the OK to store all changes on the
server E (figure 18.7):

itemService.commitConversation();

PATH: /apps/app-stateful-server/src/test/java/org/jpwh/test/stateful/
AuctionServiceTest.java

PATH: /apps/app-stateful-server/src/main/java/org/jpwh/stateful/
ItemServiceImpl.java

PATH: /apps/app-stateful-server/src/test/java/org/jpwh/test/stateful/
AuctionServiceTest.java

Persistence context isn’t
flushed when transaction of
this method commits; it’s
unsynchronized.
Licensed to Thomas Snead <n.ordickan@gmail.com>

495Building a stateful server
On the server, you can flush changes to the database and discard the conversational
state:

public class ItemServiceImpl implements ItemService {

 @Override
 @javax.ejb.Remove
 public void commitConversation() {
 em.joinTransaction();
 }
}

You’ve now completed the implementation of the first use case. We’ll skip the imple-
mentation of the second use case (placing a bid) and refer you to the example code
for details. The code for the second case is almost the same as the first, and you
shouldn’t have any problems understanding it. The important aspect you must under-
stand is how persistence context and transaction handling work in EJBs.

NOTE There are additional rules for EJBs about persistence-context propaga-
tion between different types of components. They’re extremely complex, and
we’ve never seen any good use cases for them in practice. For example, you
probably wouldn’t call a stateful EJB from a stateless EJB. Another complica-
tion is disabled or optional EJB method transactions, which also influence
how the persistence context is propagated along with component calls. We
explained these propagation rules in the previous edition of this book. We
recommend that you try to work only with the strategies shown in this chap-
ter, and keep things simple.

Let’s discuss some of the differences between a stateful and a stateless server architecture.

18.3.2 Analyzing the stateful application

As in our analysis of the stateless application, the first question is how the unit of work
is implemented from the perspective of the user. In particular, you need to ask how
atomicity of the conversation works and how you can make all steps in the workflow
appear as a single unit.

 At some point, usually when the last request in a conversation occurs, you commit
the conversation and write the changes to the database. The conversation is atomic if
you don’t join the extended EntityManager with a transaction until the last event in
the conversation. No dirty checking and flushing will occur if you only read data in
unsynchronized mode.

 While you keep the persistence context open, you can keep loading data lazily by
accessing proxies and unloaded collections; this is obviously convenient. The loaded
Item and other data become stale, however, if the user needs a long time to trigger the

PATH: /apps/app-stateful-server/src/main/java/org/jpwh/stateful/
ItemServiceImpl.java

Bean is removed
after method
completes.

Persistence context is joined with
current transaction and flushed when
this method returns, saving changes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

496 CHAPTER 18 Designing client/server applications
next request. You may want to refresh() some managed entity instances during the
conversation if you need updates from the database, as explained in section 10.2.6.
Alternatively, you can refresh to undo an operation during a conversation. For exam-
ple, if the user changes the Item#name in a dialog but then decides to undo this, you
can refresh() the persistent Item instance to retrieve the “old” name from the data-
base. This is a nice feature of an extended persistence context and allows the Item to
be always available in managed persistent state.

The stateful server architecture may be more difficult to scale horizontally. If a server
fails, the state of the current conversation and indeed the entire session is lost. Repli-
cating sessions on several servers is a costly operation, because any modification of ses-
sion data on one server involves network communication to (potentially all) other
servers.

 With stateful EJBs and a member-extended EntityManager, serialization of this
extended persistence context isn’t possible. If you use stateful EJBs and an extended
persistence context in a cluster, consider enabling sticky sessions, causing a particular
client’s requests to always route to the same server. This allows you to handle more
load with additional servers easily, but your users must accept losing session state when
a server fails.

 On the other hand, stateful servers can act as a first line of caches with their
extended persistence contexts in user sessions. Once an Item has been loaded for a
particular user conversation, that Item won’t be loaded again from the database in the
same conversation. This can be a great tool to reduce the load on your database serv-
ers (the most expensive tier to scale).

 An extended persistence-context strategy requires more memory on the server
than holding only detached instances: the persistence context in Hibernate contains a
snapshot copy of all managed instances. You may want to manually detach() managed
instances to control what is held in the persistence context, or disable dirty checking
and snapshots (while still being able to lazy load) as explained in section 10.2.8.

 There are alternative implementations of thin clients and stateful servers, of
course. You can use regular request-scoped persistence contexts and manage detached
(not persistent) entity instances on the server manually. This is certainly possible with

Savepoints in conversations
You may be familiar with savepoints in JDBC transactions: after changing some data
in a transaction, you set a savepoint; later you roll back the transaction to the save-
point, undoing some work but keeping changes made before the savepoint was set.
Unfortunately, Hibernate doesn’t offer a concept similar to savepoints for the persis-
tence context. You can only roll back an entity instance to its database state with the
refresh() operation. Regular JDBC savepoints in a transaction can be used with
Hibernate (you need a Connection; see section 17.1), but they won’t help you imple-
ment undo in a conversation.
Licensed to Thomas Snead <n.ordickan@gmail.com>

497Summary
detaching and merging but can be much more work. One of the main advantages of
the extended persistence context, transparent lazy loading even across requests, would
no longer be available either. In the next chapter, we’ll show you such a stateful service
implementation with request-scoped persistence contexts in CDI and JSF, and you can
compare it with the extended persistence context feature of EJBs you’ve seen in this
chapter.

 Thin client systems typically produce more load on servers than rich clients do.
Every time the user interacts with the application, a client event results in a network
request. This can even happen for every mouse click in a web application. Only the
server knows the state of the current conversation and has to prepare and render all
information the user is viewing. A rich client, on the other hand, can load raw data
needed for a conversation in one request, transform it, and bind it locally to the user
interface as needed. A dialog in a rich client can queue modifications on the client
side and fire a network request only when it has to make changes persistent at the end
of a conversation.

 An additional challenge with thin clients is parallel conversations by one user: what
happens if a user is editing two items at the same time—for example, in two web
browser tabs? This means the user has two parallel conversations with the server. The
server must separate data in the user session by conversation. Client requests during a
conversation must therefore contain some sort of conversation identifier so you can
select the correct conversation state from the user’s session for each request. This hap-
pens automatically with EJB clients and servers but probably isn’t built into your favor-
ite web application framework (unless it’s JSF and CDI, as you’ll see in the next
chapter).

 One significant benefit of a stateful server is less reliance on the client platform; if
the client is a simple input/output terminal with few moving parts, there is less chance
for things to go wrong. The only place you have to implement data validation and
security checks is the server. There are no deployment issues to deal with; you can roll
out application upgrades on servers without touching clients.

 Today, there are few advantages to thin client systems, and stateful server installa-
tions are declining. This is especially true in the web application sector, where easy
scalability is frequently a major concern.

18.4 Summary
 You implemented simple conversations—units of work, from the perspective of

your application user.
 You saw two server and client designs, with stateless and stateful servers, and

learned how Hibernate fits into both these architectures.
 You can work with either detached entity state or an extended conversation-

scoped persistence context.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Building web applications
In this chapter, you see how Hibernate works in a typical web application environ-
ment. There are dozens of web application frameworks for Java, so we apologize if
we don’t cover your favorite combination here. We discuss JPA in the standard Java
Enterprise Edition environment, in particular combined with standards Contexts
and Dependency Injection (CDI), JavaServer Faces (JSF), and Java API for RESTful
web services (JAX-RS). As always, we show patterns you can apply in other proprie-
tary environments.

 First we revisit the persistence layer and introduce CDI management for the
DAO classes. Then we extend these classes with a generic solution for sorting and
paging data. This solution is useful whenever you have to display data in tables, no
matter what framework you choose.

 Next, you write a fully functional JSF application on top of the persistence layer
and look at the Java EE conversation scope, where CDI and JSF work together to

In this chapter
 Integrating JPA with CDI and JSF

 Browsing data in tables

 Implementing long-running conversations

 Customizing entity serialization
498

Licensed to Thomas Snead <n.ordickan@gmail.com>

499Integrating JPA with CDI
provide a simple stateful model for server-side components. If you didn’t like the state-
ful EJBs with the extended persistence context in the last chapter, maybe these conver-
sation examples with detached entity state on the server are what you’re looking for.

 Finally, if you prefer writing web applications with rich clients, a stateless server,
and frameworks such as JAX-RS, GWT, or AngularJS, we show you how to customize
serialization of JPA entity instances into XML and JSON formats. We start with migrat-
ing the persistence layer from EJB components to CDI.

19.1 Integrating JPA with CDI
The CDI standard offers a type-safe dependency injection and component life-cycle
management system in a Java EE runtime environment. You saw the @Inject annota-
tion in the previous chapter and used it to wire the ItemDAO and BidDAO components
together with the service EJB classes.

 The JPA @PersistenceContext annotation you used inside the DAO classes is just
another special injection case: you tell the runtime container to provide and automat-
ically handle an EntityManager instance. This is a container-managed EntityManager.
There are some strings attached, though, such as the persistence-context propagation
and transaction rules we discussed in the previous chapter. Such rules are convenient
when all of your service and DAO classes are EJBs, but if you don’t employ EJBs, you may
not want to follow these rules. With an application-managed EntityManager, you can cre-
ate your own persistence context management, propagation, and injection rules.

 You now rewrite the DAO classes as simple CDI managed beans, which are just like
EJBs: plain Java classes with extra annotations. You want to @Inject an EntityManager
and drop the @PersistenceContext annotation, and thus have full control over the
persistence context. Before you can inject your own EntityManager, you must produce it.

19.1.1 Producing an EntityManager

A producer in CDI parlance is a factory used to customize creation of an instance and
tell the runtime container to call a custom routine whenever the application needs an
instance based on the declared scope. For example, the container will create an appli-
cation-scoped instance only once during the life cycle of the application. The con-
tainer creates a request-scoped instance once for every request handled by a server
and a session-scoped instance once for every session a user has with a server.

 The CDI specification maps the abstract notions of request and session to servlet
requests and sessions. Remember that both JSF and JAX-RS build on top of servlets, so
CDI works well with those frameworks. In other words, don’t worry much about this: in
a Java EE environment, all the integration work has already been done for you.

 Let’s create a producer of request-scoped EntityManager instances:
Licensed to Thomas Snead <n.ordickan@gmail.com>

500 CHAPTER 19 Building web applications

@javax.enterprise.context.ApplicationScoped
public class EntityManagerProducer {

 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;

 @javax.enterprise.inject.Produces
 @javax.enterprise.context.RequestScoped
 public EntityManager create() {
 return entityManagerFactory.createEntityManager();
 }

 public void dispose(
 @javax.enterprise.inject.Disposes
 EntityManager entityManager) {
 if (entityManager.isOpen())
 entityManager.close();
 }
}

B This CDI annotation declares that only one producer is needed in the entire applica-
tion: there will only ever be one instance of EntityManagerProducer.

C The Java EE runtime gives you the persistence unit configured in persistence.xml,
which is also an application-scoped component. (If you use CDI standalone and outside
a Java EE environment, you can instead use the static Persistence.createEntity-
ManagerFactory() bootstrap.)

D Whenever an EntityManager is needed, create() is called. The container reuses the
same EntityManager during a request handled by your server. (If you forget
@RequestScoped on the method, the EntityManager will be application-scoped like
the producer class!)

E When a request is over and the request context is being destroyed, the CDI container
calls this method to get rid of an EntityManager instance. You created this application-
managed persistence context (see section 10.1.2), so it’s your job to close it.

A common issue with CDI-annotated classes is mistaken imports of annotations. In
Java EE 7, there are two annotations called @Produces; the other one is in javax.ws
.rs (JAX-RS). This isn’t the same as the CDI producer annotation and you can spend
hours looking for this error in your code if you pick the wrong one. Another duplicate
is @RequestScoped, also in javax.faces.bean (JSF). Like all other outdated JSF bean
management annotations in the javax.faces.bean package, don’t use them when
you have the more modern CDI available. We hope that future Java EE specification
versions will resolve these ambiguities.

 You now have a producer of application-managed EntityManagers and request-
scoped persistence contexts. Next, you must find a way to let the EntityManager know
about your system transactions.

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/
EntityManagerProducer.java

Only 1 producer neededB

Gets persistence unitC

Gets EntityManagerD

Closes
persistence
contextE
Licensed to Thomas Snead <n.ordickan@gmail.com>

501Integrating JPA with CDI
19.1.2 Joining the EntityManager with transactions

When your server must handle a servlet request, the container creates the Entity-
Manager automatically when it first needs it for injection. Remember that an Entity-
Manager you manually create will only join a system transaction automatically if the
transaction is already in progress. Otherwise, it will be unsynchronized: you’ll read data
in auto-commit mode, and Hibernate won’t flush the persistence context.

 It’s not always obvious when the container will call the EntityManager producer or
exactly when during a request the first EntityManager injection takes place. Of
course, if you process a request without a system transaction, the EntityManager you
get is always unsynchronized. Hence, you must ensure that the EntityManager knows
you have a system transaction.

 You add a method for this purpose to the persistence layer, in the super-interface:

public interface GenericDAO<T, ID extends Serializable>
 extends Serializable {

 void joinTransaction();

 // ...
}

You should call this method on any DAO before storing data, when you’re sure you’re
in a transaction. If you forget, Hibernate will throw a TransactionRequiredException
when you try to write data, indicating that the EntityManager has been created before
a transaction was started and that nobody told it about the transaction. If you want to
exercise your CDI skills, you could try to implement this aspect with a CDI decorator or
interceptor.

 Let’s implement this GenericDAO interface method and wire the new Entity-
Manager to the DAO classes.

19.1.3 Injecting an EntityManager

The old GenericDAOImpl relies on the @PersistenceContext annotation for injection
of an EntityManager in a field, or someone calling setEntityManager() before the
DAO is used. With CDI, you can use the safer constructor-injection technique:

public abstract class GenericDAOImpl<T, ID extends Serializable>
 implements GenericDAO<T, ID> {

 protected final EntityManager em;
 protected final Class<T> entityClass;

 protected GenericDAOImpl(EntityManager em, Class<T> entityClass) {
 this.em = em;
 this.entityClass = entityClass;
 }

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/GenericDAO.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/GenericDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

502 CHAPTER 19 Building web applications
 public EntityManager getEntityManager() {
 return em;
 }

 @Override
 public void joinTransaction() {
 if (!em.isJoinedToTransaction())
 em.joinTransaction();
 }
 // ...
}

Anyone who wants to instantiate a DAO must provide an EntityManager. This declara-
tion of an invariant of the class is a much stronger guarantee; hence, although we fre-
quently use field injection in our examples, you should always first think about
constructor injection. (We don’t do it in some examples because they would be even
longer, and this book is already quite big.)

 In the concrete (entity DAO) subclasses, declare the necessary injection on the
constructor:

public class ItemDAOImpl
 extends GenericDAOImpl<Item, Long>
 implements ItemDAO {

 @Inject
 public ItemDAOImpl(EntityManager em) {
 super(em, Item.class);
 }

 // ...

}

When your application needs an ItemDAO, the CDI runtime will call your Entity-
ManagerProducer and then call the ItemDAOImpl constructor. The container will reuse
the same EntityManager for any injection in any DAO during a particular request.

 What scope then is ItemDAO? Because you don’t declare a scope for the implemen-
tation class, it’s dependent. An ItemDAO is created whenever someone needs it, and the
ItemDAO instance is then in the same context and scope as its caller and belongs to that

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/ItemDAOImpl.java

FAQ: How can I handle multiple persistence units with CDI?
If you have more than one database—more than one persistence unit—you can use
CDI qualifiers to differentiate them. A qualifier is a custom annotation. You write that
annotation, such as @BillingDatabase, and mark it as a qualifier. Then you place
it next to @Produces on the method that creates an EntityManager from that par-
ticular persistence unit. Anyone who wants this EntityManager now also adds
@BillingDatabase right next to @Inject.
Licensed to Thomas Snead <n.ordickan@gmail.com>

503Paging and sorting data
calling object. This is a good choice for the persistence layer API, because you delegate
scoping decisions to the upper layer with the services calling the persistence layer.

 You’re now ready to @Inject an ItemDAO field in a service class. Before you use your
CDI-enabled persistence layer, let’s add some functionality for paging and sorting data.

19.2 Paging and sorting data
A very common task is loading data from the database with a query and then display-
ing that data on a web page in a table. Frequently you must also implement dynamic
paging and sorting of the data:

 Because the query returns much more information than can be displayed on a
single page, you only show a subset of the data. You only render a certain num-
ber of rows in a data table and give users the options to go to the next, previous,
first, or last page of rows. Users also expect the application to preserve sorting
when they switch pages.

 Users want to be able to click a column header in the table and sort the rows of
the table by the values of this column. Typically, you can sort in either ascending
or descending order; this can be switched by subsequent clicks the column
header.

You now implement a generic solution for browsing through pages of data, based on
the metamodel of persistent classes provided by JPA.

 Page browsing can be implemented in two variations: using the offset or the seek
technique. Let’s look first at the differences and what you want to implement.

19.2.1 Offset paging vs. seeking

Figure 19.1 shows an example of a browsing UI with an offset-based paging mecha-
nism. You see that there’s a handful of auction items and that a small page size of
three records is used. Here, you’re on the first page; the application renders links to
the other pages dynamically. The current sort order is by ascending item name. You
can click the column header and change the sorting to descending (or ascending) by
name, auction end date, or highest bid amount. Clicking the item name in each table
row opens the item detail view, where you can make bids for an item. We take on this
use case later in this chapter.

Figure 19.1 Browsing the
catalog pages by offset
Licensed to Thomas Snead <n.ordickan@gmail.com>

504 CHAPTER 19 Building web applications
Behind this page are database queries with an offset and a limit condition, based on
row numbers. The Java Persistence API for this are Query#setFirstResult() and
Query#setMaxResults(), which we discussed in section 14.2.4. You write a query and
then let Hibernate wrap the offset and limit clauses around it, depending on your
database SQL dialect.

 Now consider the alternative: paging with a seek method, as shown in figure 19.2.
Here you don’t offer users the option to jump to any page by offset; you only allow
them to seek forward, to the next page. This may seem restrictive, but you’ve probably
seen or even implemented such a paging routine when you needed infinite scrolling.
You can, for example, automatically load and display the next page of data when the
user reaches the bottom of the table/screen.

The seek method relies on a special additional restriction in the query retrieving the
data. When the next page has to be loaded, you query for all items with a name
“greater than [Coffee Machine]”. You seek forward not by offset of result rows with
setFirstResult(), but by restricting the result based on the ordered values of some
key. If you’re unfamiliar with seek paging (sometimes called keyset paging), we’re sure
you won’t find this difficult once you see the queries later in this section.

 Let’s compare the advantages and disadvantages of both techniques. You can of
course implement an endless-scrolling feature with offset paging or direct-page navi-
gation with the seek technique; but they each have their strength and weaknesses:

 The offset method is great when users want to jump to pages directly. For exam-
ple, many search engines offer the option to jump directly to page 42 of a query
result or directly to the last page. Because you can easily calculate the offset and
limit of a range of rows based on the desired page number, you can implement
this with little effort. With the seek method, providing such a page-jumping UI
is more difficult; you must know the value to seek. You don’t know what item
name the client displayed just before page 42, so you can’t seek forward to
items with names “greater than X.” Seeking is best suited for a UI where users
only move forward or backward page by page through a data list or table, and if
you can easily remember the last value shown to the user.

 A great use case for seeking is paging based on anchor values that you don’t
have to remember. For example, all customers whose names start with C could

Figure 19.2 Browsing the
catalog by seeking the next page
Licensed to Thomas Snead <n.ordickan@gmail.com>

505Paging and sorting data
be on one page and those starting with D on the next page. Alternatively, each
page shows auction items that have reached a certain threshold value for their
highest bid amount.

 The offset method performs much worse if you fetch higher page numbers. If
you jump to page 5,000, the database must count all the rows and prepare 5,000
pages of data before it can skip 4,999 of them to give you the result. A common
workaround is to restrict how far a user can jump: for example, only allowing
direct jumps to the first 100 pages and forcing the user to refine the query
restrictions to get a smaller result. The seek method is usually faster than the off-
set method, even on low page numbers. The database query optimizer can skip
directly to the start of the desired page and efficiently limit the index range to
scan. Records shown on previous pages don’t have to be considered or counted.

 The offset method may sometimes show incorrect results. Although the result
may be consistent with what’s in the database, your users may consider it incor-
rect. When applications insert new records or delete existing records while the
user is browsing, anomalies may occur. Imagine the user looking at page 1 and
someone adding a new record that would appear on page 1. If the user now
retrieves page 2, some record they may have seen on page 1 is pushed forward
onto page 2. If a record on page 1 was deleted, the user may miss data on page
2 because a record was pulled back to page 1. The seek method avoids these
anomalies; records don’t mysteriously reappear or vanish.

We now show you how to implement both paging techniques by extending the persis-
tence layer. You start with a simple model that holds the current paging and sorting
settings of a data table view.

19.2.2 Paging in the persistence layer

When you want to coordinate querying and rendering data pages, you need to keep
some details about the size of the pages and what page you’re currently viewing. Fol-
lowing is a simple model class encapsulating this information; it’s an abstract super-
class that will work for both the offset and seek techniques:

public abstract class Page {

 public static enum SortDirection {
 ASC,
 DESC
 }

 protected int size = -1;

 protected long totalRecords;

 protected SingularAttribute sortAttribute;
 protected SortDirection sortDirection;

 protected SingularAttribute[] allowedAttributes;

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/Page.java

Shows all recordsB

Keeps record countC
Sorts recordsD

Restricts sortable
attributes

E

Licensed to Thomas Snead <n.ordickan@gmail.com>

506 CHAPTER 19 Building web applications
 // ...

 abstract public <T> TypedQuery<T> createQuery(
 EntityManager em,
 CriteriaQuery<T> criteriaQuery,
 Path attributePath
);
}

B The model holds the size of each page and the number of records shown per page.
The value -1 is special, meaning “no limit; show all records.”

C Keeping the number of total records is necessary for some calculations: for example,
to determine whether there is a “next” page.

D Paging always requires a deterministic record order. Typically, you sort by a particular
attribute of your entity classes in ascending or descending order. javax.persistence
.metamodel.SingularAttribute is an attribute of either an entity or an embeddable
class in JPA; it’s not a collection (you can’t “order by collection” in a query).

E The allowedAttributes list is set when creating the page model. It restricts the possi-
ble sortable attributes to the ones you can handle in your queries.

Some methods of the Page class that we haven’t shown are trivial—mostly getters and
setters. The abstract createQuery() method, however, is what subclasses must imple-
ment: it’s how paging settings are applied to a CriteriaQuery before the query is
executed.

 First you introduce the Page interface in the persistence layer. In a DAO interface,
an API accepts a Page instance where you want to support retrieving data page by page:

public interface ItemDAO extends GenericDAO<Item, Long> {

 List<ItemBidSummary> getItemBidSummaries(Page page);

 // ...

}

The data table you want to render shows a List of ItemBidSummary data-transfer
objects. The result of the query is not important in this example; you could just as eas-
ily retrieve a list of Item instances. This is a brief excerpt of the DAO implementation:

public class ItemDAOImpl
 extends GenericDAOImpl<Item, Long>
 implements ItemDAO {

 // ...

 @Override
 public List<ItemBidSummary> getItemBidSummaries(Page page) {

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/ItemDAO.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/ItemDAOImpl.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

507Paging and sorting data
 CriteriaBuilder cb =
 getEntityManager().getCriteriaBuilder();

 CriteriaQuery<ItemBidSummary> criteria =
 cb.createQuery(ItemBidSummary.class);

 Root<Item> i = criteria.from(Item.class);

 // Some query details...
 // ...

 TypedQuery<ItemBidSummary> query =
 page.createQuery(em, criteria, i);

 return query.getResultList();
 }

 // ...
}

B This is a regular criteria query you’ve seen many times before.

C Delegate finishing the query to the given Page.

The concrete Page implementation prepares the query, setting the necessary offset,
limit, and seek parameters.

IMPLEMENTING OFFSET PAGING

For example, here is the implementation of the offset paging strategy:

public class OffsetPage extends Page {

 protected int current = 1;

 // ...

 @Override
 public <T> TypedQuery<T> createQuery(EntityManager em,
 CriteriaQuery<T> criteriaQuery,
 Path attributePath) {

 throwIfNotApplicableFor(attributePath);

 CriteriaBuilder cb = em.getCriteriaBuilder();

 Path sortPath = attributePath.get(getSortAttribute());
 criteriaQuery.orderBy(
 isSortedAscending() ? cb.asc(sortPath) : cb.desc(sortPath)
);

 TypedQuery<T> query = em.createQuery(criteriaQuery);

 query.setFirstResult(getRangeStartInteger());

 if (getSize() != -1)
 query.setMaxResults(getSize());

 return query;
 }
}

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/OffsetPage.java

Criteria queryB

Finishes queryC

Current pageB

Tries to
resolve
sorting

attribute

C

Adds
ORDER BY

D

Sets offsetE

Sets result sizeF
Licensed to Thomas Snead <n.ordickan@gmail.com>

508 CHAPTER 19 Building web applications
B For offset-based paging, you need to know which page you’re on. By default, you start
with page 1.

C Test whether the sorting attribute of this page can be resolved against the attribute
path and therefore the model used by the query. The method throws an exception if
the sorting attribute of the page wasn’t available on the model class referenced in the
query. This is a safety mechanism that produces a meaningful error message if you
pair the wrong paging settings with the wrong query.

D Add an ORDER BY clause to the query.

E Set the offset of the query: the starting result row.

F Cut the result off with the desired page size.

We haven’t shown all the methods involved here, such as getRangeStartInteger(),
which calculates the number of the first row that must be retrieved for the current
page based on page size. You can find other simple convenience methods in the
source code.

 Note that the result order may not be deterministic: if you sort by ascending item
name, and several items have the same name, the database will return them in what-
ever order the DBMS creators deemed appropriate. You should either sort by a unique
key attribute or add an additional order criterion with a key attribute. Although many
developers get away with ignoring deterministic sorting problems with the offset
method, a predictable record order is mandatory for the seek strategy.

IMPLEMENTING SEEK PAGING

For seek paging, you need to add restrictions to a query. Let’s assume that the previ-
ous page showed all items sorted by ascending name up to Coffee Machine, as shown
in figure 19.2, and that you want to retrieve the next page with an SQL query. You
remembered the last value of the previous page, the Coffee Machine record and its
identifier value (let’s say 5), so you can write in SQL:

select i.* from ITEM i
where
 i.NAME >= 'Coffee Machine'
 and (
 i.NAME <> 'Coffee Machine'
 or i.ID > 5
)
order by
 i.NAME asc, i.ID asc

The first restriction of the query says, “Give me all items with a name greater than or
equal to [Coffee Machine],” which seeks forward to the end of the previous page. The
database may perform this efficient restriction with an index scan. Then you further
restrict the result by saying you want no records named Coffee Machine, thus skipping
the last record you’ve already shown on the previous page.
Licensed to Thomas Snead <n.ordickan@gmail.com>

509Paging and sorting data
 But there may be two items named Coffee Machine in the database. A unique key
is necessary to prevent items from falling through the cracks between pages. You must
order by and restrict the result with that unique key. Here you use the primary key,
thus guaranteeing that the database includes only items not named Coffee Machine or
(even if named Coffee Machine) with a greater identifier value than the one you
showed on the previous page.

 Of course, if the item name (or any other column you sort by) is unique, you won’t
need an additional unique key. The generic example code assumes that you always
provide an explicit unique key attribute. Also note that the fact that item identifiers
are incremented numerical values isn’t important; the important aspect is that this key
allows deterministic sorting.

 You can write this same query in a more compact form in SQL with the row-value
constructor syntax:

select i.* from ITEM i
where
 (i.NAME, i.ID) > ('Coffee Machine', 5)
order by
 i.NAME asc, i.ID asc

This kind of restriction expression works even in JPQL in Hibernate. JPA doesn’t stan-
dardized this, though; it’s unavailable with the criteria API and not supported by all
database products. We prefer the slightly more verbose variation, which works every-
where. If you sort in descending order, you invert the comparisons from greater than to
less than.

 The following code in the SeekPage implementation adds such a restriction to a
criteria query:

public class SeekPage extends Page {

 protected SingularAttribute uniqueAttribute;

 protected Comparable lastValue;
 protected Comparable lastUniqueValue;

 // ...

 @Override
 public <T> TypedQuery<T> createQuery(EntityManager em,
 CriteriaQuery<T> criteriaQuery,
 Path attributePath) {

 throwIfNotApplicableFor(attributePath);

 CriteriaBuilder cb = em.getCriteriaBuilder();

 Path sortPath = attributePath.get(getSortAttribute());
 Path uniqueSortPath = attributePath.get(getUniqueAttribute());
 if (isSortedAscending()) {
 criteriaQuery.orderBy(cb.asc(sortPath), cb.asc(uniqueSortPath));

PATH: /apps/app-web/src/main/java/org/jpwh/web/dao/SeekPage.java

Adds paging attributeB

Remembers
values from
last pageC

Sorts
result

D

Licensed to Thomas Snead <n.ordickan@gmail.com>

510 CHAPTER 19 Building web applications
 } else {
 criteriaQuery.orderBy(cb.desc(sortPath),
 cb.desc(uniqueSortPath));
 }

 applySeekRestriction(em, criteriaQuery, attributePath);

 TypedQuery<T> query = em.createQuery(criteriaQuery);

 if (getSize() != -1)
 query.setMaxResults(getSize());

 return query;
 }

 // ...
}

B In addition to the regular sorting attribute, the seek technique requires a paging attri-
bute that’s a guaranteed unique key. This can be any unique attribute of your entity
model, but it’s usually the primary key attribute.

C For both the sorting attribute and the unique key attribute, you must remember their
values from the “last page.” You can then retrieve the next page by seeking those val-
ues. Any Comparable value is fine, as required by the restriction API in criteria queries.

D You must always sort the result by both the sorting attribute and the unique key
attribute.

E Add any necessary additional restrictions (not shown) to the where clause of the
query, seeking beyond the last known values to the target page.

F Cut off the result with the desired page size.

The full applySeekRestriction() method can be found in the example code; this is
criteria query code we don’t have enough space for here. The final query is equivalent
to the SQL example you saw earlier.

 Let’s test the new paging feature of the persistence layer.

Adds
restrictions E

Sets result sizeF

Finding page boundaries for the seek method
We said earlier that jumping directly to a page with the seek technique isn’t easy
because you don’t know what the last values to seek for are, given a particular page
number. You can find out what those values are with an SQL statement like this:
select i.NAME, i.ID
from ITEM i
where
 (select count(i2.*)
 from ITEM i2
 where (i2.NAME, i2.ID) <= (i.NAME, i.ID)
) % :pageSizeParameter = 0
order by i.NAME asc, i.ID asc
Licensed to Thomas Snead <n.ordickan@gmail.com>

511Paging and sorting data

age

19.2.3 Querying page-by-page

When you call the ItemDAO#getItemBidSummaries() method now, you must provide a
Page instance. A service or UI layer client on top of the persistence layer executes the
following code:

OffsetPage page = new OffsetPage(
 3,
 itemDAO.getCount(),
 Item_.name, ASC,
 Item_.name, Item_.auctionEnd, Item_.maxBidAmount
);

List<ItemBidSummary> result = itemDAO.getItemBidSummaries(page);

Advancing to the next page is easy, and you can jump directly to any page number:

page.setCurrent(2);
result = itemDAO.getItemBidSummaries(page);

The seek technique needs a bit more information. First you instantiate a SeekPage
with the additional required unique key attribute:

SeekPage page = new SeekPage(
 3,
 itemDAO.getCount(),
 Item_.name, ASC,
 Item_.id,
 Item_.name, Item_.auctionEnd, Item_.maxBidAmount
);

List<ItemBidSummary> result = itemDAO.getItemBidSummaries(page);

With the offset strategy, all you had to know to jump to a page was the page number.
With the seek strategy, you must remember the last values shown on the previous page:

PATH: /apps/app-web/src/test/java/org/jpwh/test/service/PagingTest.java

PATH: /apps/app-web/src/test/java/org/jpwh/test/service/PagingTest.java

This query with a modulo (%) operation returns all (NAME, ID) pairs that are page-
boundary values: they’re the last values on each page. We’ve included a criteria ver-
sion of this query in the example code.

Page
size

Total records
available Default sort attribute

and sort direction

All attributes allowed as
sort attributes for this p

Additional unique key
attribute for ordering
and seeking
Licensed to Thomas Snead <n.ordickan@gmail.com>

512 CHAPTER 19 Building web applications
ItemBidSummary lastShownOnPreviousPage = // ...

page.setLastValue(lastShownOnPreviousPage.getName());
page.setLastUniqueValue(lastShownOnPreviousPage.getItemId());

result = itemDAO.getItemBidSummaries(page);

This is clearly more work for a client of the persistence layer. Instead of a simple num-
ber, it must be able to remember the last values dynamically, depending on the sort
and the unique attribute.

 We implemented the UIs for earlier screenshots with JSF and CDI, including the
necessary glue code for our paging API. Look at the source code for inspiration on
how to integrate this technique with your own service and UI layer.

 Even if you don’t use JSF, it should be straightforward to adapt our paging and sort-
ing solutions to other web frameworks. If you plan to use JSF, the next section is for
you: we dive into complex use cases such as placing a bid and editing an auction item
with a JSF web interface and a stateful service layer.

19.3 Building JSF applications
In the previous example, you can click an auction item name in the catalog. This
brings you to the auction page for that item, with more detailed information, as
shown in figure 19.3.

 The item auction page has one form, allowing you to place a bid on the item. This
is the first use case to implement: placing a bid. You can handle this with a simple
request-scoped service.

Figure 19.3 Viewing item details
and placing a bid
Licensed to Thomas Snead <n.ordickan@gmail.com>

513Building JSF applications
19.3.1 Request-scoped services

Let’s start with some important excerpts from the XHTML template for the page:

<f:metadata>
 <f:viewParam name="id" value="#{auctionService.id}"/>
</f:metadata>

The page is bookmarkable—that is, it can and will be called with a query parameter,
the identifier value of an Item. The view metadata tells JSF it should bind this parame-
ter value to the back-end property id of the AuctionService. You implement this new
service in a minute.

 You render some item details on the page, asking the AuctionService for the data:

<h:outputText value="Auction End:"/>
<h:outputText value="#{auctionService.item.auctionEnd}">
 <f:convertDateTime pattern="dd. MMM yyyy HH:mm"/>
</h:outputText>

<h:outputText value="Starting Price:"/>
<h:outputText value="#{auctionService.item.initialPrice}"/>

Rendering this information repeatedly calls the AuctionService#getItem() method,
something you have to keep in mind when you work on the service implementation.
Finally, here’s the form for placing a bid:

<h:form>
 <h:inputHidden value="#{auctionService.id}"/>

 <h:inputText value="#{auctionService.newBidAmount}"
 size="6"/>

 <h:commandButton value="Place Bid"
 action="#{auctionService.placeBid}"/>
</h:form>

B You need to transmit the identifier value of the item when the form is submitted. The
back-end service is request-scoped, so it needs to be initialized for every request: this
calls the AuctionService#setId() method.

C The entered bid amount is set by JSF with the AuctionService#setNewBidAmount()
method when the POSTback of this form is processed.

D After all values have been bound, the action method AuctionService#placeBid() is
called.

PATH: /apps/app-web/src/main/webapp/auction.xhtml

PATH: /apps/app-web/src/main/webapp/auction.xhtml

PATH: /apps/app-web/src/main/webapp/auction.xhtml

Sends identifierB

Sets bid amountC

Places bidD
Licensed to Thomas Snead <n.ordickan@gmail.com>

514 CHAPTER 19 Building web applications
Let’s now move on to the back-end service class, which is a simple CDI managed bean:

@Named
@RequestScoped
public class AuctionService {

 @Inject
 ItemDAO itemDAO;

 @Inject
 BidDAO bidDAO;
 long id;
 Item item;
 BigDecimal highestBidAmount;
 BigDecimal newBidAmount;

 // ...

}

B You don’t need to hold state across requests for this use case. A service instance is cre-
ated when the auction page view is rendered with a GET request, and JSF binds the
request parameter by calling setId(). The service instance is destroyed after render-
ing is complete. Your server doesn’t hold any state between requests. When the auc-
tion form is submitted and processing of that POST request starts, JSF calls setId() to
bind the hidden form field, and you can again initialize the state of the service.

C The state you hold for each request is the identifier value of the Item the user is work-
ing on, the Item after it was loaded, the currently highest bid amount for that item,
and the new bid amount entered by the user.

Remember that in JSF, any property accessor methods bound in an XHTML template
may be called multiple times. In the AuctionService, data will be loaded when acces-
sor methods are called, and you have to make sure you don’t load from the database
multiple times by accident:

public class AuctionService {

 public void setId(long id) {
 this.id = id;
 if (item == null) {
 item = itemDAO.findById(id);
 if (item == null)
 throw new EntityNotFoundException();
 highestBidAmount = itemDAO.getMaxBidAmount(item);
 }
 }

 // Other plain getters and setters...

}

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/AuctionService.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/AuctionService.java

No need to hold stateB

Defines stateC
Licensed to Thomas Snead <n.ordickan@gmail.com>

515Building JSF applications
When JSF calls setId() for the first time in a request, you load the Item with that iden-
tifier value once. Fail immediately if the entity instance can’t be found. You also load
the currently highest bid amount to initialize the state of this service fully, before the
view can be rendered or the action method called.

 Note that this is a nontransactional method! Unlike EJBs, methods in a simple CDI
bean don’t require a transaction to be active by default. The produced EntityManager
and the persistence context used by the DAOs are unsynchronized, and you read data
from the database in auto-commit mode. Even if later, while still processing the same
request, a transactional method is called, the same unsynchronized, already-pro-
duced, request-scoped EntityManager is reused.

 The placeBid() method is such a transactional method:

public class AuctionService {

 // ...

 @Transactional
 public String placeBid() {
 itemDAO.joinTransaction();

 if (!getItem().isValidBidAmount(
 getHighestBidAmount(),
 getNewBidAmount()
)) {
 ValidationMessages.addFacesMessage("Auction.bid.TooLow");
 return null;
 }

 itemDAO.checkVersion(getItem(), true);

 bidDAO.makePersistent(new Bid(getNewBidAmount(), getItem()));

 return "auction?id=" + getId() + "&faces-redirect=true";
 }

}

B The @Transactional annotation is new in Java EE 7 (from JTA 1.2) and similar to
@TransactionAttribute on EJB components. Internally, an interceptor wraps the
method call in a system transaction context, just like an EJB method.

C Perform transactional work and store a new bid in the database, and prevent concur-
rent bids. You must join the persistence context with the transaction. It doesn’t matter
which DAO you call: all of them share the same request-scoped EntityManager.

D If another transaction is committed for a higher bid in the time the user was thinking
and looking at the rendered auction page, fail and re-render the auction page with a
message.

E You must force a version increment of the Item at flush time to prevent concurrent bids.
If another transaction runs at the same time as this and loads the same Item version and

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/AuctionService.java

Interceptor wraps
method call in
transaction context

B

Stores bidC

Checks for higher bidD

Forces version
increment

E

Redirects F
Licensed to Thomas Snead <n.ordickan@gmail.com>

516 CHAPTER 19 Building web applications
current highest bid from the database in setId(), one of the transactions must fail in
placeBid().

F This is a simple redirect-after-POST in JSF, so users can safely reload the page after sub-
mitting a bid.

When the placeBid() method returns, the transaction is committed, and the joined
persistence context flushes changes to the database automatically. In Java EE 7, you
can finally have the most convenient feature of EJBs: the declarative transaction
demarcation, independent from EJBs.

 Another new feature in Java EE is the CDI conversation scope and its integration
in JSF.

19.3.2 Conversation-scoped services

You can declare beans and produced instances in Java EE as @ConversationScoped.
This special scope is manually controllable with the standard javax.enterprise
.context.Conversation API. To understand conversation scope, think about the
examples in the previous chapter.

 The shortest possible conversation, a unit of work from the perspective of the
application user, is a single request/response cycle. A user sends a request, and the
server starts a conversation context to hold the data for that request. When the
response is returned, this short-running transient conversation context ends and is
closed. Transient conversation scope is therefore the same as the request scope; both
contexts have the same life cycle. This is how the CDI specification maps the conversa-
tion scope to servlet requests and therefore also JSF and JAX-RS requests.

 With the Conversation API, you can promote a conversation on the server and
make it long-running and no longer transient. If you promote the conversation dur-
ing a request, the same conversation context is then available to the next request. You
can use the context to transport data from one request to the next. Usually you’d
need the session context for this, but the data from several parallel conversations (a
user opens two browser tabs) would have to be manually isolated in the session. This is
what the conversation context provides: automatic data isolation in a controllable con-
text, which is more convenient than the regular session context.

 You implement the conversation context with server-side sessions, of course, and
store the data in the user’s session. To isolate and identify conversations within a ses-
sion, each conversation has an identifier value; you must transmit that value with every
request. The parameter name cid has even been standardized for this purpose. Each
conversation also has an individual timeout setting so the server can free resources if a
user stops sending requests. This allows the server to clean up expired conversation
state automatically without waiting until the entire user session expires.

 Another nice feature of the long-running (not transient) conversation context is
that the server protects concurrent access to conversation-scoped data automatically:
if a user quickly clicks an action button several times, and each request transmits the
Licensed to Thomas Snead <n.ordickan@gmail.com>

517Building JSF applications
identifier value of a particular conversation, the server will terminate all except one of
the requests with BusyConversationExceptions.

 We now walk through an example of conversation scope usage in JSF. You imple-
ment a use case with a workflow that takes the user several requests to complete: put-
ting an item up for auction.

THE “EDIT ITEM” CONVERSATION WORKFLOW

If you think about it for a minute, creating and editing an auction item are very simi-
lar tasks. These workflows are conversations: units of work from the perspective of the
application user, and your users will expect them to look similar. Your goal is therefore
to avoid code duplication; you should implement both cases with a single UI and back-
end service. Your application guides the user through the workflow; figure 19.4 shows
a graphical representation as a state chart.

 Here’s how to read this diagram. The user may start the conversation without any
data, if no item exists. Alternatively, the user may have the identifier value of an exist-
ing item, which is probably a simple numeric value. How the user obtained this identi-
fier isn’t important; maybe they executed some kind of search in a previous
conversation. This is a common scenario, and many conversation workflows have sev-
eral entry points (the solid filled circles in the state chart).

 From the perspective of the user, editing an item is a multistep process: each box
with rounded corners represents a state of the application. In the Edit Item state, the

FAQ: What about the JSF flow scope?
The flow scope added in recent JSF versions is similar to the CDI conversation scope.
It’s focused on how the view templates of a workflow are grouped and discovered,
and how navigation rules in a workflow can be automated. You can also use it to hold
state across requests. Unfortunately, flow-context timeouts within a session aren’t
specified, and neither is there a control API for manually ending or promoting workflow
contexts. We think flow scope isn’t usable in its current incarnation beyond the most
trivial cases—only where excessive resource consumption on the server doesn’t mat-
ter. We hope that future versions of Java EE will align CDI conversation and JSF flow-
scope features and combine the strengths of both.

Edit
Item

Create new Item

Edit existing Item

Edit
Images

Cancel Cancel

Next Submit

Upload

Figure 19.4 The workflow of the
“Edit item” conversation
Licensed to Thomas Snead <n.ordickan@gmail.com>

518 CHAPTER 19 Building web applications
application presents the user with a dialog or form where they can change the item’s
description or the starting price for the auction. Meanwhile, the application waits for
the user to trigger an event; we call this user think-time.

 When the user triggers the Next event, the application processes it, and the user
proceeds to the next (wait) state, Edit Images. When the user finishes working on the
item images, they end the conversation by submitting the item and images (the solid
circles with an outer circle). Clicking Cancel on any page aborts everything. From the
application user’s perspective, the entire conversation is an atomic unit: all changes
are committed and final when the user clicks Submit. No other transition or outcome
should result in any permanent changes to the database.

 You’ll implement this with a wizard-style user interface with two web pages. On the
first page, the user enters the details of the item to sell or edit, as shown in figure 19.5.

Note that rendering this page won’t start a long-running conversation context on the
server. This would waste resources, because you don’t know yet whether the user
wants to follow through and work on the item details. You begin the long-running
conversation context and hold state across requests on the server when the user clicks
the Next button for the first time. If form validation passes, the server stores the con-
versational data in the user’s session and advances the user to the Edit Images page
(see figure 19.6).

 The unit of work is complete when the user submits the item after uploading
images for the item. The user may at any time click Cancel to end the conversation or
walk away from the terminal and let the conversation expire. The user may work in
two browser tabs and run several conversations in parallel, so they must be isolated
from each other on the server within the same user session. All conversation data for a

Figure 19.5 The first page in
the item auction wizard

Figure 19.6 Editing images on
the second page of the wizard
Licensed to Thomas Snead <n.ordickan@gmail.com>

519Building JSF applications
user is removed if the user session expires (or if, in a cluster of servers with sticky ses-
sions, a server fails).

 The XHTML templates for this wizard have no markup relevant for the conversa-
tion; JSF with CDI automates this. Conversation identifiers are transmitted automati-
cally with regular JSF form submissions in a generated hidden field, if a long-running
conversation context was discovered when the form was rendered. This works even
across JSF redirects: the cid parameter is appended automatically to the redirect desti-
nation URL.

 The conversation-scoped back-end service bound to those pages—the EditItem-
Service—is where everything happens and where you control the contexts.

THE PERSISTENCE CONTEXT IN A CONVERSATION

The EditItemService is the back end for the entire wizard and workflow:

@Named
@ConversationScoped
public class EditItemService implements Serializable {

 @Inject
 ItemDAO itemDAO;

 @Inject
 ImageDAO imageDAO;

 // ...

 @Inject
 Conversation conversation;

 Long itemId;
 Item item = new Item();

 transient Part imageUploadPart;

 public void setItemId(Long itemId) {
 this.itemId = itemId;
 if (item.getId() == null && itemId != null) {
 item = itemDAO.findById(itemId);
 if (item == null)
 throw new EntityNotFoundException();
 }
 }

 // ...

}

B The service instance is conversation-scoped. By default, the conversation context is
transient and therefore behaves as a request-scoped service.

C The class must be Serializable, unlike a request-scope implementation. An instance
of EditItemService may be stored in the HTTP session, and that session data may be

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/EditItemService.java

Behaves as
request-scoped

B

Must be
serializableC

SerializableD

Calls Conversation APIE

Service stateF

Service transient stateG

Loads itemH

Gets item
from
databaseI
Licensed to Thomas Snead <n.ordickan@gmail.com>

520 CHAPTER 19 Building web applications
serialized to disk or sent across the network in a cluster. We took the easy way out in
chapter 18 by using a stateful EJB, saying, “It’s not passivation capable.” Anything in
the CDI conversation scope must be passivation-capable and therefore serializable.

D The injected DAO instances have dependent scope and are serializable. You may think
they aren’t, because they have an EntityManager field, which isn’t serializable. We talk
about this mismatch in a second.

E The Conversation API is provided by the container. Call it to control the conversation
context. You need it when the user clicks the Next button for the first time, promoting
the transient conversation to long-running.

F This is the state of the service: the item the user is editing on the pages of the wizard.
You start with a fresh Item entity instance in transient state. If this service is initialized
with an item identifier value, load the Item in setItemId().

G This is a transient state of the service. You only need it temporarily when the user
clicks Upload on the Edit Images page. The Part class of the Servlet API isn’t serial-
izable. It’s not uncommon to have some transient state in a conversational service, but
you must initialize it for every request when it’s needed.

H setItemId() is called only if the request contains an item identifier value. You there-
fore have two entry points into this conversation: with or without an existing item’s
identifier value.

I If the user is editing an item, you must load it from the database. You’re still relying on
a request-scoped persistence context, so as soon as the request is complete, this Item
instance is in detached state. You can hold detached entity instances in a conversa-
tional service’s state and merge it when needed to persist changes (see section 10.3.4).

Unlike stateful EJBs, you can’t disable passivation of the conversation context. The CDI
specification requires that the class and all non-transient dependencies of a conversa-
tion-scoped component be serializable. In fact, you’ll get a deployment error if you
make a mistake and include state that can’t be serialized in a conversation-scoped
bean or any of its dependencies.

 To pass this test, we lied earlier by saying that GenericDAO is java.io.Serializable.
The EntityManager field in GenericDAOImpl is not serializable! This works because CDI
uses contextual references—smart placeholders.

 The EntityManager field of the DAOs isn’t an actual instance of a persistence con-
text at runtime. The field holds a reference to some EntityManager: some current
persistence context. Remember that CDI produces and injects the dependency
through the constructor. Because you declared it request-scoped, at runtime a special
proxy is injected that only looks like a real EntityManager. This proxy delegates all
calls to an actual EntityManager it finds in the current request context. The proxy is
serializable and doesn’t hold a reference to an EntityManager after a request is com-
plete. It can then be easily serialized; and when it’s deserialized, maybe even on a dif-
ferent JVM, it will continue to do its work and obtain a request-scoped EntityManager
whenever called. Therefore, you’re not serializing the entire persistence context—
only a proxy that can look up the current request-scoped persistence context.
Licensed to Thomas Snead <n.ordickan@gmail.com>

521Building JSF applications
 This may sound strange at first, but it’s how CDI works: if a request-scoped bean is
injected into a conversation-, session-, or application-scoped bean, an indirect refer-
ence is required. If you try to call the EntityManager proxy through a DAO when no
request context is active (say, in a servlet’s init() method), you’ll get a ContextNot-
ActiveException because the proxy can’t obtain a current EntityManager. The CDI
specification also defines that such proxies may be passivated (serialized), even when
the component they represent may not be.

 Assume now that the user has filled out the form on the first page of the wizard
with the item details and clicks Next. You have to promote the transient conversation
context.

BEGINNING LONG-RUNNING CONVERSATIONS

Clicking Next in the wizard submits the form with the Item details and takes the user to
the Edit Images page. Because the EditItemService is bound to a transient conversa-
tion context, processing this request happens in a new, transient conversation context.
Remember that the transient conversation scope is the same as the request scope.

 When you process the request with an action method, you call the Conversation
API to control the current transient conversation context:

public class EditItemService implements Serializable {

 // ...

 public String editImages() {
 if (conversation.isTransient()) {
 conversation.setTimeout(10 * 60 * 1000);
 conversation.begin();
 }
 return "editItemImages";
 }

 // ...

}

The action method is called after all the Item details have been set on the EditItem-
Service#item property by the JSF engine. You make the transient conversation long-
running with an individual timeout setting. This timeout is obviously shorter than or
equal to the timeout of the user’s session; larger values don’t make sense. The server
preserves the state of the service in the user’s session and renders an automatically
generated conversation identifier as a hidden field on any action form on the Edit
Images page. If you need it, you can also obtain the identifier value of the conversa-
tion with Conversation#getId(). You can even set your own identifier value in the
Conversation#begin() method call.

 The server now waits for the next request with the identifier of the conversation,
most likely originating from the Edit Images page. If this takes too long, because
either the long-running conversation or the entire session expired, a Nonexistent-
ConversationException is thrown on request.

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/EditItemService.java

10 minutes
Licensed to Thomas Snead <n.ordickan@gmail.com>

522 CHAPTER 19 Building web applications
 If the user wants to attach an image to the auction item, the next request may be
an Upload action bound to this service method:

public class EditItemService implements Serializable {

 // ...

 public void uploadImage() throws Exception {
 if (imageUploadPart == null)
 return;

 Image image =
 imageDAO.hydrateImage(imageUploadPart.getInputStream());
 image.setName(imageUploadPart.getSubmittedFileName());
 image.setContentType(imageUploadPart.getContentType());

 image.setItem(item);
 item.getImages().add(image);
 }

 // ...

}

B Create the Image entity instance from the submitted multipart form.

C You must add the transient Image to the transient or detached Item. This conversation
will consume more and more memory on the server as uploaded image data is added
to conversational state and therefore the user’s session.

One of the most important issues when building a stateful server system is memory
consumption and how many concurrent user sessions the system can handle. You
must be careful with conversational data. Always question whether you must hold data
you get from the user or data you load from the database for the entire conversation.

 When the user clicks Submit Item, the conversation ends, and all transient and
detached entity instances must be stored.

ENDING LONG-RUNNING CONVERSATIONS

The conversation workflow ends when the transient or detached Item and its images
are stored:

public class EditItemService implements Serializable {

 // ...

 @Transactional
 public String submitItem() {
 itemDAO.joinTransaction();

 // ...

 item = itemDAO.makePersistent(item);

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/EditItemService.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/EditItemService.java

Creates instanceB

Adds transient ImageC

Wraps method callB

Joins persistence
context with transactionC

Makes Item persistentD
Licensed to Thomas Snead <n.ordickan@gmail.com>

523Building JSF applications
 if (!conversation.isTransient())
 conversation.end();

 return "auction?id=" + item.getId() + "&faces-redirect=true";
 }

 // ...

}

B The system transaction interceptor wraps the method call.

C You must join the unsynchronized request-scoped persistence context with the system
transaction if you want to store data.

D This DAO call makes the transient or detached Item persistent. Because you enabled it
with a cascading rule on the @OneToMany, it also stores any new transient or old
detached Item#images collection elements. According to the DAO contract, you must
take the returned instance as the current state.

E Manually end the long-running conversation. This is effectively a demotion: the long-
running conversation becomes transient. You destroy the conversation context and
this service instance when the request is complete. All conversational state is removed
from the user’s session.

F This is a redirect-after-POST in JSF to the auction item details page, with the new identi-
fier value of the now-persistent Item.

Alternatively, the user may click Cancel at any time to exit the wizard:

public class EditItemService implements Serializable {

 // ...

 public String cancel() {
 if (!conversation.isTransient())
 conversation.end();
 return "catalog?faces-redirect=true";
 }

 // ...
}

This completes our example of stateful services with JSF, CDI, and a JPA persistence
layer. We think JSF and CDI are great in combination with JPA; you get a well-tested
and standardized programming model with little overhead, both in terms of resource
consumption and lines of code.

 We now continue with CDI but, instead of JSF, introduce JAX-RS combined with JPA
in a stateless server design for any rich clients. One of the challenges you face in this
architecture is serializing data.

PATH: /apps/app-web/src/main/java/org/jpwh/web/jsf/EditItemService.java

Ends conversationE

Redirects F
Licensed to Thomas Snead <n.ordickan@gmail.com>

524 CHAPTER 19 Building web applications
19.4 Serializing domain model data
When we first talked about writing persistence-capable classes in section 3.2.3, we
briefly mentioned that the classes don’t have to implement java.io.Serializable.
You can apply this marker interface when needed.

 One of the cases when this was necessary so far was in chapter 18. Domain model
instances were transmitted between EJB client and server systems, and they were auto-
matically serialized on one end into some wire format and deserialized on the other
end. This worked flawlessly and without customization because both client and server
are Java virtual machines, and the Hibernate libraries were available on both systems.
The client used Remote Method Invocation (RMI) and the standardized Java serializa-
tion format (a stream of bytes representing Java objects).

 If your client isn’t running in a Java virtual machine, you probably don’t want to
receive a stream of bytes representing Java objects from the server. A common sce-
nario is a stateless server system that handles a rich client, such as a JavaScript applica-
tion running in a web browser or a mobile device application. To implement this, you
typically create a Web API on the server that speaks HTTP and transmit either XML or
JSON payloads, which clients must then parse. The clients also send XML or JSON data
when changes must be stored on the server, so your server must be able to produce
and consume the desired media types.

Designing RESTful hypermedia-driven applications
Many people call a system with HTTP remote communication and JSON or XML media
types RESTful. But one of the most important aspects of an architecture with repre-
sentational state transfer is that client and server exchange hypermedia documents.
These hypermedia documents contain the data and the affordances (actions) avail-
able on that data: Thus, the name Hypermedia As The Engine Of Application State
(HATEOAS). Because this is a book about Hibernate and not Web API design, we can
only show you how to build a simple HTTP API that exchanges basic XML documents,
which isn’t RESTful and doesn’t use hypermedia.

When you design your own API, consider the H Factor of your chosen media type (see
http://amundsen.com/hypermedia/hfactor/) and study the excellent book RESTful
Web APIs by Leonard Richardson, Mike Amundsen, and Sam Ruby (Richardson,
2013). We recommend that you avoid using JSON, because it requires proprietary
extensions to improve its H-Factor.

Designing your own XML-based hypermedia format, perhaps by extending the exam-
ple shown in this chapter, isn’t much better. Our favorite media type is plain XHTML:
it has a great H-Factor, and it’s easy to write and read with APIs available every-
where. Compressed, it can be more efficient than JSON, and it’s a joy to work with
interactively when building and testing your API. Jon Moore presents a great exam-
ple of such a design in “Building Hypermedia APIs with HTML” (www.infoq.com
/presentations/web-api-html).
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://amundsen.com/hypermedia/hfactor/
http://www.infoq.com/presentations/web-api-html
http://www.infoq.com/presentations/web-api-html

525Serializing domain model data
You now write an HTTP server with the JAX-RS framework, producing and consuming
XML documents. Although the examples are in XML, they’re equally applicable to
JSON, and the fundamental problems we discuss are the same in both.

19.4.1 Writing a JAX-RS service

Let’s start with the JAX-RS service. One service method delivers an XML document rep-
resenting an Item entity instance when a client sends a GET HTTP request. Another
service method accepts an XML document for updating an Item in a PUT request:

@Path("/item")
public class ItemService {

 @Inject
 ItemDAO itemDAO;

 @GET
 @Path("{id}")
 @Produces(APPLICATION_XML)
 public Item get(@PathParam("id") Long id) {
 Item item = itemDAO.findById(id);
 if (item == null)
 throw new WebApplicationException(NOT_FOUND);
 return item;
 }

 @PUT
 @Path("{id}")
 @Consumes(APPLICATION_XML)
 @Transactional
 public void put(@PathParam("id") Long id, Item item) {
 itemDAO.joinTransaction();
 itemDAO.makePersistent(item);
 }

 // ...
}

B When the server receives a request with the request path /item, the method on this
service handles it. By default, the service instance is request-scoped, but you can apply
CDI scoping annotations to change that.

C An HTTP GET request maps to this method.

D The container uses the path segment after /item as an argument value for the call,
such as /item/123. You map it to a method parameter with @PathParam.

E This method produces XML media; therefore, someone has to serialize the method’s
returned value into XML. Be careful: this annotation isn’t the same producer annota-
tion as in CDI. It’s in a different package!

F This method consumes XML media; therefore, someone has to deserialize the XML
document and transform it into a detached Item instance.

PATH: /apps/app-web/src/main/java/org/jpwh/web/jaxrs/ItemService.java

Request pathB

GET
request

C
Argument for callD

Serializes value into XMLE

Deserializes XMLF

Starts transactionG
Licensed to Thomas Snead <n.ordickan@gmail.com>

526 CHAPTER 19 Building web applications
G You want to store data in this method, so you must start a system transaction and join
the persistence context with it.

The JAX-RS standard covers automatic marshalling for the most important media
types and a whole range of Java types. A JAX-RS implementation, for example, must be
able to produce and consume XML media for an application-supplied Java Architec-
ture for XML Binding (JAXB) class. The domain model entity class Item must there-
fore become a JAXB class.

19.4.2 Applying JAXB mappings

JAXB, much like JPA, works with annotations to declare a class’s capabilities. These
annotations map the properties of a class to elements and attributes in an XML docu-
ment. The JAXB runtime automatically reads and writes instances from and to XML
documents. This should sound familiar to you by now; JAXB is a great companion for
JPA-enabled domain models.

 Here’s an XML document for a sample Item:

<item id="1" auctionEnd="2018-03-06T15:00:00+01:00">
 <name>Baseball Glove</name>
 <description>It is brown.</description>
 <initialPrice>5.00</initialPrice>
 <bids>
 <bid id="1" createdOn="2018-03-06T15:01:00+01:00">
 <amount>11.00</amount>
 </bid>
 <bid id="2" createdOn="2018-03-06T15:02:00+01:00">
 <amount>12.00</amount>
 </bid>
 <bid id="3" createdOn="2018-03-06T15:03:00+01:00">
 <amount>13.00</amount>
 </bid>
 </bids>
</item>

Several design decisions were made to come up with this XML schema. Let’s look at
the JAXB annotations in the Item class to explore the available options:

@Entity
@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Item implements Serializable {

 @Id
 @GeneratedValue(generator = Constants.ID_GENERATOR)
 @XmlAttribute
 protected Long id;

 @NotNull
 @Future(message = "{Item.auctionEnd.Future}")

PATH: /apps/app-web/src/main/java/org/jpwh/web/model/Item.java

Where is the seller? We
talk about it in a minute.

Maps to XMLB

Calls fieldsC
Licensed to Thomas Snead <n.ordickan@gmail.com>

527Serializing domain model data
 @XmlAttribute
 protected Date auctionEnd;

 // ...
}

B An Item instance maps to an <item> XML element. This annotation effectively enables
JAXB on the class.

C When serializing or deserializing an instance, JAXB should call the fields directly and
not the getter or setter methods. The reasoning behind this is the same as for JPA:
freedom in method design.

The identifier and auction end date of the item become XML attributes, and all other
properties are nested XML elements. You don’t have to put any JAXB annotations on
description and initialPrice; they map to elements by default. Singular attributes
of the domain model class are easy: they’re either XML attributes or nested XML ele-
ments with some text. What about entity associations and collections?

 You can embed a collection directly in the XML document and thus eagerly
include it, as you did with the Item#bids:

public class Item implements Serializable {

 @OneToMany(mappedBy = "item")
 @XmlElementWrapper(name = "bids")
 @XmlElement(name = "bid")
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

There is some optimization potential here: if you say, “Always eagerly include bids”
when your service returns an Item, then you should load them eagerly. Right now, sev-
eral queries are necessary in JPA to load the Item and the default lazy-mapped
Item#bids. The JAXB serializer automatically iterates through the collection elements
when the response is prepared.

 Hibernate initializes the collection data either lazily or eagerly, and JAXB (or any
other serializer you have) serializes each element in turn. The fact that Hibernate uses
special collections internally, as discussed in section 12.1.2, makes no difference when
you serialize. It will later be important when you deserialize an XML document, but
let’s ignore this issue for now.

 When you don’t want to include a collection or a property in the XML document,
use the @XmlTransient annotation:

PATH: /apps/app-web/src/main/java/org/jpwh/web/model/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

528 CHAPTER 19 Building web applications

public class Item implements Serializable {

 @OneToMany(mappedBy = "item", cascade = MERGE)
 @XmlTransient
 protected Set<Image> images = new HashSet<>();

 // ...
}

Collections are easy to handle, regardless of whether they’re collections of primitives,
embeddables, or many-valued entity associations. Of course, you must be careful with
circular references, such as each Bid having a (back) reference to an Item. At some
point, you must make a break and declare a reference transient.

 The most difficult issue you face when serializing an entity instance loaded by
Hibernate is internal proxies: the placeholders used for lazy loading of entity associa-
tions. In the Item class, this is the seller property, referencing a User entity.

19.4.3 Serializing Hibernate proxies

Item#seller is mapped with @ManyToOne(fetch = LAZY), a lazy entity association.
When you load an Item entity instance, its seller property isn’t a real User: it’s a User
proxy, a runtime-generated class from Hibernate.

 If you don’t declare anything else, this is how JAXB will render the property:

<item id="1" auctionEnd="2018-03-06T15:00:00+01:00">
 <!-- ... -->
 <seller/>
 <!-- ... -->
</item>

Such a document would indicate to a client that the item has no seller. This is of
course wrong; an uninitialized proxy is not the same as null! You could assign special
meaning to an empty XML element and say, on the client, “An empty element means a
proxy” and “A missing element means null.” Unfortunately, we’ve seen serialization
solutions, even designed for Hibernate, that don’t make this distinction. Some serial-
ization solutions, not designed for Hibernate, may even stumble and fail as soon as
they discover a Hibernate proxy.

 Usually, you must customize your serialization tool to deal with Hibernate proxies
in some meaningful way. In this application, you want the following XML data for an
uninitialized entity proxy:

<item id="1" auctionEnd="2018-03-06T15:00:00+01:00">
 <!-- ... -->
 <seller type="org.jpwh.web.model.User" id="123"/>
 <!-- ... -->
</item>

PATH: /apps/app-web/src/main/java/org/jpwh/web/model/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

529Serializing domain model data
This is the same data as the proxy: the entity class and the identifier value represented
by the proxy. A client now knows that there is indeed a seller for this item and the
identifier of that user; it can request this data if needed. If you receive this XML docu-
ment on the server when a user updates an item, you can reconstruct a proxy from the
entity class name and identifier value.

 You should write a model class that represents such an entity reference and map it
to XML elements and attributes:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class EntityReference {

 @XmlAttribute
 public Class type;

 @XmlAttribute
 public Long id;

 public EntityReference() {
 }

 public EntityReference(Class type, Long id) {
 this.type = type;
 this.id = id;
 }
}

Next, you must customize marshalling and unmarshalling the Item, so instead of a
real User, an EntityReference handles the Item#seller property. In JAXB, you apply
a custom type adapter on the property:

public class Item implements Serializable {

 @NotNull
 @ManyToOne(fetch = LAZY)
 @XmlJavaTypeAdapter(EntityReferenceAdapter.class)
 protected User seller;

 // ...
}

You can use the EntityReferenceAdapter for any entity association property. It knows
how to read and write an EntityReference from and to XML:

public class EntityReferenceAdapter
 extends XmlAdapter<EntityReference, Object> {

PATH: /apps/app-web/src/main/java/org/jpwh/web/model/EntityReference.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/model/Item.java

PATH: /apps/app-web/src/main/java/org/jpwh/web/jaxrs/
EntityReferenceAdapter.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

530 CHAPTER 19 Building web applications
 EntityManager em;

 public EntityReferenceAdapter() {
 }

 public EntityReferenceAdapter(EntityManager em) {
 this.em = em;
 }

 @Override
 public EntityReference marshal(Object entityInstance)
 throws Exception {

 Class type = getType(entityInstance);
 Long id = getId(type, entityInstance);
 return new EntityReference(type, id);
 }

 @Override
 public Object unmarshal(EntityReference entityReference)
 throws Exception {
 if (em == null)
 throw new IllegalStateException(
 "Call Unmarshaller#setAdapter() and " +
 "provide an EntityManager"
);

 return em.getReference(
 entityReference.type,
 entityReference.id
);
 }

}

B JAXB calls this constructor when it generates an XML document. In that case, you
don’t need an EntityManager: the proxy contains all the information you need to
write an EntityReference.

C JAXB must call this constructor when it reads an XML document. You need an Entity-
Manager to get a Hibernate proxy from an EntityReference.

D When writing an XML document, take the Hibernate proxy and create a serializable
representation. This calls internal Hibernate methods that we haven’t shown here.

E When reading an XML document, take the serialized representation and create a
Hibernate proxy attached to the current persistence context.

Finally, you need an extension for JAX-RS that will automatically initialize this adapter
with the current request-scoped EntityManager when an XML document has to be
unmarshalled on the server. You can find this EntityReferenceXMLReader extension
in the example code for this book.

 There are a few remaining points we need to discuss. First, we haven’t talked about
unmarshalling collections. Any <bids> element in the XML document will be deserial-
ized when the service is called, and detached instances of Bid will be created from that

Writes EntityReferenceB

Reads
EntityReferenceC

Creates
serialization
representationD

Creates proxyE
Licensed to Thomas Snead <n.ordickan@gmail.com>

531Summary
data. You can access them on the detached Item#bids when your service runs. Noth-
ing else will happen or can happen, though: the collection created during unmarshal-
ling by JAXB isn’t one of the special Hibernate collections. Even if you had enabled
cascaded merging of the Item#bids collection in your mapping, it would be ignored
by EntityManager#merge().

 This is similar to the proxy problem you solved in the previous section. You would
have to detect that you must create a special Hibernate collection when a particular
property is unmarshalled in an XML document. You’d have to call some Hibernate
internal APIs to create that magic collection. We recommend that you consider collec-
tions to be read-only; collection mappings in general are a shortcut for embedding
data in query results when you send data to the client. When the client sends an XML
document to the server, it shouldn’t include any <bids> element. On the server, you
only access the collection on the persistent Item after it’s merged (ignoring the collec-
tion during merge).

 Second, you’re probably wondering where our JSON examples are. We know
you’re most likely relying on JSON right now in your applications and not on a custom
XML media type. JSON is a convenient format to parse in a JavaScript client. The bad
news is that we couldn’t figure out a way to customize JSON marshalling and unmar-
shalling in JAX-RS without relying on a proprietary framework. Although JAX-RS may
be standardized, how it generates and reads JSON isn’t standardized; some JAX-RS
implementations use Jackson, whereas others use Jettison. There is also the new stan-
dard Java API for JSON Processing (JSONP), which some JAX-RS implementations may
rely on in the future.

 If you want to use JSON with Hibernate, you must write the same extension code we
wrote for JAXB, but for your favorite JSON marshalling tool. You’ll have to customize
proxy handling, how proxy data is sent to the client, and how proxy data is turned back
into entity references with em.getReference(). You’ll certainly have to rely on some
extension API of your framework, just as we did with JAXB, but the same pattern applies.

19.5 Summary
 You’ve seen many ways to integrate Hibernate and JPA in a web application envi-

ronment. You enabled the EntityManager for CDI injection and improved the
persistence layer with CDI and a generic sorting and paging solution for finder
queries.

 You looked at JPA in a JSF web application: how to write request- and conversa-
tion-scoped services with a JPA persistence context.

 We discussed problems and solutions associated with entity data serialization,
and how to resolve those in an environment with stateless clients and a JAX-RS
server.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Scaling Hibernate
You use object/relational mapping to move data into the application tier in order
to use an object-oriented programming language to process that data. This is a
good strategy when implementing a multiuser online transaction-processing appli-
cation with small to medium size data sets involved in each unit of work.

 On the other hand, operations that require massive amounts of data aren’t best-
suited for the application tier. You should move the operation closer to where the
data lives, rather than the other way around. In an SQL system, the DML statements
UPDATE and DELETE execute directly in the database and are often sufficient if you
have to implement an operation that involves thousands of rows. Operations that
are more complex may require additional procedures to run inside the database;
therefore, you should consider stored procedures as one possible strategy. You can
fall back to JDBC and SQL at any time in Hibernate applications. We discussed some
these options earlier, in chapter 17. In this chapter, we show you how to avoid fall-
ing back to JDBC and how to execute bulk and batch operations with Hibernate
and JPA.

In this chapter
 Performing bulk and batch data operations

 Improving scalability with the shared cache
532

Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#GeneratorStrategies
jpwh-2e-preview.xhtml#GeneratorStrategies
jpwh-2e-preview.xhtml#GeneratorStrategies

533Bulk and batch processing
 A major justification for our claim that applications using an object/relational per-
sistence layer outperform applications built using direct JDBC is caching. Although we
argue passionately that most applications should be designed so that it’s possible to
achieve acceptable performance without the use of a cache, there’s no doubt that for
some kinds of applications, especially read-mostly applications or applications that
keep significant metadata in the database, caching can have an enormous impact on
performance. Furthermore, scaling a highly concurrent application to thousands of
online transactions per second usually requires some caching to reduce the load on
the database server(s). After discussing bulk and batch operations, we explore Hiber-
nate’s caching system.

20.1 Bulk and batch processing
First we look at standardized bulk statements in JPQL, such as UPDATE and DELETE, and
their equivalent criteria versions. After that, we repeat some of these operations with
SQL native statements. Then, you learn how to insert and update a large number of
entity instances in batches. Finally, we introduce the special org.hibernate.State-
lessSession API.

20.1.1 Bulk statements in JPQL and criteria

The Java Persistence Query Language is similar to SQL. The main difference between
the two is that JPQL uses class names instead of table names and property names
instead of column names. JPQL also understands inheritance—that is, whether you’re
querying with a superclass or an interface. The JPA criteria query facility supports the
same query constructs as JPQL but in addition offers type-safe and easy programmatic
statement creation.

 The next statements we show you support updating and deleting data directly in
the database without the need to retrieve them into memory. We also provide a state-
ment that can select data and insert it as new entity instances, directly in the database.

UPDATING AND DELETING ENTITY INSTANCES

JPA offers DML operations that are a little more powerful than plain SQL. Let’s look at
the first operation in JPQL: an UPDATE.

Major new features in JPA 2
 Bulk update and delete operations, which translate directly into SQL UPDATE

and DELETE statements, are now standardized and available in the JPQL, cri-
teria, and SQL execution interfaces.

 The configuration settings and annotations to enable a shared entity data
cache are now standardized.
Licensed to Thomas Snead <n.ordickan@gmail.com>

534 CHAPTER 20 Scaling Hibernate

Query query = em.createQuery(
 "update Item i set i.active = true where i.seller = :s"
).setParameter("s", johndoe);

int updatedEntities = query.executeUpdate();

assertEquals(updatedEntities, 2);

This JPQL statement looks like an SQL statement, but it uses an entity name (class
name) and property names. The aliases are optional, so you can also write update
Item set active = true. You use the standard query API to bind named and positional
parameters. The executeUpdate call returns the number of updated entity instances,
which may be different from the number of updated database rows, depending on the
mapping strategy.

 This UPDATE statement only affects the database; Hibernate doesn’t update any
Item instance you’ve already retrieved into the (current) persistence context. In the
previous chapters, we’ve repeated that you should think about state management of
entity instances, not how SQL statements are managed. This strategy assumes that the
entity instances you’re referring to are available in memory. If you update or delete
data directly in the database, what you’ve already loaded into application memory,
into the persistence context, isn’t updated or deleted.

 A pragmatic solution that avoids this issue is a simple convention: execute any
direct DML operations first in a fresh persistence context. Then, use the Entity-
Manager to load and store entity instances. This convention guarantees that the persis-
tence context is unaffected by any statements executed earlier. Alternatively, you can
selectively use the refresh() operation to reload the state of an entity instance in the
persistence context from the database, if you know it’s been modified outside of the
persistence context.

This is the same operation with the criteria API:

CriteriaUpdate<Item> update =
 criteriaBuilder.createCriteriaUpdate(Item.class);
Root<Item> i = update.from(Item.class);
update.set(i.get(Item_.active), true);

Listing 20.1 Executing a JPQL UPDATE statement

Entity instances, not “rows”

Bulk JPQL/criteria statements and the second-level cache
Executing a DML operation directly on the database automatically clears the optional
Hibernate second-level cache. Hibernate parses your JPQL and criteria bulk opera-
tions and detects which cache regions are affected. Hibernate then clears the regions
in the second-level cache. Note that this is a coarse-grained invalidation: although
you may only update or delete a few rows in the ITEM table, Hibernate clears and
invalidates all cache regions where it holds Item data.
Licensed to Thomas Snead <n.ordickan@gmail.com>

535Bulk and batch processing

H

update.where(
 criteriaBuilder.equal(i.get(Item_.seller), johndoe)
);

int updatedEntities = em.createQuery(update).executeUpdate();

Another benefit is that the JPQL UPDATE statement and a CriteriaUpdate work with
inheritance hierarchies. The following statement marks all credit cards as stolen if the
owner’s name starts with “J” :

Query query = em.createQuery(
 "update CreditCard c set c.stolenOn = :now where c.owner like 'J%'"
).setParameter("now", new Date());

Hibernate knows how to execute this update, even if several SQL statements have to be
generated or some data needs to be copied into a temporary table; it updates rows in
several base tables (because CreditCard is mapped to several superclass and subclass
tables).

 JPQL UPDATE statements can reference only a single entity class, and criteria bulk
operations may have only one root entity; you can’t write a single statement to update
Item and CreditCard data simultaneously, for example. Subqueries are allowed in the
WHERE clause, and any joins are allowed only in these subqueries.

 You can update values of an embedded type: for example, update User u set
u.homeAddress.street = You can’t update values of an embeddable type in a
collection. This isn’t allowed: update Item i set i.images.title =

 Direct DML operations, by default, don’t affect any version or timestamp values in
the affected entities (as standardized by JPA). But a Hibernate extension lets you
increment the version number of directly modified entity instances:

int updatedEntities =
 em.createQuery("update versioned Item i set i.active = true")
 .executeUpdate();

The version of each updated Item entity instance will now be directly incremented in
the database, indicating to any other transaction relying on optimistic concurrency
control that you modified the data. (Hibernate doesn’t allow use of the versioned
keyword if your version or timestamp property relies on a custom org.hiber-
nate.usertype.UserVersionType.)

 With the JPA criteria API, you have to increment the version yourself:

CriteriaUpdate<Item> update =
 criteriaBuilder.createCriteriaUpdate(Item.class);

Root<Item> i = update.from(Item.class);

update.set(i.get(Item_.active), true);

Hibernate even creates a
temporary table for this update.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

536 CHAPTER 20 Scaling Hibernate

H

update.set(
 i.get(Item_.version),
 criteriaBuilder.sum(i.get(Item_.version), 1)
);

int updatedEntities = em.createQuery(update).executeUpdate();

The second bulk operation we introduce is DELETE:

em.createQuery("delete CreditCard c where c.owner like 'J%'")
 .executeUpdate();
CriteriaDelete<CreditCard> delete =
 criteriaBuilder.createCriteriaDelete(CreditCard.class);

Root<CreditCard> c = delete.from(CreditCard.class);

delete.where(
 criteriaBuilder.like(
 c.get(CreditCard_.owner),
 "J%"
)
);

em.createQuery(delete).executeUpdate();

The same rules for UPDATE statements and CriteriaUpdate apply to DELETE and
CriteriaDelete: no joins, single entity class only, optional aliases, or subqueries
allowed in the WHERE clause.

 Another special JPQL bulk operation lets you create entity instances directly in the
database.

CREATING NEW ENTITY INSTANCES

Let’s assume that some of your customers’ credit cards have been stolen. You write two
bulk operations to mark the day they were stolen (well, the day you discovered the
theft) and to remove the compromised credit-card data from your records. Because
you work for a responsible company, you have to report the stolen credit cards to the
authorities and affected customers. Therefore, before you delete the records, you
extract everything stolen and create a few hundred (or thousand) StolenCreditCard
records. You write a new mapped entity class just for this purpose:

@Entity
public class StolenCreditCard {

 @Id
 public Long id;
 public String owner;
 public String cardNumber;
 public String expMonth;
 public String expYear;
 public Long userId;
 public String username;

ibernate Feature

Application-assigned
Licensed to Thomas Snead <n.ordickan@gmail.com>

537Bulk and batch processing
 public StolenCreditCard() {
 }

 public StolenCreditCard(Long id,
 String owner, String cardNumber,
 String expMonth, String expYear,
 Long userId, String username) {
 }
}

Hibernate maps this class to the STOLENCREDITCARD table. Next, you need a statement
that executes directly in the database, retrieves all compromised credit cards, and cre-
ates new StolenCreditCard records. This is possible with the Hibernate-only INSERT
... SELECT statement:

int createdRecords =
 em.createQuery(
 "insert into" +
 " StolenCreditCard(id, owner, cardNumber, expMonth, expYear,

➥userId, username)" +
 " select c.id, c.owner, c.cardNumber, c.expMonth, c.expYear, u.id,

➥u.username" +
 " from CreditCard c join c.user u where c.owner like 'J%'"
).executeUpdate();

This operation does two things. First, it selects the details of CreditCard records and
the respective owner (a User). Second, it inserts the result directly into the table
mapped by the StolenCreditCard class.

 Note the following:

 The properties that are the target of an INSERT ... SELECT (in this case, the
StolenCreditCard properties you list) have to be for a particular subclass, not
an (abstract) superclass. Because StolenCreditCard isn’t part of an inheritance
hierarchy, this isn’t an issue.

 The types returned by the projection in the SELECT must match the types
required for the arguments of the INSERT.

 In the example, the identifier property of StolenCreditCard is in the list of
inserted properties and supplied through selection; it’s the same as the original
CreditCard identifier value. Alternatively, you can map an identifier generator
for StolenCreditCard; but this works only for identifier generators that oper-
ate directly inside the database, such as sequences or identity fields.

 If the generated records are of a versioned class (with a version or timestamp
property), a fresh version (zero, or the current timestamp) is also generated.
Alternatively, you can select a version (or timestamp) value and add the version
(or timestamp) property to the list of inserted properties.

The INSERT ... SELECT statement was, at the time of writing, not supported by the JPA
or Hibernate criteria APIs.
Licensed to Thomas Snead <n.ordickan@gmail.com>

538 CHAPTER 20 Scaling Hibernate

H

 JPQL and criteria bulk operations cover many situations in which you’d usually
resort to plain SQL. In some cases, you may want to execute SQL bulk operations with-
out falling back to JDBC.

20.1.2 Bulk statements in SQL

In the previous section, you saw JPQL UPDATE and DELETE statements. The primary
advantage of these statements is that they work with class and property names and that
Hibernate knows how to handle inheritance hierarchies and versioning when generat-
ing SQL. Because Hibernate parses JPQL, it also knows how to efficiently dirty-check
and flush the persistence context before the query and how to invalidate second-level
cache regions.

 If JPQL doesn’t have the features you need, you can execute native SQL bulk
statements:

Query query = em.createNativeQuery(
 "update ITEM set ACTIVE = true where SELLER_ID = :sellerId"
).setParameter("sellerId", johndoe.getId());

int updatedEntities = query.executeUpdate();

assertEquals(updatedEntities, 2);

With JPA native bulk statements, you must be aware of one important issue: Hibernate
will not parse your SQL statement to detect the affected tables. This means Hibernate
doesn’t know whether a flush of the persistence context is required before the query
executes. In the previous example, Hibernate doesn’t know you’re updating rows in
the ITEM table. Hibernate has to dirty-check and flush any entity instances in the per-
sistence context when you execute the query; it can’t only dirty-check and flush Item
instances in the persistence context.

 You must consider another issue if you enable the second-level cache (if you don’t,
don’t worry): Hibernate has to keep your second-level cache synchronized to avoid
returning stale data, so it will invalidate and clear all second-level cache regions when
you execute a native SQL UPDATE or DELETE statement. This means your second-level
cache will be empty after this query!

 You can get more fine-grained control over dirty checking, flushing, and second-
level cache invalidation with the Hibernate API for SQL queries:

org.hibernate.SQLQuery query =
 em.unwrap(org.hibernate.Session.class).createSQLQuery(
 "update ITEM set ACTIVE = true where SELLER_ID = :sellerId"
);
query.setParameter("sellerId", johndoe.getId());

query.addSynchronizedEntityClass(Item.class);

All second-level cache
regions are cleared.

Updated rows, not
entity instances

ibernate Feature

Only second-level cache regions
with Item data are cleared.
Licensed to Thomas Snead <n.ordickan@gmail.com>

539Bulk and batch processing
int updatedEntities = query.executeUpdate();

assertEquals(updatedEntities, 2);

With the addSynchronizedEntityClass() method, you can let Hibernate know which
tables are affected by your SQL statement and Hibernate will clear only the relevant
cache regions. Hibernate now also knows that it has to flush only modified Item entity
instance in the persistence context, before the query.

 Sometimes you can’t exclude the application tier in a mass data operation. You
have to load data into application memory and work with the EntityManager to per-
form your updates and deletions, which brings us to batch processing.

20.1.3 Processing in batches

If you have to create or update a few hundred or thousand entity instances in one
transaction and unit of work, you may run out of memory. Furthermore, you have to
consider the time it takes for the transaction to complete. Most transaction managers
have a low transaction timeout, in the range of seconds or minutes. The Bitronix
transaction manager used for the examples in this book has a default transaction
timeout of 60 seconds. If your unit of work takes longer to complete, you should first
override this timeout for a particular transaction:

tx.setTransactionTimeout(300);

This is the UserTransaction API. Only future transactions started on this thread will
have the new timeout. You must set the timeout before you begin() the transaction.

 Next, let’s insert a few thousand Item instances into the database in a batch.

INSERTING ENTITY INSTANCES IN BATCHES

Every transient entity instance you pass to EntityManager#persist() is added to the
persistence context cache, as explained in section 10.2.8. To prevent memory exhaus-
tion, you flush() and clear() the persistence context after a certain number of
insertions, effectively batching the inserts.

tx.begin();
EntityManager em = JPA.createEntityManager();

for (int i = 0; i < ONE_HUNDRED_THOUSAND; i++) {
 Item item = new Item(
 // ...
);
 em.persist(item);

 if (i % 100 == 0) {
 em.flush();
 em.clear();
 }
}

Listing 20.2 Inserting a large number of entity instances

Updated rows, not
entity instances

5 minutes

Creates instancesB

Executes INSERTsC
Licensed to Thomas Snead <n.ordickan@gmail.com>

jpwh-2e-preview.xhtml#PersistenceContextCache
jpwh-2e-preview.xhtml#PersistenceContextCache
jpwh-2e-preview.xhtml#PersistenceContextCache

540 CHAPTER 20 Scaling Hibernate

H

tx.commit();
em.close();

B Create and persist 100,000 Item instances.

C After 100 operations, flush and clear the persistence context. This executes the SQL
INSERT statements for 100 Item instances, and because they’re now in detached state
and no longer referenced, the JVM garbage collection can reclaim that memory.

You should set the hibernate.jdbc.batch_size property in the persistence unit to
the same size as your batch, here 100. With this setting, Hibernate will batch the
INSERT statements at the JDBC level, with PreparedStatement#addBatch().

If you enable the shared second-level cache for the Item entity, you should then
bypass the cache for your batch (insertion) procedure; see section 20.2.5.

 A serious problem with mass insertions is contention on the identifier generator:
every call of EntityManager#persist() must obtain a new identifier value. Typi-
cally, the generator is a database sequence, called once for every persisted entity
instance. You have to reduce the number of database round trips for an efficient
batch procedure.

 In section 4.2.5, we recommended the Hibernate-specific enhanced-sequence gen-
erator, not least because it supports certain optimizations ideal for batch operations.
First, define the generator in the package-info.java metadata:

@org.hibernate.annotations.GenericGenerator(
 name = "ID_GENERATOR_POOLED",
 strategy = "enhanced-sequence",
 parameters = {
 @org.hibernate.annotations.Parameter(
 name = "sequence_name",
 value = "JPWH_SEQUENCE"
),

Batching interleaved SQL statements
A batch procedure persisting several different entity instances in an interleaved fash-
ion, let’s say an Item, then a User, then another Item, another User, and so on,
isn’t efficiently batched at the JDBC level. When flushing, Hibernate generates an
insert into ITEM SQL statement, then an insert into USERS statement, then
another insert into ITEM statement, and so on. Hibernate can’t execute a larger
batch at once, given that each statement is different from the last. If you enable the
property hibernate.order_inserts in the persistence unit configuration, Hibernate
sorts the operations before trying to build a batch of statements. Hibernate then exe-
cutes all INSERT statements for the ITEM table and all INSERT statements for the
USERS table. Then, Hibernate can batch the statements at the JDBC level.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

541Bulk and batch processing

H

 @org.hibernate.annotations.Parameter(
 name = "increment_size",
 value = "100"
),
 @org.hibernate.annotations.Parameter(
 name = "optimizer",
 value = "pooled-lo"
)
})

Now use the generator with @GeneratedValue in your mapped entity classes.
 With increment_size set to 100, the sequence produces the “next” values 100,

200, 300, 400, and so on. The pooled-lo optimizer in Hibernate generates intermedi-
ate values each time you call persist(), without another round trip to the database.
Therefore, if the next value obtained from the sequence is 100, Hibernate will gener-
ate the identifier values 101, 102, 103, and so on in the application tier. Once the opti-
mizer’s pool of 100 identifier values is exhausted, the database obtains the next
sequence value, and the procedure repeats. This means you only make one round trip
to get an identifier value from the database per batch of 100 insertions. Other identi-
fier generator optimizers are available, but the pooled-lo optimizer covers virtually all
use cases and is the easiest to understand and configure.

 Be aware that an increment size of 100 will leave large gaps in between numeric
identifiers if an application uses the same sequence but doesn’t apply the same algo-
rithm as Hibernate’s optimizer. This shouldn’t be too much of a concern; instead of
being able to generate a new identifier value each millisecond for 300 million years,
you might exhaust the number space in 3 million years.

 You can use the same batching technique to update large number of entity
instances.

UPDATING ENTITY INSTANCES IN BATCHES

Imagine that you have to manipulate many Item entity instances and that the changes
you need to make aren’t as trivial as setting a flag (which you’ve done with a single
UPDATE JPQL statement previously). Let’s also assume that you can’t create a database
stored procedure, for whatever reason (maybe because your application has to work
on database-management systems that don’t support stored procedures). Your only
choice is to write the procedure in Java and to retrieve a massive amount of data into
memory to run it through the procedure.

 This requires working in batches and scrolling through a query result with a data-
base cursor, which is a Hibernate-only query feature. Please review our explanation of
scrolling with cursors in section 14.3.3 and make sure database cursors are properly
supported by your DBMS and JDBC driver. The following code loads 100 Item entity
instances at a time for processing.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

542 CHAPTER 20 Scaling Hibernate

tx.begin();
EntityManager em = JPA.createEntityManager();

org.hibernate.ScrollableResults itemCursor =
 em.unwrap(org.hibernate.Session.class)
 .createQuery("select i from Item i")
 .scroll(org.hibernate.ScrollMode.SCROLL_INSENSITIVE);

int count = 0;
while (itemCursor.next()) {
 Item item = (Item) itemCursor.get(0);

 modifyItem(item);

 if (++count % 100 == 0) {
 em.flush();
 em.clear();
 }
}

itemCursor.close();
tx.commit();
em.close();

B You use a JPQL query to load all Item instances from the database. Instead of retriev-
ing the result of the query completely into application memory, you open an online
database cursor.

C You control the cursor with the ScrollableResults API and move it along the result.
Each call to next() forwards the cursor to the next record.

D The get(int i) call retrieves a single entity instance into memory: the record the cur-
sor is currently pointing to.

E To avoid memory exhaustion, you flush and clear the persistence context before load-
ing the next 100 records into it.

For the best performance, you should set the size of the property hibernate.jdbc
.batch_size in the persistence unit configuration to the same value as your proce-
dure batch: 100. Hibernate batches at the JDBC level all UPDATE statements executed
while flushing. By default, Hibernate won’t batch at the JDBC level if you’ve enabled
versioning for an entity class—some JDBC drivers have trouble returning the correct
updated row count for batch UPDATE statements (Oracle is known to have this issue).
If you’re sure your JDBC driver supports this properly, and your Item entity class has
an @Version annotation, enable JDBC batching by setting the property hiber-
nate.jdbc.batch_versioned_data to true. If you enable the shared second-level
cache for the Item entity, you should then bypass the cache for your batch (update)
procedure; see section 20.2.5.

 Another option that avoids memory consumption in the persistence context (by
effectively disabling it) is the org.hibernate.StatelessSession interface.

Listing 20.3 Updating a large number of entity instances

Opens cursorB

Moves cursorC

Retrieves instanceD

Flushes persistence contextE
Licensed to Thomas Snead <n.ordickan@gmail.com>

543Bulk and batch processing

H

20.1.4 The Hibernate StatelessSession interface

The persistence context is an essential feature of the Hibernate engine. Without a
persistence context, you can’t manipulate entity state and have Hibernate detect your
changes automatically. Many other things wouldn’t also be possible.

 Hibernate offers an alternative interface, however, if you prefer to work with your
database by executing statements. The statement-oriented interface org.hiber-
nate.StatelessSession, feels and works like plain JDBC, except that you get the ben-
efit of mapped persistent classes and Hibernate’s database portability. The most
interesting methods in this interface are insert(), update(), and delete(), which all
map to the equivalent immediately executed JDBC/SQL operation.

 Let’s write the same “update all item entity data” procedure from the earlier exam-
ple with this interface.

tx.begin();

org.hibernate.SessionFactory sf =
 JPA.getEntityManagerFactory().unwrap(org.hibernate.SessionFactory.class);
org.hibernate.StatelessSession statelessSession = sf .openStatelessSession();

org.hibernate.ScrollableResults itemCursor =
 statelessSession
 .createQuery("select i from Item i")
 .scroll(org.hibernate.ScrollMode.SCROLL_INSENSITIVE);

while (itemCursor.next()) {
 Item item = (Item) itemCursor.get(0);

 modifyItem(item);

 statelessSession.update(item);
}

itemCursor.close();
tx.commit();
statelessSession.close();

B Open a StatelessSession on the Hibernate SessionFactory, which you can unwrap
from an EntityManagerFactory.

C Use a JPQL query to load all Item instances from the database. Instead of retrieving
the result of the query completely into application memory, open an online database
cursor.

D Scroll through the result with the cursor, and retrieve an Item entity instance. This
instance is in detached state; there is no persistence context!

E Because Hibernate doesn’t detect changes automatically without a persistence con-
text, you have to execute SQL UPDATE statements manually.

Listing 20.4 Updating data with a StatelessSession

ibernate Feature

Opens StatelessSessionB

Loads Item instancesC

Retrieves instanceD

Executes UPDATEE
Licensed to Thomas Snead <n.ordickan@gmail.com>

544 CHAPTER 20 Scaling Hibernate
Disabling the persistence context and working with the StatelessSession interface
has some other serious consequences and conceptual limitations (at least, if you com-
pare it to a regular EntityManager and org.hibernate.Session):

 The StatelessSession doesn’t have a persistence context cache and doesn’t
interact with any other second-level or query cache. There is no automatic dirty
checking or SQL execution when a transaction commits. Everything you do
results in immediate SQL operations.

 No modification of an entity instance and no operation you call are cascaded to
any associated instance. Hibernate ignores any cascading rules in your map-
pings. You’re working with instances of a single entity class.

 You have no guaranteed scope of object identity. The same query executed
twice in the same StatelessSession produces two different in-memory
detached instances. This can lead to data-aliasing effects if you don’t carefully
implement the equals() and hashCode() methods in your persistent classes.

 Hibernate ignores any modifications to a collection that you mapped as an
entity association (one-to-many, many-to-many). Only collections of basic or
embeddable types are considered. Therefore, you shouldn’t map entity associa-
tions with collections—but only many-to-one or one-to-one—and handle the rela-
tionship through that side only. Write a query to obtain data you’d otherwise
retrieve by iterating through a mapped collection.

 Hibernate doesn’t invoke JPA event listeners and event callback methods for
operations executed with StatelessSession. StatelessSession bypasses any
enabled org.hibernate.Interceptor, and you can’t intercept it through the
Hibernate core event system.

Good use cases for a StatelessSession are rare; you may prefer it if manual batching
with a regular EntityManager becomes cumbersome.

 In the next section, we introduce the Hibernate shared caching system. Caching
data on the application tier is a complementary optimization that you can utilize in
any sophisticated multiuser application.

20.2 Caching data
In this section, we show you how to enable, tune, and manage the shared data caches
in Hibernate. The shared data cache is not the persistence context cache, which
Hibernate never shares between application threads. For reasons explained in section
10.1.2, this isn’t optional. We call the persistence context a first-level cache. The shared
data cache—the second-level cache—is optional, and although JPA standardizes some
configuration settings and mapping metadata for shared caching, every vendor has
different solutions for optimization. Let’s start with some background information
and explore the architecture of Hibernate’s shared cache.
Licensed to Thomas Snead <n.ordickan@gmail.com>

545Caching data

H

20.2.1 The Hibernate shared cache architecture

A cache keeps a representation of current database state close to the application,
either in memory or on disk of the application server machine. A cache is a local copy
of the data and sits between your application and the database. Simplified, to Hiber-
nate a cache looks like a map of key/value pairs. Hibernate can store data in the cache
by providing a key and a value, and it can look up a value in the cache with a key.

 Hibernate has several types of shared caches available. You may use a cache to
avoid a database hit whenever the following take place:

 The application performs an entity instance lookup by identifier (primary key);
this may get a hit in the entity data cache. Initializing an entity proxy on demand
is the same operation and, internally, may hit the entity data cache instead of
the database. The cache key is the identifier value of the entity instance, and
the cache value is the data of the entity instance (its property values). The
actual data is stored in a special disassembled format, and Hibernate assembles
an entity instance again when it reads from the entity data cache.

 The persistence engine initializes a collection lazily; a collection cache may hold
the elements of the collection. The cache key is the collection role: for exam-
ple, “Item[1234]#bids” would be the bids collection of an Item instance with
identifier 1234. The cache value in this case would be a set of Bid identifier val-
ues, the elements of the collection. (Note that this collection cache does not
hold the Bid entity data, only the data’s identifier values!)

 The application performs an entity instance lookup by a unique key attribute.
This is a special natural identifier cache for entity classes with unique properties:
for example, User#username. The cache key is the unique property, such as the
username, and the cached value is the User’s entity instance identifier.

 You execute a JPQL, criteria, or SQL query, and the result of the actual SQL
query is already stored in the query result cache. The cache key is the rendered
SQL statement including all its parameter values, and the cache value is some
representation of the SQL result set, which may include entity identifier values.

It’s critically important to understand that the entity data cache is the only type of
cache that holds actual entity data values. The other three cache types only hold entity
identifier information. Therefore, it doesn’t make sense to enable the natural identi-
fier cache, for example, without also enabling the entity data cache. A lookup in the
natural identifier cache will, when a match is found, always involve a lookup in the
entity data cache. We’ll further analyze this behavior below with some code examples.

 As we hinted earlier, Hibernate has a two-level cache architecture.

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

546 CHAPTER 20 Scaling Hibernate

THE SECOND-LEVEL CACHE

You can see the various elements of Hibernate’s caching system in figure 20.1. The
first-level cache is the persistence context cache, which we discussed in section 10.1.2.
Hibernate does not share this cache between threads; each application thread has its
own copy of the data in this cache. Hence, there are no issues with transaction isola-
tion and concurrency when accessing this cache.

 The second-level cache system in Hibernate may be process-scoped in the JVM or
may be a cache system that can work in a cluster of JVMs. Multiple application threads
may access the shared second-level caches concurrently. The cache concurrency strategy
defines the transaction isolation details for entity data, collection elements, and

Enabling reference storage for immutable data
Hibernate holds data in the second-level entity cache as a copy in a disassembled
format and reassembles it when read from the cache. Copying data is an expensive
operation; so, as an optimization, Hibernate allows you to specify that immutable
data may be stored as is rather than copied into the second-level cache. This is
useful for reference data. Let’s say you have a City entity class with the properties
zipcode and name, annotated @Immutable. If you enable the configuration property
hibernate.cache.use_reference_entries in your persistence unit, Hibernate will
try to (and can’t in some special cases) to store a reference of City directly in the
second-level data cache. One caveat is that if you accidentally modify an instance of
City in your application, the change will effectively write-through to all concurrent
users of the (local) cache region, because they all get the same reference.

JVM

Cache
Region

Cache
Region

Cache
Region

Cache
Region

Cache
Region

Second Level

Persistence
Context

Thread

Cache
Concurrency

Strategy

Query
Result
Cache

Cache
Provider

First Level

Persistence
Context

Thread

Persistence
Context

Thread Database

Entity
Data

Collection
Elements

JVM

JVM

Natural
Identifer

Cache
Provider

Cache
Provider

Figure 20.1 Hibernate’s
two-level cache
architecture
Licensed to Thomas Snead <n.ordickan@gmail.com>

547Caching data
natural identifier caches. Whenever an entry is stored or loaded in these caches,
Hibernate will coordinate access with the configured strategy. Picking the right cache
concurrency strategy for entity classes and their collections can be challenging, and
we’ll guide you through the process with several examples later on.

 The query result cache also has its own, internal strategy for handling concurrent
access and keeping the cached results fresh and coordinated with the database. We
show you how the query cache works and for which queries it makes sense to enable
result caching.

 The cache provider implements the physical caches as a pluggable system. For now,
Hibernate forces you to choose a single cache provider for the entire persistence unit.
The cache provider is responsible for handling physical cache regions—the buckets
where the data is held on the application tier (in memory, in indexed files, or even
replicated in a cluster). The cache provider controls expiration policies, such as when
to remove data from a region by timeout, or keeping only the most-recently used data
when the cache is full. The cache provider implementation may be able to communi-
cate with other instances in a cluster of JVMs, to synchronize data in each instance’s
buckets. Hibernate itself doesn’t handle any clustering of caches; this is fully dele-
gated to the cache provider engine.

 In this section, you set up caching on a single JVM with the Ehcache provider, a sim-
ple but very powerful caching engine (originally developed for Hibernate specifically
as the easy Hibernate cache). We only cover some of Ehcache’s basic settings; consult its
manual for more information.

 Frequently, the first question many developers have about the Hibernate caching
system is, “Will the cache know when data is modified in the database?” Let’s try to
answer this question before you get hands-on with cache configuration and usage.

CACHING AND CONCURRENCY

If an application does not have exclusive access to the database, shared caching should
only be used for data that changes rarely and for which a small window of inconsis-
tency is acceptable after an update. When another application updates the database,
your cache may contain stale data until it expires. The other application may be a
database-triggered stored procedure or even an ON DELETE or ON UPDATE foreign key
option. There is no way for Hibernate’s cache system to know when another applica-
tion or trigger updates the data in the database; the database can’t send your applica-
tion a message. (You could implement such a messaging system with database triggers
and JMS, but doing so isn’t exactly trivial.) Therefore, using caching depends on the
type of data and the freshness of the data required by your business case.

 Let’s assume for a moment that your application has exclusive access to the data-
base. Even then, you must ask the same questions as a shared cache makes data
retrieved from the database in one transaction visible to another transaction. What
transaction isolation guarantees should the shared cache provide? The shared cache
will affect the isolation level of your transactions, whether you read only committed
data or if reads are repeatable. For some data, it may be acceptable that updates by one
application thread aren’t immediately visible by other application threads, providing
Licensed to Thomas Snead <n.ordickan@gmail.com>

548 CHAPTER 20 Scaling Hibernate
an acceptable window of inconsistency. This would allow a much more efficient and
aggressive caching strategy.

 Start this design process with a diagram of your domain model, and look at the
entity classes. Good candidates for caching are classes that represent

 Data that changes rarely
 Noncritical data (for example, content-management data)
 Data that’s local to the application and not modified by other applications

Bad candidates include

 Data that is updated often
 Financial data, where decisions must be based on the latest update
 Data that is shared with and/or written by other applications

These aren’t the only rules we usually apply. Many applications have a number of
classes with the following properties:

 A small number of instances (thousands, not millions) that all fit into memory
 Each instance referenced by many instances of another class or classes
 Instances that are rarely (or never) updated

We sometimes call this kind of data reference data. Examples of reference data are Zip
codes, locations, static text messages, and so on. Reference data is an excellent candi-
date for shared caching, and any application that uses reference data heavily will ben-
efit greatly from caching that data. You allow the data to be refreshed when the cache
timeout period expires, and some small window of inconsistency is acceptable after an
update. In fact, some reference data (such as country codes) may have an extremely
large window of inconsistency or may be cached eternally if the data is read-only.

 You must exercise careful judgment for each class and collection for which you
want to enable caching. You have to decide which concurrency strategy to use.

SELECTING A CACHE CONCURRENCY STRATEGY

A cache concurrency strategy is a mediator: it’s responsible for storing items of data in
the cache and retrieving them from the cache. This important role defines the trans-
action isolation semantics for that particular item. You’ll have to decide, for each per-
sistent class and collection, which cache concurrency strategy to use if you want to
enable the shared cache.

 The four built-in Hibernate concurrency strategies represent decreasing levels of
strictness in terms of transaction isolation:

 TRANSACTIONAL—Available only in environments with a system transaction man-
ager, this strategy guarantees full transactional isolation up to repeatable read, if
supported by the cache provider. With this strategy, Hibernate assumes that the
cache provider is aware of and participating in system transactions. Hibernate
doesn’t perform any kind of locking or version checking; it relies solely on the
cache provider’s ability to isolate data in concurrent transactions. Use this strat-
egy for read-mostly data where it’s critical to prevent stale data in concurrent
Licensed to Thomas Snead <n.ordickan@gmail.com>

549Caching data
transactions, in the rare case of an update. This strategy also works in a cluster if
the cache provider engine supports synchronous distributed caching.

 READ_WRITE—Maintains read committed isolation where Hibernate can use a
time-stamping mechanism; hence, this strategy only works in a non-clustered
environment. Hibernate may also use a proprietary locking API offered by the
cache provider. Enable this strategy for read-mostly data where it’s critical to
prevent stale data in concurrent transactions, in the rare case of an update. You
shouldn’t enable this strategy if data is concurrently modified (by other applica-
tions) in the database.

 NONSTRICT_READ_WRITE—Makes no guarantee of consistency between the
cache and the database. A transaction may read stale data from the cache. Use
this strategy if data hardly ever changes (say, not every 10 seconds) and a win-
dow of inconsistency isn’t of critical concern. You configure the duration of the
inconsistency window with the expiration policies of your cache provider. This
strategy is usable in a cluster, even with asynchronous distributed caching. It
may be appropriate if other applications change data in the same database.

 READ_ONLY—Suitable for data that never changes. You get an exception if you
trigger an update. Use it for reference data only.

With decreasing strictness come increasing performance and scalability. A clustered
asynchronous cache with NONSTRICT_READ_WRITE can handle many more transactions
than a synchronous cluster with TRANSACTIONAL. You have to evaluate carefully the
performance of a clustered cache with full transaction isolation before using it in pro-
duction. In many cases, you may be better off not enabling the shared cache for a par-
ticular class, if stale data isn’t an option!

 You should benchmark your application with the shared cache disabled. Enable it
for good candidate classes, one at a time, while continuously testing the scalability of
your system and evaluating concurrency strategies. You must have automated tests
available to judge the impact of changes to your cache setup. We recommend that you
write these tests first, for the performance and scalability hotspots of your application,
before you enable the shared cache.

 With all this theory under your belt, it’s time to see how caching works in practice.
First, you configure the shared cache.

20.2.2 Configuring the shared cache

You configure the shared cache in your persistence.xml configuration file.

<persistence-unit name="CachePU">
 ...
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.cache.use_second_level_cache"

Listing 20.5 Shared cache configuration in persistence.xml

PATH: /model/src/main/resources/META-INF/persistence.xml

Shared
cache mode

B

Licensed to Thomas Snead <n.ordickan@gmail.com>

550 CHAPTER 20 Scaling Hibernate

le

s

 value="true"/>
 <property name="hibernate.cache.use_query_cache"
 value="true"/>

 <property name="hibernate.cache.region.factory_class"
 value="org.hibernate.cache.ehcache.
 ➥SingletonEhCacheRegionFactory"/>

 <property name="net.sf.ehcache.configurationResourceName"
 value="/cache/ehcache.xml"/>

 <property name="hibernate.cache.use_structured_entries"
 value="false"/>

 <property name="hibernate.generate_statistics"
 value="true"/>
 </properties>
</persistence-unit>

B The shared cache mode controls how entity classes of this persistence unit become
cacheable. Usually you prefer to enable caching selectively for only some entity
classes. Options: DISABLE_SELECTIVE, ALL, and NONE.

C Hibernate’s second-level cache system has to be enabled explicitly; it isn’t enabled by
default. You can separately enable the query result cache; it’s disabled by default as
well.

D Pick a provider for the second-level cache system. For Ehcache, add the org.hibernate
:hibernate-ehcache Maven artifact dependency to your classpath. Then, choose how
Hibernate uses Ehcache with this region factory setting; here you tell Hibernate to man-
age a single Ehcache instance internally as the second-level cache provider.

E Hibernate passes this property to Ehcache when the provider is started, setting the
location of the Ehcache configuration file. All physical cache settings for cache
regions are in this file.

F This controls how Hibernate disassembles and assembles entity state when data is
stored and loaded from the second-level cache. The structured cache entry format is
less efficient but necessary in a clustered environment. For a nonclustered second-
level cache like the singleton Ehcache on this JVM, you can disable this setting and use
a more efficient format.

G When you experiment with the second-level cache, you usually want to see what’s hap-
pening behind the scenes. Hibernate has a statistics collector and an API to access
these statistics. For performance reasons, it’s disabled by default (and should be dis-
abled in production).

The second-level cache system is now ready, and Hibernate will start Ehcache when
you build an EntityManagerFactory for this persistence unit. Hibernate won’t cache
anything by default, though; you have to enable caching selectively for entity classes
and their collections.

Enables second-
level cacheCSecond-

vel cache
provider

D

Configuration
file locationE

Controls
assembly of
entity stateF

Gets
tatistics

G

Licensed to Thomas Snead <n.ordickan@gmail.com>

551Caching data

H

20.2.3 Enabling entity and collection caching

We now look at entity classes and collections of the CaveatEmptor domain model and
enable caching with the right concurrency strategy. In parallel, you’ll configure the
necessary physical cache regions in the Ehcache configuration file.

 First the User entity: this data rarely changes, but, of course, a user may change
their user name or address from time to time. This isn’t critical data in a financial
sense; few people make buying decisions based on a user’s name or address. A small
window of inconsistency is acceptable when a user changes name or address informa-
tion. Let’s say there is no problem if, for a maximum of one minute, the old informa-
tion is still visible in some transactions. This means you can enable caching with the
NONSTRICT_READ_WRITE strategy:

@Entity
@Table(name = "USERS")
@Cacheable
@org.hibernate.annotations.Cache(
 usage = org.hibernate.annotations
 .CacheConcurrencyStrategy.NONSTRICT_READ_WRITE,
 region = "org.jpwh.model.cache.User"
)
@org.hibernate.annotations.NaturalIdCache
public class User {

 @NotNull
 @org.hibernate.annotations.NaturalId(mutable = true)
 @Column(nullable = false)
 protected String username;

 // ...
}

The @Cacheable annotation enables the shared cache for this entity class, but a Hiber-
nate annotation is necessary to pick the concurrency strategy. Hibernate stores and
loads User entity data in the second-level cache, in a cache region named your.package
.name.User. You can override the name with the region attribute of the @Cache anno-
tation. (Alternatively, you can set a global region name prefix with the hibernate
.cache.region_prefix property in the persistence unit.)

 You also enable the natural identifier cache for the User entity with @org.hibernate
.annotations.NaturalIdCache. The natural identifier properties are marked with
@org.hibernate.annotations.NaturalId, and you have to tell Hibernate whether the
property is mutable. This enables you to look up User instances by username without
hitting the database.

 Next, configure the cache regions for both the entity data and the natural identi-
fier caches in Ehcache:

PATH: /model/src/main/java/org/jpwh/model/cache/User.java

Default name

Ignored for schema generation
because of @NaturalId

Makes it UNIQUE
For schema
generation

ibernate Feature
Licensed to Thomas Snead <n.ordickan@gmail.com>

552 CHAPTER 20 Scaling Hibernate

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://ehcache.org/ehcache.xsd">

 <cache name="org.jpwh.model.cache.User"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="30"
 timeToLiveSeconds="60"/>

 <cache name="org.jpwh.model.cache.User##NaturalId"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="30"
 timeToLiveSeconds="60"/>

</ehcache>

You can store a maximum 500 entries in both caches, and Ehcache won’t keep them
eternally. Ehcache will remove an element if it hasn’t been accessed for 30 seconds
and will remove even actively accessed entries after 1 minute. This guarantees that
your window of inconsistency from cache reads is never more than 1 minute. In other
words, the cache region(s) will hold up to the 500 most-recently used user accounts,
none older than 1 minute, and shrink automatically.

 Let’s move on to the Item entity class. This data changes frequently, although you
still have many more reads than writes. If the name or description of an item is
changed, concurrent transactions should see this update immediately. Users make
financial decisions, whether to buy an item, based on the description of an item.
Therefore, READ_WRITE is an appropriate strategy:

@Entity
@Cacheable
@org.hibernate.annotations.Cache(
 usage = org.hibernate.annotations.CacheConcurrencyStrategy.READ_WRITE
)
public class Item {

 // ...
}

Hibernate will coordinate reads and writes when Item changes are made, ensuring
that you can always read committed data from the shared cache. If another applica-
tion is modifying Item data directly in the database, all bets are off! You configure the
cache region in Ehcache to expire the most-recently used Item data after one hour, to
avoid filling up the cache bucket with stale data:

PATH: /model/src/main/resources/cache/ehcache.xml

PATH: /model/src/main/java/org/jpwh/model/cache/Item.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

553Caching data

<cache name="org.jpwh.model.cache.Item"
 maxElementsInMemory="5000"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"/>

Consider the bids collection of the Item entity class: A particular Bid in the Item#bids
collection is immutable, but the collection itself is mutable, and concurrent units of
work need to see any addition or removal of a collection element immediately:

public class Item {

 @OneToMany(mappedBy = "item")
 @org.hibernate.annotations.Cache(
 usage = org.hibernate.annotations.CacheConcurrencyStrategy.READ_WRITE
)
 protected Set<Bid> bids = new HashSet<>();

 // ...
}

You configure the cache region with the same settings as for the entity class owning
the collection, because each Item has one bids collection:

<cache name="org.jpwh.model.cache.Item.bids"
 maxElementsInMemory="5000"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"/>

It’s critical to remember that the collection cache will not contain the actual Bid data.
The collection cache only holds a set of Bid identifier values. Therefore, you must
enable caching for the Bid entity as well. Otherwise, Hibernate may hit the cache
when you start iterating through Item#bids, but then, due to cache misses, load each
Bid separately from the database. This is a case where enabling the cache will result in
more load on your database server!

 We’ve said that Bids are immutable, so you can cache this entity data as READ_ONLY:

@Entity
@org.hibernate.annotations.Immutable
@Cacheable
@org.hibernate.annotations.Cache(
 usage = CacheConcurrencyStrategy.READ_ONLY

PATH: /model/src/main/resources/cache/ehcache.xml

PATH: /model/src/main/java/org/jpwh/model/cache/Item.java

PATH: /model/src/main/resources/cache/ehcache.xml

PATH: /model/src/main/java/org/jpwh/model/cache/Bid.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

554 CHAPTER 20 Scaling Hibernate
)
public class Bid {

 // ...
}

Even though Bids are immutable, you should configure an expiration policy for the
cache region, to prevent old bid data from clogging up the cache eternally:

<cache name="org.jpwh.model.cache.Bid"
 maxElementsInMemory="100000"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"/>

You’re now ready to test the cache and explore Hibernate’s caching behavior.

20.2.4 Testing the shared cache

Hibernate’s transparent caching behavior can be difficult to analyze. The API for load-
ing and storing data is still the EntityManager, with Hibernate automatically writing
and reading data in the cache. Of course, you can see actual database access by log-
ging Hibernate’s SQL statements, but you should familiarize yourself with the org
.hibernate.stat.Statistics API to obtain more information about a unit of work
and see what’s going on behind the scenes. Let’s run through some examples to see
how this works.

 You enabled the statistics collector earlier in the persistence unit configuration, in
section 20.2.2. You access the statistics of the persistence unit on the org.hibernate
.SessionFactory:

Statistics stats =
 JPA.getEntityManagerFactory()
 .unwrap(SessionFactory.class)
 .getStatistics();

SecondLevelCacheStatistics itemCacheStats =
 stats.getSecondLevelCacheStatistics(Item.class.getName());
assertEquals(itemCacheStats.getElementCountInMemory(), 3);
assertEquals(itemCacheStats.getHitCount(), 0);

Here, you also get statistics for the data cache region for Item entities, and you can see
that there are several entries already in the cache. This is a warm cache; Hibernate
stored data in the cache when the application saved Item entity instances. However,
the entities haven’t been read from the cache, and the hit count is zero.

PATH: /model/src/main/resources/cache/ehcache.xml

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

555Caching data

Co
 When you now look up an Item instance by identifier, Hibernate attempts to read
the data from the cache and avoids executing an SQL SELECT statement:

Item item = em.find(Item.class, ITEM_ID);
assertEquals(itemCacheStats.getHitCount(), 1);

You also have some User entity data in the cache, so initializing the Item#seller
proxy hits the cache, too:

SecondLevelCacheStatistics userCacheStats =
 stats.getSecondLevelCacheStatistics(User.class.getName());
assertEquals(userCacheStats.getElementCountInMemory(), 3);
assertEquals(userCacheStats.getHitCount(), 0);

User seller = item.getSeller();
assertEquals(seller.getUsername(), "johndoe");

assertEquals(userCacheStats.getHitCount(), 1);

When you iterate through the Item#bids collection, Hibernate uses the cache:

SecondLevelCacheStatistics bidsCacheStats =
 stats.getSecondLevelCacheStatistics(Item.class.getName() + ".bids");
assertEquals(bidsCacheStats.getElementCountInMemory(), 3);
assertEquals(bidsCacheStats.getHitCount(), 0);

SecondLevelCacheStatistics bidCacheStats =
 stats.getSecondLevelCacheStatistics(Bid.class.getName());
assertEquals(bidCacheStats.getElementCountInMemory(), 5);
assertEquals(bidCacheStats.getHitCount(), 0);

Set<Bid> bids = item.getBids();
assertEquals(bids.size(), 3);

assertEquals(bidsCacheStats.getHitCount(), 1);
assertEquals(bidCacheStats.getHitCount(), 3);

B The statistics tell you that there are three Item#bids collections in the cache (one for
each Item). No successful cache lookups have occurred so far.

C The entity cache of Bid has five records, and you haven’t accessed it either.

D Initializing the collection reads the data from both caches.

E The cache found one collection as well as the data for its three Bid elements.

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

Initializes proxy

B

Counts
Item#bids
collections

unts
Bids C

Reads cachesD

Cache resultsE
Licensed to Thomas Snead <n.ordickan@gmail.com>

556 CHAPTER 20 Scaling Hibernate
The special natural identifier cache for Users is not completely transparent. You need
to call a method on the org.hibernate.Session to perform a lookup by natural
identifier:

NaturalIdCacheStatistics userIdStats =
 stats.getNaturalIdCacheStatistics(User.class.getName() + "##NaturalId");
assertEquals(userIdStats.getElementCountInMemory(), 1);

User user = (User) session.byNaturalId(User.class)
 .using("username", "johndoe")
 .load();

assertNotNull(user);

assertEquals(userIdStats.getHitCount(), 1);

SecondLevelCacheStatistics userStats =
 stats.getSecondLevelCacheStatistics(User.class.getName());
assertEquals(userStats.getHitCount(), 1);

B The natural identifier cache region for Users has one element.

C The org.hibernate.Session API performs natural identifier lookup; this is the only
API for accessing the natural identifier cache.

D You had a cache hit for the natural identifier lookup. The cache returned the identi-
fier value “johndoe”.

E You also had a cache hit for the entity data of that User.

The statistics API offers much more information than we’ve shown in these simple
examples; we encourage you to explore this API further. Hibernate collects informa-
tion about all its operations, and these statistics are useful for finding hotspots such as
the queries taking the longest time and the entities and collections most accessed.

As mentioned at the beginning of this section, Hibernate transparently writes and
reads the cached data. For some procedures, you need more control over cache
usage, and you may want to bypass the caches explicitly. This is where cache modes
come into play.

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

Counts UsersB

Natural
identifier
lookupC

Natural
identifier hit

D

Entity hitE

Accessing statistics with JMX
You can analyze Hibernate statistics at runtime through the standard Java Manage-
ment Extension (JMX) system. Bind the Hibernate Statistics object as an MBean;
this is only a few lines of code with a dynamic proxy. We’ve included an example in
org.jpwh.test.cache.SecondLevel.
Licensed to Thomas Snead <n.ordickan@gmail.com>

557Caching data
20.2.5 Setting cache modes

JPA standardizes control of the shared cache with several cache modes. The following
EntityManager#find() operation, for example, doesn’t attempt a cache lookup and
hits the database directly:

Map<String, Object> properties = new HashMap<String, Object>();
properties.put("javax.persistence.cache.retrieveMode",

CacheRetrieveMode.BYPASS);
Item item = em.find(Item.class, ITEM_ID, properties);

The default CacheRetrieveMode is USE; here, you override it for one operation with
BYPASS.

 A more common usage of cache modes is the CacheStoreMode. By default, Hiber-
nate puts entity data in the cache when you call EntityManager#persist(). It also
puts data in the cache when you load an entity instance from the database. But if you
store or load a large number of entity instances, you may not want to fill up the avail-
able cache. This is especially important for batch procedures, as we showed earlier in
this chapter.

 You can disable storage of data in the shared entity cache for the entire unit of
work by setting a CacheStoreMode on the EntityManager:

em.setProperty("javax.persistence.cache.storeMode", CacheStoreMode.BYPASS);

Item item = new Item(
 // ...
);

em.persist(item);

Let’s look at the special cache mode CacheStoreMode.REFRESH. When you load an
entity instance from the database with the default CacheStoreMode.USE, Hibernate
first asks the cache whether it already has the data of the loaded entity instance. Then,
if the cache already contains the data, Hibernate doesn’t put the loaded data into the
cache. This avoids a cache write, assuming that cache reads are cheaper. With the
REFRESH mode, Hibernate always puts loaded data into the cache without first query-
ing the cache

 In a cluster with synchronous distributed caching, writing to all cache nodes is usu-
ally a very expensive operation. In fact, with a distributed cache, you should set the
configuration property hibernate.cache.use_minimal_puts to true. This optimizes
second-level cache operation to minimize writes, at the cost of more frequent reads.
If, however, there is no difference for your cache provider and architecture between

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

Hits database

Not stored in cache
Licensed to Thomas Snead <n.ordickan@gmail.com>

558 CHAPTER 20 Scaling Hibernate
reads and writes, you may want to disable the additional read with CacheStore-
Mode.REFRESH. (Note that some cache providers in Hibernate may set use_minimal_
puts: for example, with Ehcache this setting is enabled by default.)

 Cache modes, as you’ve seen, can be set on the find() operation and for the
entire EntityManager. You can also set cache modes on the refresh() operation and
on individual Querys as hints, as discussed in section 14.5. The per-operation and per-
query settings override the cache mode of the EntityManager.

 The cache mode only influences how Hibernate works with the caches internally.
Sometimes you want to control the cache system programmatically: for example, to
remove data from the cache.

20.2.6 Controlling the shared cache

The standard JPA interface for controlling the caches is the Cache API:

EntityManagerFactory emf = JPA.getEntityManagerFactory();
Cache cache = emf.getCache();

assertTrue(cache.contains(Item.class, ITEM_ID));
cache.evict(Item.class, ITEM_ID);
cache.evict(Item.class);
cache.evictAll();

This is a simple API, and it only allows you to access cache regions of entity data. You
need the org.hibernate.Cache API to access the other cache regions, such as the col-
lection and natural identifier cache regions:

org.hibernate.Cache hibernateCache =
 cache.unwrap(org.hibernate.Cache.class);

assertFalse(hibernateCache.containsEntity(Item.class, ITEM_ID));
hibernateCache.evictEntityRegions();
hibernateCache.evictCollectionRegions();
hibernateCache.evictNaturalIdRegions();
hibernateCache.evictQueryRegions();

You’ll rarely need these control mechanisms. Also, note that eviction of the second-
level cache is nontransactional: that is, Hibernate doesn’t lock the cache regions dur-
ing eviction.

 Let’s move on to the last part of the Hibernate caching system: the query result cache.

20.2.7 The query result cache

The query result cache is by default disabled, and every JPA, criteria, or native SQL
query you write always hits the database first. In this section, we show you why Hiber-
nate disables the query cache by default and then how to enable it for particular que-
ries when needed.

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java
Licensed to Thomas Snead <n.ordickan@gmail.com>

559Caching data
 The following procedure executes a JPQL query and stores the result in a special
cache region for query results:

String queryString = "select i from Item i where i.name like :n";

Query query = em.createQuery(queryString)
 .setParameter("n", "I%")
 .setHint("org.hibernate.cacheable", true);

List<Item> items = query.getResultList();
assertEquals(items.size(), 3);

QueryStatistics queryStats = stats.getQueryStatistics(queryString);
assertEquals(queryStats.getCacheHitCount(), 0);
assertEquals(queryStats.getCacheMissCount(), 1);
assertEquals(queryStats.getCachePutCount(), 1);

SecondLevelCacheStatistics itemCacheStats =
 stats.getSecondLevelCacheStatistics(Item.class.getName());
assertEquals(itemCacheStats.getElementCountInMemory(), 3);

B You have to enable caching for a particular query. Without the org.hibernate
.cachable hint, the result won’t be stored in the query result cache.

C Hibernate executes the SQL query and retrieves the result set into memory.

D Using the statistics API, you can find out more details. This is the first time you execute
this query, so you get a cache miss, not a hit. Hibernate puts the query and its result
into the cache. If you run the same query again, the result will be from the cache.

E The entity instance data retrieved in the result set is stored in the entity cache region,
not in the query result cache.

The org.hibernate.cachable hint is set on the Query API, so it also works for criteria
and native SQL queries. Internally, the cache key is the SQL Hibernate uses to access the
database, with arguments rendered into the string where you had parameter markers.

 The query result cache doesn’t contain the entire result set of the SQL query. In
the last example, the SQL result set contained rows from the ITEM table. Hibernate
ignores most of the information in this result set; only the ID value of each ITEM
record is stored in the query result cache. The property values of each Item are stored
in the entity cache region.

 Now, when you execute the same query again, with the same argument values for
its parameters, Hibernate first accesses the query result cache. It retrieves the identi-
fier values of the ITEM records from the cache region for query results. Then, Hiber-
nate looks up and assembles each Item entity instance by identifier from the entity
cache region. If you query for entities and decide to enable caching, make sure you
also enable regular data caching for these entities. If you don’t, you may end up with
more database hits after enabling the query result cache!

PATH: /examples/src/test/java/org/jpwh/test/cache/SecondLevel.java

Enables cachingB

Executes queryC

Gets
detailsD

Stores data in
entity cacheE
Licensed to Thomas Snead <n.ordickan@gmail.com>

560 CHAPTER 20 Scaling Hibernate
 If you cache the result of a query that doesn’t return entity instances but returns
only scalar or embeddable values (for example, select i.name from Item i or select
u.homeAddress from User), the values are held in the query result cache region
directly.

 The query result cache uses two physical cache regions:

<cache name="org.hibernate.cache.internal.StandardQueryCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"/>

<cache name="org.hibernate.cache.spi.UpdateTimestampsCache"
 maxElementsInMemory="50"
 eternal="true"/>

The first cache region is where the query results are stored. You should let the cache
provider expire the most-recently used result sets over time, such that the cache uses
the available space for recently executed queries.

 The second region, org.hibernate.cache.spi.UpdateTimestampsCache, is spe-
cial: Hibernate uses this region to decide whether a cached query result set is stale.
When you re-execute a query with caching enabled, Hibernate looks in the timestamp
cache region for the timestamp of the most recent insert, update, or delete made to
the queried table(s). If the timestamp found is later than the timestamp of the cached
query results, Hibernate discards the cached results and issues a new database query.
This effectively guarantees that Hibernate won’t use the cached query result if any
table that may be involved in the query contains updated data; hence, the cached
result may be stale. You should disable expiration of the update timestamp cache so
that the cache provider never removes an element from this cache. The maximum
number of elements in this cache region depends on the number of tables in your
mapped model.

 The majority of queries don’t benefit from result caching. This may come as a sur-
prise. After all, it sounds like avoiding a database hit is always a good thing. There are
two good reasons this doesn’t always work for arbitrary queries, compared to entity
retrieval by identifier or collection initialization.

 First, you must ask how often you’re going to execute the same query repeatedly,
with the same arguments. Granted, your application may execute a few queries repeat-
edly with exactly the same arguments bound to parameters and the same automatically
generated SQL statement. We consider this a rare case, but when you’re certain you’re
executing a query repeatedly, it becomes a good candidate for result set caching.

 Second, for applications that perform many queries and few inserts, deletes, or
updates, caching query results can improve performance and scalability. On the other
hand, if the application performs many writes, Hibernate won’t use the query result

PATH: /model/src/main/resources/cache/ehcache.xml
Licensed to Thomas Snead <n.ordickan@gmail.com>

561Summary
cache efficiently. Hibernate expires a cached query result set when there is any insert,
update, or delete of any row of a table that appears in the cached query result. This
means cached results may have a short lifetime, and even if you execute a query
repeatedly, Hibernate won’t use cached results due to concurrent modifications of
rows in the tables referenced by the query.

 For many queries, the benefit of the query result cache is nonexistent or, at least,
doesn’t have the impact you’d expect. But if your query restriction is on a unique nat-
ural identifier, such as select u from User u where u.username = ?, you should con-
sider natural identifier caching and lookup as shown earlier in this chapter.

20.3 Summary
 You saw options you need to scale up your application and handle many con-

current users and larger data sets.
 With bulk UPDATE and DELETE operations, you can modify data directly in the

database and still benefit from JPQL and criteria APIs without falling back to SQL.
 You learned about batch operations that let you work with large numbers of

records in the application tier.
 We discussed the Hibernate caching system in detail: how you can selectively

enable and optimize shared caching of entity, collection, and query result data.
 You configured Ehcache as a cache provider and learned how to peek under

the hood with the Hibernate statistics API.
Licensed to Thomas Snead <n.ordickan@gmail.com>

562

references
 Ambler, Scott W. 2002. “Data Modeling 101.” Agile Data. www.agiledata.org/essays/

dataModeling101.html.

 Bernard, Emmanuel. 2008. Hibernate Search in Action. Manning Publications.

 Bloch, Joshua. 2008. Effective Java, 2nd ed. Prentice Hall.

 Booch, Grady, James Rumbaugh, and Ivar Jacobson. 2005. The Unified Modeling Language User Guide,
2nd ed. Addison-Wesley Professional.

 Codd, E.F. 1970. “A Relational Model of Data for Large Shared Data Banks.” Communications of the
ACM 13 (6): 377-87. www.acm.org/classics/nov95/toc.html.

 Date, C.J. 2003. An Introduction to Database Systems, 8th ed. Addison-Wesley.

 ———. 2009. SQL and Relational Theory. O’Reilly Media.

 Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional.

 ———. 2003. Patterns of Enterprise Application Architecture. Addison-Wesley Professional.

 Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional.

 Karwin, Bill. 2010. SQL Antipatterns: Avoiding the Pitfalls of Database Programming. The Pragmatic Book-
shelf.

 Morgan, Timothy D. 2010. Weaning the Web off of Session Cookies: Making Digest Authentication Viable. Vir-
tual Security Research. www.vsecurity.com/download/papers/
WeaningTheWebOffOfSessionCookies.pdf.

 Pascal, Fabian. 2000. Practical Issues in Database Management: A Reference for the Thinking Practitioner.
Addison-Wesley Professional.

 Richardson, Leonard, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs. O’Reilly Media.

 Shute, Jeff, et al. 2012. “F1 - The Fault-Tolerant Distributed RDBMS Supporting Google’s Ad Busi-
ness.” Research at Google. http://research.google.com/pubs/pub38125.html.

 Tow, Dan. 2003. SQL Tuning. O’Reilly Media.

 Walls, Craig, and Norman Richards. 2004. XDoclet in Action. Manning Publications.

 Watterson, Bill. 1992. The Indispensable Calvin and Hobbes: A Calvin and Hobbes Treasury. Andrews
McMeel Publishing.

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.agiledata.org/essays/ dataModeling101.html
www.agiledata.org/essays/ dataModeling101.html
www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf
http://research.google.com/pubs/pub38125.html
www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

 index

Symbols

- 378
_ 376
. 378
(JPQL) 346
@Access 84
@AssociationOverride 190

foreignKey 214
@AttributeOverride 96, 119, 155, 190
@AttributeOverrides 95, 119, 225
@Basic 83
@Cache 551
@Cacheable 551
@CollectionId 192
@CollectionTable 154

foreignKey 214
@Column 83
@ColumnDefault 88
@ConversationScoped 516
@Convert 106

grouping 108
syntax for persistent maps 108

@Converts 108
@CreationTimestamp 89
@DiscriminatorColumn 124
@DiscriminatorFormula 125–128
@DiscriminatorValue 122–125
@ElementCollection 145, 154, 451
@Embeddable 93
@EmbeddedId 195
@Entity 66
@EntityGraph 306
@EntityListeners 323
@Enumerated 90
@ExcludeDefaultListeners 324
@ExcludeSuperclassListeners 324

@FetchProfile 306
@ForeignKey

ConstraintMode 214
foreignKeyDefinition 214

@GeneratedValue 69, 541
@GenericGenerator 178
@Id 67
@Inheritance 120–122
@javax.ejb.TransactionAttribute 261
@javax.enterprise.context.ApplicationScoped

500
@javax.persistence.OrderBy 151
@javax.persistence.SequenceGenerator 70
@javax.persistence.Table 75
@javax.persistence.TableGenerator 70
@javax.persistence.Transient 83
@javax.transaction.Transactional 261
@JoinColumn 162, 179

foreignKey 213
referencedColumnName 223

@JoinColumns 222–223
@JoinTable 182

foreignKey 214
@Lob 101
@ManyToMany 191–192
@ManyToOne 162, 166, 183
@MapKey 200
@MapKeyClass 143
@MapKeyColumn 148
@MapKeyEnumerated 148
@MapKeyJoinColumn 202

foreignKey 214
@MapKeyTemporal 148
@MappedSuperclass 118, 131
@MapsId 218
@NamedNativeQuery 361, 429
@NamedQueries 362
563

Licensed to Thomas Snead <n.ordickan@gmail.com>

564 INDEX
@NamedQuery 361
@NotAudited 331
@NotNull 83
@OnDelete 170
@OneToMany 164, 183
@OneToOne 175
@OrderBy 151, 155
@OrderColumn 147, 185
@org.hibernate.annotations 125
@org.hibernate.annotations.AttributeAccessor 86
@org.hibernate.annotations.Check 211
@org.hibernate.annotations.Columns 116
@org.hibernate.annotations.ColumnTransformer

87
@org.hibernate.annotations.DynamicUpdate 270
@org.hibernate.annotations.FetchProfile 306
@org.hibernate.annotations.FilterDefs 337
@org.hibernate.annotations.Filters 338
@org.hibernate.annotations.Formula 86, 405
@org.hibernate.annotations.Generated 88
@org.hibernate.annotations.GenericGenerator

70
@org.hibernate.annotations.Loader 448
@org.hibernate.annotations.NamedQueries 362
@org.hibernate.annotations.NamedQuery 362
@org.hibernate.annotations.Nationalized 99
@org.hibernate.annotations.NaturalId 551
@org.hibernate.annotations.NaturalIdCache 551
@org.hibernate.annotations.Optimistic-

Lock(excluded = true) 268
@org.hibernate.annotations.OptimisticLocking

269
@org.hibernate.annotations.OrderBy 150–151
@org.hibernate.annotations.Synchronize 80
@org.hibernate.annotations.Table 451
@org.hibernate.annotations.Type 114, 269
@org.hibernate.envers.Audited 331
@PathParam 525
@PersistenceContext 475
@PostLoad 322
@PostPersist 321–322
@PostRemove 323
@PostUpdate 322
@PrePersist 322
@PreRemove 167, 323
@PreUpdate 322
@PrimaryKeyJoinColumn 125–128, 175, 178

foreignKey 214
@Produces 525
@SecondaryTable 224, 450
@SQLDelete 450
@SQLDeleteAll 452
@SQLInsert 450
@SqlResultSetMapping 429
@SQLUpdate 450

@Table
indexes 214
uniqueConstraints 212

@Temporal 89
@Transactional 515
@TransactionAttribute 483
@UpdateTimestamp 89
@Version 266
@XmlAccessorType 526
@XmlRootElement 526
@XmlTransient 527
* 378
/ 378
% 376, 418
+ 378
< 378
<> 378
<entity-listener> 323
<exclude-default-listeners> 324
<exclude-superclass-listeners> 324
<named-native-query> 366
<named-query> 360, 366
<persistence-unit> 330
<sql-delete> 451
<sql-insert> 451
<sql-update> 451
<validation-mode> 51
= 378
> 378
>= 378

A

abs() 380
accessor methods 9, 39

adding logic 40
ACID attributes 255
addScalar() 443
addSynchronizedEntityClass() 539
aggregation 90
aggregation functions 389–391
aliases 371–372

mapping to bean properties 411–412
AliasToBeanResultTransformer 411
AliasToEntityMapResultTransformer 410
ALL 406
allowedAttributes 506
AND 378
and() 378
annotation processing tool (apt) 57
annotations

Hibernate extensions 47
overriding in XML 52

ANSI isolation levels 263–266
choosing 264–266
Licensed to Thomas Snead <n.ordickan@gmail.com>

565INDEX
ANY 406
application-assigned identifier 69
applySeekRestriction() 510
applySqlFunction() 389
asc() 382
association table. See join table
associations

eager loading of 294–295
many-to-one 162–163
mapping 161–171
one-to-many 163–164
polymorphic 135–138
properties 42
recursive 34
self-referencing 34

atomicity 255
Atomikos 256
AttributeConverter interface 105
attributes, embedded, overriding 94–95
audit logging, with Envers 331–332
audit trail, creating with Envers 332–333
AuditQuery 335
AuditReader 333
auto-commit mode 278–282

queueing modifications 281–282
reading data in 279–281

automated persistence 37–38
avg() 389

B

bags 146
of components 156–157
one-to-many 183–184
semantics 143

batch fetching 300–302
collections 301

batch processing 533, 539–544
BD_TYPE column 123
bean properties, mapping aliases to 411–412
Bean Validation 49–51

annotations 51
between() 375, 378
bidirectional list mappings 184–186
big_decimal 97
big_integer 97
BIGINT 97, 99
binary type 100
bit_length() 381
Bitronix 22, 256
BLOB 101
blob type 101
BOOLEAN 97
boolean 97
built-in types 97–103

bulk processing 533–544
bulk statements

JPQL and criteria 533–538
SQL 538–539

business keys 248–250
business layer 32
business method 9
business model 33
BusyConversationException 517
byte 97
bytecode enhancer 291

C

Cache 558
cache concurrency strategies 546, 548–549

built-in 548
cache modes 557–558
cache provider 547
CacheRetrieveMode 557
CacheStoreMode 557
caching 544–561

and concurrency 547–548
cache modes 557–558
cache provider 547
caching and concurrency 547–548
caching and concurrency, strategies 548–549
collection cache 545
concurrency strategies 548–549
entity and collection caching 551–554
entity data cache 545
in persistence context 243
modes 557–558
natural identifier cache 545
query result cache 545, 558–561
second-level cache 546–547
shared cache 549–550
shared cache architecture 545–549
shared cache, controlling 558
shared cache, testing 554–556

calendar type 99
calendar_date type 99
{call PROCEDURE} 465
CallableStatement 429
CallableStatement#getUpdateCount() 467
callbacks 321–324

life cycle annotations 322
candidate key 67
CAP theorem 7
Cartesian product 16
Cartesian product problem 297–299

solving 303–306
cascade option 165
CascadeType 166

CascadeType.ALL 314
Licensed to Thomas Snead <n.ordickan@gmail.com>

566 INDEX
CascadeType (continued)
CascadeType.DETACH 314
CascadeType.MERGE 314, 317
CascadeType.PERSIST 314, 317
CascadeType.REFRESH 314, 317
CascadeType.REMOVE 314
CascadeType.REPLICATE 319

cascading state changes 164–171, 313–320
options 314
refresh 317–318
replication 319–320

case/when expressions 388
CaveatEmptor 31–58

domain model 34–58
cb.createQuery() 371
CDI

contextual references 520
conversation scope 516–523
handling multiple persistence units 502
injecting an EntityManager 501–503
integrating with JPA 499–503
joining an EntityManager with transactions 501
producer 499
producing an EntityManager 499–500
qualifiers 502
serializing domain model data 524–531

CHAR 98
character type 98
cid 516
class type 98
classes, making embeddable 91–94
client/server applications 471–497

DAO pattern 474–475
DAO pattern, DAO entities 477–479
DAO pattern, interface 475–477
persistence layer 472–481
persistence layer, testing 479–481
stateful server 489–497
stateful server, analyzing applications 495
stateless server 481–489
stateless server, analyzing applications 488–489

CLOB 100
clob type 101
closed-world assumption (CWA) 203
coalesce() 387
collection cache 545
collection filters 414–416
collection handling 378–379
collection interfaces 142–144
collection properties 141–142
collection wrappers 289–290
collections

batch fetching 301
eager fetching in SQL 439, 441
eager loading of 294–295

filtering access 339–341
in embeddable classes 160–161
mapping 140–171
of components 152–161
operations, customizing 451–453
ordered 150–152
persistent, lazy-loading 289–290
polymorphic 137–138
prefetching with subselects 302–303
sorted 149–150
unmodifiable 45

column constraints 209–211
column transformers 86–87
common table expression (CTE) 446
comparison expressions 374–378
comparison operators 374, 378
components

bags of 156–157
collections of 152–161
converting properties 106–109
equality of instances 152–154
map keys 158–160
mapping values 157–158
set of 154–156

composed classes 90–97
composite key 68
composite primary keys 216–218
CompositeUserType 110
composition 90
concat() 380, 387
concerns, leakage 36
concurrency 254, 261–282

avoiding deadlocks 277–278
database-level 262–266
optimistic control 266–273

configuration by exception 82
ConstraintViolationException 210, 259
construct() 386, 411
containsKey() 290
containsValue() 290
ContextNotActiveException 521
Contexts and Dependency Injection (CDI).

See CDI
Conversation#begin() 521
Conversation#getId() 521
conversations 472–497

atomic 484, 495
identifier value 516
long-running 521–523
parallel 497
persistence context in 519–521
race conditions 489
savepoints 496
timeout setting 516
units of work as 481
Licensed to Thomas Snead <n.ordickan@gmail.com>

567INDEX
conversation-scoped services in JSF 516–523
converters

custom JPA 103–109
mapping types with 97–116

convertToDatabaseColumn() 108
core event system 329–330
correlated subqueries 405
count() 389–390, 420
countDistinct() 390
create script 205
createAlias() 420
createQuery() 506
createTupleQuery() 384
criteria API

applying ResultTransformer 421
bulk statements 533–538
nested 420

criteria query API 369–407, 416–425
aggregation 419–420
extending 418
joins 420–422
ordering 416–417
projection 419–420
quantification 422
query-by-example 423–425
restriction 417–419
selection 416–417
subselects 422–423

CriteriaBuilder#createQuery() 371
CriteriaDelete 536
CriteriaQuery 304
CriteriaUpdate 535
cross-cutting concerns 31
CRUD operations

custom loaders 448–449, 465
custom loaders, eager fetching in 453–455
customizing collection operations 451–453
customizing with SQL 448–455
stored procedures for creating, updating, and

deleting 466–468
using stored procedures for 464–468

currency type 98
current_date 380
current_time 380
current_timestamp 380
cursor, returning, with SQL 463–464

D

DAO pattern 474–475
DAO entities 477–479
interface 475–477

data
detached instances 245–247
domain model, serializing 524–531

filtering 312–341
making persistent 236–237
making transient 240–241
offset paging 507–508
offset paging vs. seeking 503–505
paging 503–512
paging in the persistence layer 505–510
persistent, retrieving and modifying 237–238
prefetching in batches 299–302
querying page by page 511–512
reading in auto-commit mode 279–281
reference data 548
refreshing 241
replicating 242
retrieving 283–311
seek paging 508–510
sorting 503–512

data access object (DAO) pattern.
See DAO pattern

data access, non-transactional 278–282
data caches. See caching
data filters, dynamic 337–341
data independence 5
data transfer objects (DTOs) 386
database constraints 209, 212–214
database identifier 37
database identity 66

@Id 67
expressing in mapping metadata 66–67

database schemas. See schemas
database transactions 256
DataException 259
DATE 99
date type 99
day() 381
DBMS 5
deadlocks, avoiding 277–278
declarative transaction demarcation 261
DefaultLoadEventListener 329
DELETE 536
deletion, transitive 166–167
delimited identifiers 75
derived identifier 220
desc() 382
detached instances 245–247
detached state 232, 245–252

equality methods 247–250
testing for equality 247
transitive detachment and merging 315–317

DetachedCriteria 417, 422
detaching entity instances 250–251
dialect scopes 207
Dialect#getResultSet(CallableStatement) 464
diff() 378
dirty checking 41

automatic 233
Licensed to Thomas Snead <n.ordickan@gmail.com>

568 INDEX
dirty reads 262
dirty state, detecting 238
discriminator columns 123
discriminator formula 125
DISTINCT 387, 399
distinct() 387, 399
distributed systems 7
domain constraints 208, 210–211
domain model 34

data, serializing 524–531
fine-grained 62
implementation 36

DOUBLE 97
double 97
double, java.lang.Double 97
drop script 205
duration type 99
dynamic instantiation 385–386
DynamicParameterizedType 110

E

eager fetching
dynamic 304–306
with multiple SELECTs 303–304

eager loading 284–295
associations and collections 294–295

Ehcache 547
EJBs

passivation 493
persistence context 495
stateful session beans 490
stateless session bean pool 477
transaction handling 495

elements() 381
em.createNativeQuery() 430
embeddable classes

inheritance 131–133
mapping to 197

embeddable components, mapping
annotations 93

embedded attributes, overriding 94–95
embedded classes, collections in 160–161
embedded components 90–97

nested, mapping 95–97
EmptyInterceptor 326
enhanced-sequence identifier generation

strategy 72
enhanced-sequence strategy 71
enhanced-table identifier generation strategy 73
EnhancedUserType 110
entities 62–65

distinguishing 64–65
making immutable 78
mapping to subselect 79–80

mapping with identity 65–74
naming 74–77
naming conventions 76–77
naming for querying 77

entity associations
advanced, mapping 172–202
mapping 140–171
with maps 200–202

entity classes 36, 66
@Id 67

entity data cache 545
entity graphs 306–311

as fetch graphs 311
as load graphs 308

entity instance states 231–232
detached state 232
detecting 236
persistent state 231
removed state 232
transient state 231

entity instances
creating 536–538
detaching 250–251
inserting in batches 539–541
merging 251–252
processing in batches 539–542
reattaching 252
updating and deleting 533–536
updating in batches 541–542

entity mapping options 74–80
entity types, vs. value types 63
entityAlias.id 403
EntityManager 24

and transaction management 257
application-managed 499
cache modes 558
container-managed 499
FlushModeType 244
injected, thread-safety of 478
injecting in CDI 501–503
introduction 20
joining with transactions in CDI 501
producing in CDI 499–500
serializing 493

EntityManager interface 234–245
EntityManager#clear() 243
EntityManager#close() 232
EntityManager#contains() 251
EntityManager#contains(e) 236
EntityManager#createNamedQuery() 347
EntityManager#createNativeQuery() 348, 429
EntityManager#createQuery() 346
EntityManager#detach(i) 243
EntityManager#find() 232, 557
EntityManager#flush() 235, 245
Licensed to Thomas Snead <n.ordickan@gmail.com>

569INDEX
EntityManager interface (continued)
EntityManager#getNamedQuery() 360
EntityManager#lock() 278
EntityManager#merge() 477
EntityManager#persist() 231, 539–540
EntityManager#refresh() 278
EntityManager#remove() 232

EntityManagerFactory 24, 234
EntityManagerFactory#addNamedQuery() 362
EntityManagerFactory#createEntityManager() 23

2, 258
EntityManagerProducer 500
EntityReference 530
EntityReferenceXMLReader 530
entry() 379
enumerations, mapping 89
Envers 330–337

accessing historical data 334–337
audit logging 331–332
AuditReader 333
creating an audit trail 332–333
finding revisions 333–334
introduction 20
projection 336

equal() 378
equality by value 12
equality methods, custom 247–250
equals() 247
equivalence 65
event listeners 321–324
events

core event system 329–330
listeners and callbacks 321–324
listening to and intercepting 321–330

exceptions, handling 258–261
excludeNone() 424
excludeProperty() 424
excludeZeroes() 424
execute() 458
executeUpdate() 462
EXISTS 406–407
extension points 110

F

FETCH 399
fetch plans

default 284
lazy default 287

fetch profiles 306–311
declaring 306–307

fetch strategies, selecting 296–306
fetch() 399
fetching, dynamic, with joins 398–401
FetchType.EAGER 294

filename, representing with custom type 159
find() 237

cache modes 558
findDirty() 238
finder methods 474
first-level cache 233
FLOAT 97
float 97
flushing 233

flush() 282
FlushMode.MANUAL 282
FlushModeType 244
persistence context 244–245

foreign key constraints 213
foreign key join column 179–180
foreign keys

in composite primary keys 218–221
referencing non-primary keys 222–223
to composite primary keys 221–222

foreign primary key generator 176–178
formulas, as discriminator 122–125
forRevisionsOfEntity() 334
FROM 370
from() 370, 372
function() 388
functions

aggregation 389–391
calling in projections 387–389
calling in queries 380–382

G

ge() 378
GenericDAOImpl 477
getCause() 259
getCriteriaBuilder() 347
getCurrent() 458
getCurrentSession() 28
getEntityType() 372
getErrorCode() 259
getExecutableCriteria() 417
getFilterDefinition() 339
getForUpdateNowaitString() 276
getRangeStartInteger() 508
getReadLockString() 275
getResultList() 355, 463
getSingleResult() 349, 356
getSQL() 259
getSQLException() 259
getter 39
getUpdateCount() 462
getWriteLockString() 275
global transitive persistence 320
granularity, definition 10
greaterThan() 375, 378
Licensed to Thomas Snead <n.ordickan@gmail.com>

570 INDEX
greaterThanEqual() 378
GROUP BY 391–392
gt() 375, 378
guid identifier generation strategy 74

H

H Factor 524
hashCode() 247
HAVING, restriction on groups 392
hbm.xml 85, 207
“Hello World” with JPA 20, 26
helper classes 33
Hibernate

adding SQL functions on boot 389
benefits of 17
cache modes 557–558
collection filters 414–416
criteria query API 416–425
data caches 544–561
data caching and concurrency 547–548
data caching and concurrency, strategies

548–549
entity and collection caching 551–554
Envers. See Envers
extending with UserTypes 109–116
externalized queries 361
INSERT ... SELECT 537
interceptors 325–329
overview 19–20
project suite 19
proxies, serializing 528–531
query hints 364
query interfaces 349–350
query result cache 558–561
scaling 532–561
schema customization 207
scrollable result sets 357–358
second-level cache 546–547
shared cache 549–550
shared cache architecture 545–549
shared cache, controlling 558
shared cache, testing 554–556
table constraints 211–212
type names 97–103
using JSON with 531
WITH 398

Hibernate bootstrap API 26–29
Hibernate configuration API 26–29
Hibernate EntityManager. See EntityManager
Hibernate Envers. See Envers
Hibernate JPA2 Metamodel Generator 57
Hibernate OGM 20
Hibernate ORM, introduction 19
Hibernate Search 20

Hibernate StatelessSession 543–544
Hibernate Validator 51

introduction 20
NOT NULL constraints 92

hibernate.batch_fetch_style 301
hibernate.cache.region_prefix 551
hibernate.cache.use_minimal_puts 557
Hibernate.close(iterator) 359
hibernate.default_schema 430
hibernate.ejb.interceptor 328
hibernate.entity_dirtiness_strategy 238
Hibernate.initialize() 290
Hibernate.isInitialized() 286
hibernate.jdbc.batch_size 540, 542
hibernate.jdbc.batch_versioned_data 542
hibernate.max_fetch_depth 298
hibernate.order_by.default_null_ordering 383
hibernate.order_inserts 540
hibernate.order_updates 278
hibernate.query.startup_check 360
hibernate.use_identifier_rollback 241
hibernate.use_sql_comments 366
HibernateException 259
HibernateProxyHelper 286
hilo identifier generation strategy 73
historical data, accessing with Envers 334–337
hour() 381
Hypermedia As The Engine Of Application State

(HATEOAS) 524

I

identifier bags 146–147
identifier generator 69

strategies 71–74
identifier property 67
identifiers

comparing 403–404
pre-insert generation 72

identity identifier generation strategy 73
identity, mapping entities with 65–74
ImplicitNamingStrategy 77
ImplicitNamingStrategyJpaCompliantImpl 77
in() 378
increment identifier generation strategy 73
index() 380
indexes 214–215
indices() 381
infinite scrolling 504
inheritance 117–138

choosing a mapping strategy 133–134
JOINED 126
mixing strategies 128–131
of embeddable classes 131–133
SINGLE_TABLE 123
Licensed to Thomas Snead <n.ordickan@gmail.com>

571INDEX
inheritance (continued)
table per class hierarchy 122–125
table per concrete class with implicit

polymorphism 118–120
table per concrete class with union 120–122
table per subclass 125–128
TABLE_PER_CLASS 120–122

INNER JOIN FETCH 400
inner joins 393
INSERT ... SELECT 537
insertion order

ArrayList 151
LinkedHashMap 151
LinkedHashSet 150

instance equality 12
instance identity 12
instant type 99
instantiation, dynamic 385–386
int 97
INTEGER 97
integer 97
integration tests 479

importing test data 480
intercepting events 321–330
interception 291–293
interceptors 325–329

default 328
isEmpty() 378
isMember() 378
isNotEmpty() 378
isNotMember() 378
isNotNull() 375, 378
isNull() 375, 378
isolation 261–278

dirty reads 262
last commit wins 262
lost updates 262
phantom reads 263
unrepeatable reads 262

isolation levels 263–266
choosing 264–266

ItemSummary 411
ItemSummaryResult 441
Iterator, closing 359

J

Java
binary and large value types, mapped to SQL

standard types 100
character and string types, mapped to SQL

standard types 98
date and time types, mapped to SQL standard

types 99
primitive types, mapped to SQL standard

types 97

types 97–103
types, mapping with converters 97–116

Java API for RESTful web services (JAX-RS).
See JAX-RS

Java Architecture for XML Binding (JAXB).
See JAXB

Java equality 65–66
Java identity 65–66
Java Management Extension (JMX), analyzing

statistics with 556
Java Persistence API (JPA). See JPA
Java Persistence Query Language (JPQL). See

JPQL
java.io.Serializable 101
java.lang.Boolean 97–98
java.lang.Byte 97
java.lang.Class 98
java.lang.Float 97
java.lang.Integer 97
java.lang.Long 97
java.lang.Short 97
java.lang.String 98, 100
java.math.BigDecimal 97
java.math.BigInteger 97
java.sql.Blob 101
java.sql.Clob 101
java.sql.Connection 427
java.sql.Date 99
java.sql.ResultSetMetaData 430
java.sql.Time 99
java.sql.Timestamp 99
java.time.Duration 99
java.time.Instant 99
java.time.LocalDate 99
java.time.LocalDateTime 99
java.time.LocalTime 99
java.time.OffsetDateTime 99
java.time.OffsetTime 99
java.time.ZonedDateTime 99
java.util.ArrayList 143
java.util.Calendar 99
java.util.Collection 143
java.util.Comparator 149
java.util.Currency 98
java.util.Date 99
java.util.HashMap 143
java.util.HashSet 143
java.util.LinkedHashSet 150
java.util.List 143
java.util.Locale 98
java.util.Map 143
java.util.Set 143
java.util.SortedMap 143
java.util.SortedSet 143
java.util.TimeZone 98
Licensed to Thomas Snead <n.ordickan@gmail.com>

572 INDEX
java.util.TreeMap 143
java.util.TreeSet 143
JavaBeans 38
JavaServer Faces (JSF). See JSF
javax.enterprise.context.Conversation 516
javax.persistence.cache.retrieveMode 363
javax.persistence.cache.storeMode 363
javax.persistence.EntityNotFoundException 260
javax.persistence.fetchgraph 311
javax.persistence.lock.scope 277
javax.persistence.lock.timeout 275
javax.persistence.LockTimeoutException 260,

276
javax.persistence.NonUniqueResultException

260
javax.persistence.NoResultException 260
javax.persistence.PessimisticLockException 276
javax.persistence.Query 346
javax.persistence.query.timeout 363
javax.persistence.QueryTimeoutException 260
javax.persistence.TransactionRequiredException

280
javax.persistence.TypedQuery 346
JAXB mappings 526–528
JAX-RS services 525–526
JDBC, falling back to 427–429
JDBCConnectionException 259
JDBCException 259
join column 162
join conditions 393
JOIN FETCH 400
joining tables 180, 182

for inheritance 128–131
joins 392–404

comparing identifiers 403–404
dynamic fetching with 398–401
explicit 396–398
join conditions 393
JPA options 395
JPA, comparing identifiers 403
JPA, explicit 396
JPA, implicit associations 395–396
JPA, theta-style 401
theta-style 401–402
with SQL 393–394

JoinType.LEFT 397
JPA 396

aggregation functions 389
and ORM 16–18
annotations 51
converters, limitations 109
customer converters 103–109
delimited identifiers 75
dirty checking 26
entity class 36

integrating with CDI 499–503
join options 395
Metamodel API 55–56
query by criteria 347
query functions 380
query hints 363
query interfaces 347–349
specification 17
subqueries 404
value types 64

JPQL 17, 346, 369–407
bulk statements 533–538
comparison operators 378
count(distinct) 390
DELETE 536
FETCH 399
function() 388
new 386
non-polymorphic queries 372
ON 398
ORDER BY 382
polymorphic queries 372
SELECT 371, 383–385
UPDATE 533
WHERE 373

JSF applications 512–523
conversation-scoped services 516–523
request-scoped services 513–516

JSF, flow scope 517
JSON, using with Hibernate 531

K

key generator, configuring 69
key() 379

L

last commit wins 262
layered architecture 31
lazy loading 16, 284–295

persistent collections and 289–290
proxies and 285–289
with interception 291–293

LazyCollectionOption.EXTRA 290
LazyInitializationException 287
LazyToOneOption.NO_PROXY 292
leakage of concerns 36
LEFT 397
LEFT OUTER JOIN 397
(left) outer joins 394
legacy keys 215–223

composite primary keys 216–218
foreign keys in composite primary keys

218–221
Licensed to Thomas Snead <n.ordickan@gmail.com>

573INDEX
legacy keys (continued)
foreign keys referencing non-primary

keys 222–223
foreign keys to composite primary keys 221–

222
natural primary keys 215–216

length() 380
lessThan() 378
LIKE 376
like() 378
link table 14
link table. See join table
LinkedHashMap 151
list mappings

bidirectional 184–186
unidirectional 184–186

listening to events 321–330
lists

mapping 147–148
returning list of lists 410

load graphs 308
load script 205, 480
loaders

custom 448–449
custom, eager fetching in 453–455

LoadEvent 329
localdate type 99
localdatetime type 99
locale type 98
localtime type 99
locate() 380
lock scope, extending 277
lock tables 275
lock timeouts 275
LockAcquisitionException 259
LockModeType 271
LockModeType.NONE 280
long 97
lost updates 262
lower() 379–380
lt() 378

M

makePersistent() 474
makeTransient() 474
many-to-many associations 190–199

bidirectional 190–192
unidirectional 190–192
with intermediate entity 192–197

many-to-one associations
in Java 42
polymorphic 135–137
unidirectional 162–163

map entries, sorting 149

map keys, components as 158–160
mapping

associations 161–171
bags of components 156–157
collection properties 141–142
collections 140–171
component collections ??–161
component values 157–158
embedded components 90–97
entity associations 140–171
entity associations, advanced 172–202
identifier bags 146–147
inheritance 117–138
lists 147–148
maps 148
nested embedded components 95–97
options 74–80
sets of components 145, 154–156
table per class hierarchy 122–125
table per concrete class with implicit

polymorphism 118–120
table per concrete class with unions 120–122
table per subclass 125–128

mapping metadata 46–58
in annotations 46–49

mapping override 52
mapping vendor extensions 47
mappings, JAXB 526–528
maps

entity associations with 200–202
mapping 148
returning list of 410–411

MatchMode.START 418
max() 389
maxelement() 381
maxindex() 381
merging entity instances 251–252
metadata 46–58

dynamic access 55–58
externalizing 51–55
mapping database identity 66–67
package 48–49
static model 56–58
XML 51–53

MetadataBuilder 27
MetadataSources 27
metamodel 46–58
Metamodel API 55–56

Metamodel#getEntities() 372
min() 389
minelement() 381
minindex() 381
minute() 381
mixing inheritance strategies 128–131
mod() 380
Licensed to Thomas Snead <n.ordickan@gmail.com>

574 INDEX
month() 381
multiselect() 384
multiversion concurrency control (MVCC) 261

N

n+1 selects problem 16, 296–297
solving 299–303

named generator 70
naming conventions 76–77
naming entities 74–77
native identifier generation strategy 72
natural identifier cache 545
natural key 68

composite 68
natural primary keys 215–216
neg() 378
new 386, 411
NonexistentConversationException 521
non-polymorphic queries 372
NONSTRICT_READ_WRITE concurrency

strategy 549
NonUniqueResultException 357
noop property accessor 85
NoResultException 356
NoSQL 5
NOT 378
not() 378
notEqual() 378
nullability, declaring 123
nulls, order of 383
NUMERIC 97

O

object equality 65–66
object identity (==) 65–66
object persistence, definition 4
object references, vs. foreign key–constrained

columns 14
object/relational mapping (ORM). See ORM
object/relational mismatch 8–16
object-relational extensions 10
offline locks 275
offsetdatetime type 99
offsettime type 99
ON DELETE CASCADE 169–171
one-to-many associations 163–164, 182–190

in embeddable class 188–190
in Java 42
optional, with join table 186–188
with property key 200–201

one-to-many bags 183–184
one-to-one associations 173–182

join tables 180–182

lazy loading of 288
optimistic concurrency control 266–273
OptimisticLockException 267
OptimisticLockType.DIRTY 270
OR 378
or() 378
ORDER BY 382
ORDER BY ... NULLS FIRST|LAST 383
org.hibernate:hibernate-ehcache 550
org.hibernate.annotations.CascadeType 314
org.hibernate.annotations.CascadeType

.REPLICATE 314
org.hibernate.annotations.QueryHints 364
org.hibernate.annotations.QueryHints

.TIMEOUT_JPA 363
org.hibernate.annotations.SortComparator 149
org.hibernate.cachable 559
org.hibernate.Cache 558
org.hibernate.cache.spi.UpdateTimestampsCache

560
org.hibernate.collection.internal.PersistentSet

289
org.hibernate.collection.spi 144
org.hibernate.comment 364
org.hibernate.Criteria 348, 350, 416–425
org.hibernate.criterion.* 416–425
org.hibernate.CustomEntityDirtinessStrategy 238
org.hibernate.event 330
org.hibernate.event.spi.EventType 330
org.hibernate.Example 416–425
org.hibernate.exception.ConstraintViolation-

Exception 209
org.hibernate.fetchSize 364
org.hibernate.flushMode 364–365
org.hibernate.Interceptor 238, 325–329
org.hibernate.jdbc.ReturningWork 429
org.hibernate.jdbc.Work 427–429
org.hibernate.jpa.HibernateQuery 350
org.hibernate.mapping.AuxiliaryDatabaseObject

207
org.hibernate.persister.collection 452
org.hibernate.persister.entity 450
org.hibernate.property.PropertyAccessor 86
org.hibernate.Query 349, 359, 409

#getReturnAliases() 411
org.hibernate.readOnly 364
org.hibernate.ScrollableResults 357
org.hibernate.SQLQuery 349–350, 430
org.hibernate.stat.Statistics 554
org.hibernate.StatelessSession 543
org.hibernate.tool.hbm2ddl.SchemaExport 205
org.hibernate.usertype interfaces 110
org.hibernate.usertype.UserVersionType 535
ORM

and JPA 16–18
without domain model 35
Licensed to Thomas Snead <n.ordickan@gmail.com>

575INDEX
orm.xml 52
orphanRemoval 168
orphans, removing 168–169

P

package-info.java 48–49, 114, 306
paging 354–355, 503–512

in the persistence layer 505–510
offset 507–508
offset, vs. seeking 503–505
querying page by page 511–512
seek 508–510

paradigm mismatch 8–16
associations 14–15
data navigation 15–16
granularity 10–11
identity 12–13
inheritance 11–12
subtypes 11–12

PARAM_ITEM_ID 462
PARAM_ITEM_NAME 462
PARAM_TOTAL 460
parameter binding

named parameters 352–353
positional parameters 353

ParameterExpression 353
ParameterizedUserType 110
ParameterMode.REF_CURSOR 463
passivation 493
path expressions 385
persist() 236, 240
persistence

automated 37–38
global transitive 320
overview 4–8
transitive 165–166
transparent 37–38

persistence by reachability 320
persistence context 232–234

application-managed 232
as first-level cache 233
caching in 243–244
flushing 244–245
guaranteed scope of object identity 233
size, controlling 243

persistence layer 33, 472–481
integration tests 479
paging in 505–510
state-managing 474
testing 479–481

persistence life cycle 230–234
persistence unit 21–22

EntityManagerFactory 24
Persistence.createEntityManagerFactory() 500

PersistenceUnitUtil 236
#getIdentifier() 236

PersistenceUtil 286
persistent classes 23–24

rules 82
persistent collections, lazy loading and 289–290
persistent data, retrieving and modifying 237–238
persistent state 231
PersistentBag 144
PersistentCollection 144
PersistentList 144
PersistentSet 144
pessimistic locking, explicit 273–276
PESSIMISTIC_FORCE_INCREMENT 276
PESSIMISTIC_READ 274
PESSIMISTIC_WRITE 274
PessimisticLockScope.EXTENDED 277
phantom reads 263
PhysicalNamingStrategy 76
Plain Old Java Objects (POJOs). See POJO
plural entity association 182
POJO 37

accessor methods 39
associations 38–41
attributes 38–41
business methods 38–41
properties 39

polymorphic associations 135–138
many-to-one 135–137

polymorphic collections 137–138
polymorphic queries 135, 372–373
polymorphism

associations 119
implicit 118–120
overview 12

pooled-lo optimizer 541
prefetching data

collections, with subselects 302–303
in batches 299–302

PreparedStatement 427
#addBatch() 540
#setFetchSize() 364

presentation layer 32
primary keys

composite 216–218
immutability 68
natural 215–216
selecting 67–69
sharing 173–176
surrogate 13

ProcedureCall 457
prod() 378
programmatic transactions with JTA 256–258
projection 383–392

aggregation functions 389–391
Licensed to Thomas Snead <n.ordickan@gmail.com>

576 INDEX
projection (continued)
calling functions in 387–389
dynamic instantiation 385–386
grouping 391–392
handling duplicates 387
of entities and scalar values 383–385

properties
column transformers 86–87
converting basic values 105–106
customizing access 84–86
database-generated values 88
derived 86
enumerations 89
mapping 82–90
mapping to secondary tables 224–225
of components, converting 106–109
overriding defaults 82–84
temporal 89
virtual 85

property keys, one-to-many associations with 200–
201

PropertySelector 424
proxies 239

and lazy loading 285–289
issues with 288
serializing 528–531

Q

queries 345–368
advanced options 408–425
aggregation 419–420
aggregation functions 389–391
assigning aliases 371–372
assigning query roots 371–372
binding named parameters 352–353
binding positional parameters 353
building programmatically 416–425
cache modes 558
calling functions 380–382
calling functions in projections 387–389
collection filters 414–416
comparing identifiers 403–404
comparison expressions 374–378
comparison operators 378
creating 346–350
criteria query API 416–425
defining in XML metadata 360–361
defining with annotations 361–362
dynamic fetching with joins 398–401
dynamic instantiation 385–386
executing 355–359
explicit joins 396–398
expressions with collections 378–379
externalizing 359–363

fetch size 366
flush mode 365
getting a single result 356–357
grouping 391–392
handling duplicates 387
iteration 358–359
join conditions 393
join options in JPA 395
joins 392–404, 420–422
joins with SQL 393–394
JPA, comparing identifiers 403
JPA, explicit joins 396
JPA, implicit association joins 395–396
JPA, theta-style joins 401
listing all results 355
mapping aliases to bean properties 411–412
mapping SQL query results 429–448
named, calling 360
named, defining programmatically 362–363
naming 359–363
non-polymorphic 372
ordering 416–417
ordering results 382–383
paging 354–355
polymorphic 372–373
preparing 351–355
projection 383–392, 419–420
projection of entities and scalar values 383–385
protecting against SQL injection attacks 351
quantification 406–407
query by criteria 347
query-by-example 423–425
read-only mode 365
restriction 373–383, 417–419
result cache 545, 558–561
returning a list of lists 410
returning a list of maps 410–411
scrollable result sets 357–358
selection 348, 370–373, 416–417
SQL comments 366
SQL, category tree 445–448
SQL, customizing result mappings 432–444
SQL, eager-fetching collections 439–441
SQL, externalizing native queries 444–448
SQL, mapping duplicate fields 436–437
SQL, mapping fields to properties 437–439
SQL, mapping result to constructor 441–442
SQL, mapping scalar and mixed results

442–444
SQL, mapping to entity class 431–432
SQL, projection with 430
subselects 404–407, 422–423
subselects, correlated and uncorrelated

nesting 405–406
subselects, quantification 406
theta-style joins 394–402
Licensed to Thomas Snead <n.ordickan@gmail.com>

577INDEX
queries (continued)
timeout 364
transforming results 409–413
typed results 349
wildcard searches 376
writing a ResultTransformer 412–413

Query
#iterate() 359
#setFirstResult() 504
#setHint() 365
#setMaxResults() 504
#setParameter() 353

query functions 380–382
query hints 363–368

fetch size 366
flush mode 365
named 366–368
read-only mode 365
setting timeout 364
SQL comments 366

query interfaces
Hibernate 349–350
JPA 347–349

query languages 369–407
query roots 371–372
query-by-example 423–425
quot() 378
quoting SQL identifiers 75

R

race conditions, keeping changes after 489
read committed isolation 263
read uncommitted isolation 263
READ_ONLY concurrency strategy 549
READ_WRITE concurrency strategy 549
reattaching entity instances 252
reference data 548
references 239
referential integrity rules 213
refresh(), cache modes 558
refreshing data 241
relational database 5
relational model 5

definition 6
remove() 240
removed state 232
Repeatable read isolation 263
replicate() 242
replication 242

cascading 319–320
ReplicationMode 242
request-scoped services in JSF 513–516
restriction 373–383

on groups with HAVING 392
on rows with WHERE 392

Restrictions 417
result sets, scrollable 357–358
result transformers 409–413

list of lists 410
list of maps 410–411
mapping aliases to bean properties 411–412
writing 412

ResultCheckStyle 467
ResultTransformer 386, 412–413
retrieving data 283–311
revision numbers, finding 333
revisions, finding with Envers 333–334
rich client 488
RIGHT OUTER JOIN 397
rollback, error during 259
Root#get() 374
rowCount() 420

S

saveOrUpdateCopy() 252
scaffolding code 42
scaling Hibernate 532–561
schema

adding auxiliary database objects 205, 208
composite primary keys 216–218
create script 205
drop script 205
evolution 6
foreign keys in composite primary keys

218–221
foreign keys referencing non-primary

keys 222–223
foreign keys to composite primary keys

221–222
generating 205
improving 204–215
indexes 214–215
legacy keys 215–223
load script 205
natural primary keys 215–216
scripts 205
SQL constraints 208–214

ScrollableResults 358, 542
ScrollMode 358
second() 381
secondary tables, mapping properties to 224–225
seeking vs. offset paging 503–505
SELECT 383–385

aggregation function in 390
select identifier generation strategy 73
select() 371
selecting a relation variable 370–373
self-referencing relationship 179
seqhilo identifier generation strategy 72
Licensed to Thomas Snead <n.ordickan@gmail.com>

578 INDEX
sequence identifier generation strategy 72
sequence-identity identifier generation

strategy 72
serializable isolation 264
serializable type 101
serialization 102
services

conversation scoped, in JSF 516–523
JAX-RS 525–526
request scoped, in JSF 513–516

Session 28
#createFilter() 414
#createSQLQuery() 430
#enableFetchProfile() 306
#replicate() 314, 336
#setFlushMode() 282

SessionFactory 26
sessionWithOptions() 328
set elements, sorting 150
SET SESSION CHARACTERISTICS 265
SET TRANSACTION 265
setEntityManager() 475
setFetchMode() 421
setFirstResult() 354, 401
setFlushMode() 365
setHint() 363
setLockMode() 271–272
setMaxResults() 354, 401
setParameter() 352
setQueryTimeout() 364
sets

detecting duplicates 152
mapping 145
of components 154–156

setter 39
setTransactionIsolation() 265
short 97
size() 379–380
SMALLINT 97
snapshot isolation 280
SOME 406
sorting

map entries 149
set elements 150

sorting data 503–512
SQL

and JDBC 6–8
ANSI-style inner joins 393
built-in types 10
bulk statements 538–539
calling stored procedures 455–464
common table expression (CTE) 446
cursor, returning 463–464
custom loaders, eager fetching in 453–455
customizing 426–468

customizing collection operations 451–453
customizing CRUD operations 448–455
customizing result mappings 432–444
eager-fetching collections 439–441
enabling custom loaders 448–449
falling back to JDBC 427–429
generating dynamically 77–78
in Java 6–8
input and output parameters 460–462
joins 393–394
left outer joins 394
mapping duplicate fields 436–437
mapping fields to properties 437–439
mapping query results 429–448
mapping result to constructor 441–442
mapping scalar and mixed results 442–444
mapping to entity class 431–432
native queries, category tree 445–448
native queries, externalizing 444–448
object-relational extensions 10
projection 430
quoting identifiers 75
relational operations 6
result set, returning 457–458
result set, returning multiple 458–459
SQLJ 11
standard types, Java binary and large value types

mapped to 100
standard types, Java character and string types

mapped to 98
standard types, Java date and time types

mapped to 99
standard types, Java primitive types mapped

to 97
stored procedures for creating, updating, and

deleting 466–468
stored procedures, custom loader 465
stored procedures, using for CRUD 464–468
subquery factoring 446
subselects 404
theta-style joins 394
types 97–103
types, mapping with converters 97–116
update counts, returning 458–459
user-defined types (UDTs) 10

SQL constraints 208–214
column constraints 209–211
database constraints 209, 212–214
domain constraints 208, 210–211
table constraints 211–212

SQL database 5
SQL Fiddle 429
SQL injection attacks 351
sqlCreateString() 208
sqlDropString() 208
Licensed to Thomas Snead <n.ordickan@gmail.com>

579INDEX
SQLFunction 389
SQLGrammarException 259
sqrt() 380
state changes

cascading 163–171, 313–320
cascading refresh 317–318
cascading replication 319–320
cascading, options 314
transitive detachment and merging 315–317

state management 230
stateful server 489–497

analyzing applications 495
thin client 489

stateless server 481–489
analyzing applications 488–489
rich client 488
thick client 488

StatelessSession 543–544
StaticMetamodel 57
statistics, analyzing with JMX 556
STATUS_MARKED_ROLLBACK 258
stereotypes 64
sticky sessions 496
stored procedures

calling with SQL 455–464
custom loader 465
for creating, updating, and deleting 466–468
input and output parameters 460–462
returning a cursor 463–464
returning a result set 457–458
returning multiple result sets 458–459
returning update counts 458–459
using for CRUD 464–468

StoredProcedureQuery 457
str() 381
string type 98
String#compareTo() 150
subselects 404–407

correlated and uncorrelated nesting 405–406
mapping entities to 79–80
quantification 406–407

substring() 380
sum() 378, 389
surrogate key 13, 68

generating 69
system transactions 256

T

table constraints 211–212
tables

per class hierarchy 122–125
per concrete class with implicit

polymorphism 118–120
per concrete class with union 120–122

per subclass 125–128
secondary, mapping properties to 224–225

ternary associations 190–199
key/value 201–202
with components 197–199

ternary logic 374
text type 100
theta-style joins 394
thick client 488
thin client 489
TIME 99
time type 99
TIMESTAMP 99
timestamp cache region 560
timestamp type 99
timezone type 98
TINYINT 97
ToListResultTransformer 410
transaction demarcation 256
TRANSACTIONAL concurrency strategy 548
transactional file systems 144
TransactionRequiredException 501
transactions 254–282

ACID attributes 255
and EntityManager 257
ANSI isolation levels 263–266
avoiding deadlocks 277–278
choosing an isolation level 264–266
concurrency 261–278
database and system 256
declarative demarcation 261
dirty reads 262
enabling versioning 266–268
essentials 255–261
explicit pessimistic locking 273–276
forcing a version increment 272–273
handling exceptions 258–261
isolation 261–278
isolation issues 262–263
last commit wins 262
lost updates 262
manual version checking 270–272
optimistic concurrency control 266–273
phantom reads 263
programmatic, with JTA 256–258
read-only, whether to roll back 258
timeout 258
unrepeatable reads 262
versioning with timestamps 268–269
versioning without version numbers or

timestamps 269–270
transforming query results 409–413

list of lists 410
list of maps 410–411
mapping aliases to bean properties 411–412
writing a result transformer 412
Licensed to Thomas Snead <n.ordickan@gmail.com>

580 INDEX
transformList() 412
transformTuple() 412
transient data 240–241
transient keyword 83
transient state 231
transient values 385
transitive deletion 166–167
transitive persistence 165–166
transparent persistence 37–38
treat() 380
trim() 380
true_false type 98
Tuple 384
type adapters, selecting 103
type definitions 114–116
typed exceptions 259
types

binary 100–103
built-in 97–103
character 98–99
date 99–100
extension points 110
large values 100–103
numeric 97–98
primitive 97–98
string 98
time 99–100

U

uncorrelated subqueries 405
unidirectional list mappings 184–186
UNION for inheritance 120–122
units of work 234–235

transactions 254–282
unrepeatable reads 262
UPDATE 533
update timestamp cache 560
UpdateCountOutput 462
upper() 380
user think-time 518
UserCollectionType 110
UserTransaction 256, 539

#begin() 258
#rollback() 258
#setTransactionTimeout() 258

UserType 109–116
UserVersionType 110
utility classes 33
uuid2 identifier generation strategy 74

V

validation error messages 210
value types 62–65

distinguishing 64–65
vs. entity type 63

value() 379
VARBINARY 100–101
VARCHAR 98
vendor extensions 47
version increments 272–273
versioned 535
versioning

enabling 266–268
forcing a version increment 272–273
manual version checking 270–272
with a shared database 268
with timestamps 268–269
without version numbers or timestamps

269–270

W

Web API 524
web applications 498–531
WHERE 373

calling functions in 380–382
restriction on rows 392

where() 373
wildcard searches 376

X

XML
mapping files 53–55
metadata 51–53
overriding annotations 53

Y

year() 381
yes_no type 98

Z

zoneddatetime type 99
Licensed to Thomas Snead <n.ordickan@gmail.com>

Bauer ● King ● Gregory

P
ersistence—the ability of data to outlive an instance of a
program—is central to modern applications. Hibernate,
the most popular Java persistence tool, offers automatic and

transparent object/relational mapping, making it a snap to work
with SQL databases in Java applications.

Java Persistence with Hibernate explores Hibernate by developing
an application that ties together hundreds of individual examples.
You’ll immediately dig into the rich programming model of Hi-
bernate, working through mappings, queries, fetching strategies,
transactions, conversations, caching, and more. Along the way
you’ll fi nd a well-illustrated discussion of best practices in data-
base design and optimization techniques. In this revised edition,
authors Christian Bauer, Gavin King, and Gary Gregory cover
Hibernate 5 in detail with the Java Persistence 2.1 standard (JSR
338). All examples have been updated for the latest Hibernate
and Java EE specifi cation versions.

What’s Inside
● Object/relational mapping concepts
● Effi cient database application design
● Comprehensive Hibernate and Java Persistence reference
● Integration of Java Persistence with EJB, CDI, JSF, and JAX-RS
● Unmatched breadth and depth

The book assumes a working knowledge of Java.

Christian Bauer is a member of the Hibernate developer team and
a trainer and consultant. Gavin King is the founder of the Hiber-
nate project and a member of the Java Persistence expert group
(JSR 220). Gary Gregory is a principal software engineer working
on application servers and legacy integration.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/java-persistence-with-hibernate-second-edition

$59.99 / Can $68.99 [INCLUDING eBOOK]

Java Persistence with Hibernate SECOND EDITION

JAVA/HIBERNATE

M A N N I N G

“The most comprehensive
book about Hibernate Persis-
tence ... works well both as a
tutorial and as a reference.”

—Sergio Fernandez Gonzalez
Accenture Software

“The essential guidebook
for navigating the

 intricacies of Hibernate.”
—José Diaz, OptumHealth

“An excellent update to a
 classic and essential book.”

—Jerry Goodnough
Cognitive Medical Systems

“The must-have reference
 for every Hibernate user.”—Stephan Heffner
SPIEGEL-Verlag Rudolf Augstein

GmbH & Co. KG

SEE INSERT

	Java Persistence / Hibernate
	brief contents
	contents
	foreword to the first edition
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions
	Source code downloads
	Author Online
	About the authors

	about the cover illustration
	Part 1 Getting started with ORM
	1 Understanding object/relational persistence
	1.1 What is persistence?
	1.1.1 Relational databases
	1.1.2 Understanding SQL
	1.1.3 Using SQL in Java

	1.2 The paradigm mismatch
	1.2.1 The problem of granularity
	1.2.2 The problem of subtypes
	1.2.3 The problem of identity
	1.2.4 Problems relating to associations
	1.2.5 The problem of data navigation

	1.3 ORM and JPA
	1.4 Summary

	2 Starting a project
	2.1 Introducing Hibernate
	2.2 “Hello World” with JPA
	2.2.1 Configuring a persistence unit
	2.2.2 Writing a persistent class
	2.2.3 Storing and loading messages

	2.3 Native Hibernate configuration
	2.4 Summary

	3 Domain models and metadata
	3.1 The example CaveatEmptor application
	3.1.1 A layered architecture
	3.1.2 Analyzing the business domain
	3.1.3 The CaveatEmptor domain model

	3.2 Implementing the domain model
	3.2.1 Addressing leakage of concerns
	3.2.2 Transparent and automated persistence
	3.2.3 Writing persistence-capable classes
	3.2.4 Implementing POJO associations

	3.3 Domain model metadata
	3.3.1 Annotation-based metadata
	3.3.2 Applying Bean Validation rules
	3.3.3 Externalizing metadata with XML files
	3.3.4 Accessing metadata at runtime

	3.4 Summary

	Part 2 Mapping strategies
	4 Mapping persistent classes
	4.1 Understanding entities and value types
	4.1.1 Fine-grained domain models
	4.1.2 Defining application concepts
	4.1.3 Distinguishing entities and value types

	4.2 Mapping entities with identity
	4.2.1 Understanding Java identity and equality
	4.2.2 A first entity class and mapping
	4.2.3 Selecting a primary key
	4.2.4 Configuring key generators
	4.2.5 Identifier generator strategies

	4.3 Entity-mapping options
	4.3.1 Controlling names
	4.3.2 Dynamic SQL generation
	4.3.3 Making an entity immutable
	4.3.4 Mapping an entity to a subselect

	4.4 Summary

	5 Mapping value types
	5.1 Mapping basic properties
	5.1.1 Overriding basic property defaults
	5.1.2 Customizing property access
	5.1.3 Using derived properties
	5.1.4 Transforming column values
	5.1.5 Generated and default property values
	5.1.6 Temporal properties
	5.1.7 Mapping enumerations

	5.2 Mapping embeddable components
	5.2.1 The database schema
	5.2.2 Making classes embeddable
	5.2.3 Overriding embedded attributes
	5.2.4 Mapping nested embedded components

	5.3 Mapping Java and SQL types with converters
	5.3.1 Built-in types
	5.3.2 Creating custom JPA converters
	5.3.3 Extending Hibernate with UserTypes

	5.4 Summary

	6 Mapping inheritance
	6.1 Table per concrete class with implicit polymorphism
	6.2 Table per concrete class with unions
	6.3 Table per class hierarchy
	6.4 Table per subclass with joins
	6.5 Mixing inheritance strategies
	6.6 Inheritance of embeddable classes
	6.7 Choosing a strategy
	6.8 Polymorphic associations
	6.8.1 Polymorphic many-to-one associations
	6.8.2 Polymorphic collections

	6.9 Summary

	7 Mapping collections and entity associations
	7.1 Sets, bags, lists, and maps of value types
	7.1.1 The database schema
	7.1.2 Creating and mapping a collection property
	7.1.3 Selecting a collection interface
	7.1.4 Mapping a set
	7.1.5 Mapping an identifier bag
	7.1.6 Mapping a list
	7.1.7 Mapping a map
	7.1.8 Sorted and ordered collections

	7.2 Collections of components
	7.2.1 Equality of component instances
	7.2.2 Set of components
	7.2.3 Bag of components
	7.2.4 Map of component values
	7.2.5 Components as map keys
	7.2.6 Collection in an embeddable component

	7.3 Mapping entity associations
	7.3.1 The simplest possible association
	7.3.2 Making it bidirectional
	7.3.3 Cascading state

	7.4 Summary

	8 Advanced entity association mappings
	8.1 One-to-one associations
	8.1.1 Sharing a primary key
	8.1.2 The foreign primary key generator
	8.1.3 Using a foreign key join column
	8.1.4 Using a join table

	8.2 One-to-many associations
	8.2.1 Considering one-to-many bags
	8.2.2 Unidirectional and bidirectional list mappings
	8.2.3 Optional one-to-many with a join table
	8.2.4 One-to-many association in an embeddable class

	8.3 Many-to-many and ternary associations
	8.3.1 Unidirectional and bidirectional many-to-many associations
	8.3.2 Many-to-many with an intermediate entity
	8.3.3 Ternary associations with components

	8.4 Entity associations with Maps
	8.4.1 One-to-many with a property key
	8.4.2 Key/Value ternary relationship

	8.5 Summary

	9 Complex and legacy schemas
	9.1 Improving the database schema
	9.1.1 Adding auxiliary database objects
	9.1.2 SQL constraints
	9.1.3 Creating indexes

	9.2 Handling legacy keys
	9.2.1 Mapping a natural primary key
	9.2.2 Mapping a composite primary key
	9.2.3 Foreign keys in composite primary keys
	9.2.4 Foreign keys to composite primary keys
	9.2.5 Foreign key referencing non-primary keys

	9.3 Mapping properties to secondary tables
	9.4 Summary

	Part 3 Transactional data processing
	10 Managing data
	10.1 The persistence life cycle
	10.1.1 Entity instance states
	10.1.2 The persistence context

	10.2 The EntityManager interface
	10.2.1 The canonical unit of work
	10.2.2 Making data persistent
	10.2.3 Retrieving and modifying persistent data
	10.2.4 Getting a reference
	10.2.5 Making data transient
	10.2.6 Refreshing data
	10.2.7 Replicating data
	10.2.8 Caching in the persistence context
	10.2.9 Flushing the persistence context

	10.3 Working with detached state
	10.3.1 The identity of detached instances
	10.3.2 Implementing equality methods
	10.3.3 Detaching entity instances
	10.3.4 Merging entity instances

	10.4 Summary

	11 Transactions and concurrency
	11.1 Transaction essentials
	11.1.1 ACID attributes
	11.1.2 Database and system transactions
	11.1.3 Programmatic transactions with JTA
	11.1.4 Handling exceptions
	11.1.5 Declarative transaction demarcation

	11.2 Controlling concurrent access
	11.2.1 Understanding database-level concurrency
	11.2.2 Optimistic concurrency control
	11.2.3 Explicit pessimistic locking
	11.2.4 Avoiding deadlocks

	11.3 Nontransactional data access
	11.3.1 Reading data in auto-commit mode
	11.3.2 Queueing modifications

	11.4 Summary

	12 Fetch plans, strategies, and profiles
	12.1 Lazy and eager loading
	12.1.1 Understanding entity proxies
	12.1.2 Lazy persistent collections
	12.1.3 Lazy loading with interception
	12.1.4 Eager loading of associations and collections

	12.2 Selecting a fetch strategy
	12.2.1 The n+1 selects problem
	12.2.2 The Cartesian product problem
	12.2.3 Prefetching data in batches
	12.2.4 Prefetching collections with subselects
	12.2.5 Eager fetching with multiple SELECTs
	12.2.6 Dynamic eager fetching

	12.3 Using fetch profiles
	12.3.1 Declaring Hibernate fetch profiles
	12.3.2 Working with entity graphs

	12.4 Summary

	13 Filtering data
	13.1 Cascading state transitions
	13.1.1 Available cascading options
	13.1.2 Transitive detachment and merging
	13.1.3 Cascading refresh
	13.1.4 Cascading replication
	13.1.5 Enabling global transitive persistence

	13.2 Listening to and intercepting events
	13.2.1 JPA event listeners and callbacks
	13.2.2 Implementing Hibernate interceptors
	13.2.3 The core event system

	13.3 Auditing and versioning with Hibernate Envers
	13.3.1 Enabling audit logging
	13.3.2 Creating an audit trail
	13.3.3 Finding revisions
	13.3.4 Accessing historical data

	13.4 Dynamic data filters
	13.4.1 Defining dynamic filters
	13.4.2 Applying the filter
	13.4.3 Enabling the filter
	13.4.4 Filtering collection access

	13.5 Summary

	Part 4 Writing queries
	14 Creating and executing queries
	14.1 Creating queries
	14.1.1 The JPA query interfaces
	14.1.2 Typed query results
	14.1.3 Hibernate’s query interfaces

	14.2 Preparing queries
	14.2.1 Protecting against SQL injection attacks
	14.2.2 Binding named parameters
	14.2.3 Using positional parameters
	14.2.4 Paging through large result sets

	14.3 Executing queries
	14.3.1 Listing all results
	14.3.2 Getting a single result
	14.3.3 Scrolling with database cursors
	14.3.4 Iterating through a result

	14.4 Naming and externalizing queries
	14.4.1 Calling a named query
	14.4.2 Defining queries in XML metadata
	14.4.3 Defining queries with annotations
	14.4.4 Defining named queries programmatically

	14.5 Query hints
	14.5.1 Setting a timeout
	14.5.2 Setting the flush mode
	14.5.3 Setting read-only mode
	14.5.4 Setting a fetch size
	14.5.5 Setting an SQL comment
	14.5.6 Named query hints

	14.6 Summary

	15 The query languages
	15.1 Selection
	15.1.1 Assigning aliases and query roots
	15.1.2 Polymorphic queries

	15.2 Restriction
	15.2.1 Comparison expressions
	15.2.2 Expressions with collections
	15.2.3 Calling functions
	15.2.4 Ordering query results

	15.3 Projection
	15.3.1 Projection of entities and scalar values
	15.3.2 Using dynamic instantiation
	15.3.3 Getting distinct results
	15.3.4 Calling functions in projections
	15.3.5 Aggregation functions
	15.3.6 Grouping

	15.4 Joins
	15.4.1 Joins with SQL
	15.4.2 Join options in JPA
	15.4.3 Implicit association joins
	15.4.4 Explicit joins
	15.4.5 Dynamic fetching with joins
	15.4.6 Theta-style joins
	15.4.7 Comparing identifiers

	15.5 Subselects
	15.5.1 Correlated and uncorrelated nesting
	15.5.2 Quantification

	15.6 Summary

	16 Advanced query options
	16.1 Transforming query results
	16.1.1 Returning a list of lists
	16.1.2 Returning a list of maps
	16.1.3 Mapping aliases to bean properties
	16.1.4 Writing a ResultTransformer

	16.2 Filtering collections
	16.3 The Hibernate criteria query API
	16.3.1 Selection and ordering
	16.3.2 Restriction
	16.3.3 Projection and aggregation
	16.3.4 Joins
	16.3.5 Subselects
	16.3.6 Example queries

	16.4 Summary

	17 Customizing SQL
	17.1 Falling back to JDBC
	17.2 Mapping SQL query results
	17.2.1 Projection with SQL queries
	17.2.2 Mapping to an entity class
	17.2.3 Customizing result mappings
	17.2.4 Externalizing native queries

	17.3 Customizing CRUD operations
	17.3.1 Enabling custom loaders
	17.3.2 Customizing creation, updates, and deletion
	17.3.3 Customizing collection operations
	17.3.4 Eager fetching in custom loaders

	17.4 Calling stored procedures
	17.4.1 Returning a result set
	17.4.2 Returning multiple results and update counts
	17.4.3 Setting input and output parameters
	17.4.4 Returning a cursor

	17.5 Using stored procedures for CRUD
	17.5.1 Custom loader with a procedure
	17.5.2 Procedures for CUD

	17.6 Summary

	Part 5 Building applications
	18 Designing client/server applications
	18.1 Creating a persistence layer
	18.1.1 A generic data access object pattern
	18.1.2 Implementing the generic interface
	18.1.3 Implementing entity DAOs
	18.1.4 Testing the persistence layer

	18.2 Building a stateless server
	18.2.1 Editing an auction item
	18.2.2 Placing a bid
	18.2.3 Analyzing the stateless application

	18.3 Building a stateful server
	18.3.1 Editing an auction item
	18.3.2 Analyzing the stateful application

	18.4 Summary

	19 Building web applications
	19.1 Integrating JPA with CDI
	19.1.1 Producing an EntityManager
	19.1.2 Joining the EntityManager with transactions
	19.1.3 Injecting an EntityManager

	19.2 Paging and sorting data
	19.2.1 Offset paging vs. seeking
	19.2.2 Paging in the persistence layer
	19.2.3 Querying page-by-page

	19.3 Building JSF applications
	19.3.1 Request-scoped services
	19.3.2 Conversation-scoped services

	19.4 Serializing domain model data
	19.4.1 Writing a JAX-RS service
	19.4.2 Applying JAXB mappings
	19.4.3 Serializing Hibernate proxies

	19.5 Summary

	20 Scaling Hibernate
	20.1 Bulk and batch processing
	20.1.1 Bulk statements in JPQL and criteria
	20.1.2 Bulk statements in SQL
	20.1.3 Processing in batches
	20.1.4 The Hibernate StatelessSession interface

	20.2 Caching data
	20.2.1 The Hibernate shared cache architecture
	20.2.2 Configuring the shared cache
	20.2.3 Enabling entity and collection caching
	20.2.4 Testing the shared cache
	20.2.5 Setting cache modes
	20.2.6 Controlling the shared cache
	20.2.7 The query result cache

	20.3 Summary

	references
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

